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Abstract
The public transportation system is now dealing with a number of problems brought on by the sharp increase in automobile

ownership in cities as well as the buildup of vehicles as a result of events and accidents. However, the city’s limited road

network capacity cannot keep up with the increasing traffic demand, which further worsens travel conditions and results in

a waste of time and money. Given that it is challenging to enhance the capacity of the road network in practice, efficient

vehicle travel and evacuation using algorithms has emerged as a recent study focus. It is crucial to learn how to manage

urban traffic issues during emergencies and maintain smooth and safe traffic flow. The existing studies only consider the

optimized route selection for individual vehicles, signal cycle of traffic lights and deploy historical data to disperse the

vehicles on alternative routes. However, such works do not consider the conflict of routes between vehicles, the customized

traffic demand of each vehicle and uncertain traffic conditions. Therefore, this paper proposes a novel approach to facilitate

the user to select the optimal route with real-time traffic scenario. Furthermore, the Nash equilibrium is established by

mutual information swapping and self-adaptive learning method. Simulation results show that the proposed algorithm has

better route selection capability in real-time personalized road traffic as compared with existing algorithms.

Keywords Optimal route selection � Intelligent transportation system � Vehicular network � Adaptive algorithm �
Optimization technique

1 Introduction

Global urbanization is resulting in increased traffic con-

gestion in major cities, which not only negatively impacts

productivity and causes significant economic losses but

also leads to serious environmental pollution and safety

accidents that endanger human life and health. How to

utilise current traffic and road resources to relieve urban

congestion in the event of restricted growth of existing

urban area has emerged as a hot topic that requires urgent

resolution in the development of modern cities [1]. Cur-

rently, the following is the primary strategies for reducing

urban traffic congestion:

• Control the dynamic optimization of traffic signals using

technologies like SCOOT (split cycle offset optimization

method) [2] and SCATS (sydney coordinated adaptive

traffic system) [3]. This kind of approach primarily

relieves traffic congestion from the standpoint of macro-

traffic flow and increases the rate at which road resources

are utilized by accelerating the circulation speed of

driving vehicles, but it ignores the various traffic

requirements of each microscopic driving vehicle;

• Deterministic algorithms, such as the A* algorithm [4],

the Dijkstra shortest path algorithm [5], the dynamic

programming method [6], etc., make up the majority of
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the path navigation algorithms for a single moving

vehicle. PSO algorithm [7], genetic algorithm [8], colony

optimization algorithm [9], neural network algorithm

[10], and other intelligent algorithms. algorithms for

traffic optimization, as those used by TomTom [11],

Google Navigation [12], etc. All of the aforementioned

techniques are non-negotiation algorithms, and the issue

is that: When determining the best route for each vehicle,

the interaction between vehicles is not taken into

consideration, which may cause many vehicles to

congregate in one area of the road, causing new traffic

congestion and extending the driving times of vehicles.

• Optimization method based on vehicle or route data.

Some researchers choose a selection of roads with

comparable driving times based on past vehicle path

data and propose them to driving cars based on

probability [13] in order to spread vehicles on various

paths to relieve traffic congestion. Alternatively, a

charge dependent on the level of path congestion might

direct the vehicle’s choice of route [14] or by choosing

the vehicle’s route through the interactive game with

the road network center [15].

The previously mentioned methods have been effective in

distributing traffic and reducing congestion to some extent.

However, they either depend on fixed data or lack collab-

oration when determining a vehicle’s route based on real-

time traffic updates. It either lacks computing efficiency

and is unable to offer quick and precise path selection [16].

Additionally, in the approaches mentioned above, the

vehicle primarily chooses the route based on trip time,

without taking additional preference indications into

account, and without flexible personalized choices.

This paper introduces a distributed system made up of

multiple autonomous agents [17]. Each vehicle agent has

the characteristics of self-regulation and cooperation, and

can effectively conduct real-time information exchange

with other vehicle agents [18]. When the car approaches

each intersection, the route must be constantly updated in

conjunction with various preferences for the path ahead

and real-time traffic data in order to increase the accuracy

of routes. The preferred path is selected by each vehicle to

maximize its own utility, but in order to decrease the

impact of multiple vehicles on path selection, the optional

path must be configured by each vehicle and combine real-

time traffic data to work together [19]. How can all vehi-

cles in the entire urban road network cooperate to maxi-

mize their individual utility while the utility of the entire

road network is maximized, which is a random congestion

game problem based on incomplete information [20]?

Assuming every vehicle is aware of its potential routes and

its realized benefits, but is unaware of the benefits of routes

not chosen. Players engage in the game over multiple

levels to grasp its mechanics. They choose strategies for

each level based on past experiences and observations.

Over time, with consistent selection behavior, players’

strategies are likely to gravitate towards the Nash equilib-

rium [21]. This study introduces an adaptive learning

algorithm that aims to reach the Nash equilibrium, pro-

viding a way to optimize traffic utility while also ensuring

the best performance for each vehicle.

In summary, the main contributions of this paper can be

summarized as follows:

• Built an urban traffic network dynamic real-time multi-

intersection route selection model. It may efficiently

avoid mutual route conflicts and provide more precise,

individualized route selection for driving cars by taking

into account the route selection methods of many

vehicles at various junctions at the same time;

• The accuracy and efficiency of vehicle routing are

greatly enhanced by the newly developed calculation

method for the utility value of alternative routes for

driving vehicles, which not only takes into account the

various preferences of vehicles for route selection and

dynamic uncertain real-time road condition informa-

tion, but also takes into account the impact on road

traffic conditions;

• An adaptive learning algorithm is introduced to imple-

ment a dynamic route selection approach for vehicles,

aiming to reach the Nash equilibrium and ensure a

balanced traffic distribution across available routes.

This is done while taking into account the preferences

of each vehicle, using information exchange and

negotiation between them. The primary goal of this

algorithm is to enhance the efficient use of urban road

network resources.

The rest of this article is divided into the following sections.

The associated study is introduced in Sect. 2 of this publi-

cation. The suggested system model is introduced in Sect. 3.

The adaptive learning approach for dynamic route selection

is described in Sect. 4 along with its convergence. In order to

demonstrate the suggested model’s efficacy, Sect. 5 com-

pares it to both the simulation and the actual urban traffic

network. Final observations are provided in Sect. 6.

2 Literature review

Reference [22] integrated the PSO algorithm to optimize

the traffic management strategy and used the junction

control information to carry out dynamic route navigation

for cars in order to make maximum use of urban road

resources and decrease the average delay time of vehicles.

Reference [23] segmented the metropolitan road network

into several regions, forecasted the macroscopic traffic flow
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in each region, and carried out dynamic route planning for

vehicles across regions, minimizing traffic jams between

neighboring regions and lowering the computation scale of

centralized control. A reinforcement learning technique

was presented in Reference [24] to enable traffic light

signals to cooperate with one another and make adaptive

modifications in response to real-time traffic circum-

stances, therefore reducing traffic delays. Using a non-

centralized collaborative agent, reference [25] suggested a

multi-agent-based distributed green wave adaptive control

system for controlling traffic lights in order to improve

traffic flow. The aforementioned techniques, however,

primarily undertake route counselling from the standpoint

of macro-traffic flow, without taking into account the

specific driving requirements of microscopic cars.

Reference [7] suggested a quantum PSO method to plan

the vehicle’s course in order to increase the classic PSO

algorithm’s global search capability and convergence

speed. The parameters that must be taken into account in

the traffic process were precisely modelled by reference

[26] using the AHP in conjunction with fuzzy reasoning

technology, and dynamic route navigation for moving cars

was carried out. References [5, 27] suggested a path

planning model based on a multi-agent reinforcement

learning algorithm that determines the best route for the

vehicle by accounting for a variety of influencing elements

during vehicle operation and assigning varying weights to

each one. Ant colony optimization technique was incor-

porated in references [9, 28] to design and investigate

vehicle pathways. In order to increase vehicle driving

economy, reference [29] suggested a route optimization

approach based on traffic flow prediction, paired with an

effective dynamic enhanced A* route search algorithm.

The aforementioned techniques, which are all non-negoti-

ation algorithms, can all help shorten the distance travelled

by a single vehicle, but they do not account for the routing

effects of other cars when routing simultaneously.

Reference [13] proposed a route recommendation

method based on super-path, select a group of routes with

similar driving times and recommend them to driving

vehicles according to probability, and disperse traffic flow

in a group of similar routes in order to avoid new con-

gestion caused by vehicles choosing the same route.

However, this approach is based on static historical traffic

data rather than dynamic real-time traffic statistics. The

reference [30] attempted to spread out the cars to the way

with low traffic flow, but did not fully use the capacity of

the actual shortest path, which would induce some vehicles

to the far path. Reference [31] uses traffic signals to gather

real-time traffic data, prevent abrupt traffic congestion, and

equally distribute cars along the whole road network.

However, it does not take into account the driving

requirements of tiny vehicles; instead, it addresses the

collaboration between traffic signals and relevant road

segments. Reference [32] lowered the average trip time of

cars by performing path navigation from the viewpoint of

tiny vehicles, sorting and navigating by comparing the

impact of vehicles on the total road network traffic, and so

on. The collaboration between cars, however, is not taken

into consideration by this strategy. To direct cars, refer-

ences [14, 33] employed pricing strategy and a dynamic

toll policy. The extended anti-Stackelberg game was used

in reference [15] to help the traffic centre direct the

motorist towards the system’s ideal path. Reference [34]

looked for an efficient path allocation strategy that col-

laborates with road network administrators, information

centers, and vehicles to fully use the capacity of the road

network in space and time. The calculating efficiency of

the above strategy, which is mostly a master–slave game

akin to centralized agent collaboration, is not very high.

Reference [17] is based on virtual agent negotiation for

path guidance between cars to reduce traffic jams. By

contrasting three negotiating strategies, the link between

the individual interests of cars and the interests of the

overall metropolitan road network is investigated. The

correlation and impact of traffic capacity across road seg-

ments when cars at numerous crossroads choose routes

simultaneously, as well as the influence of unforeseen

traffic occurrences on vehicle route selection, are not taken

into consideration.

Through various sensors deployed inside vehicles or

outside vehicles, drivers or transportation administrators

can clearly know the concrete status of vehicles or the

traffic conditions so as to make better transportation

scheduling decisions. In [35–38], the authors analyzed the

time-aware traffic flow data and prediction so as to aid

more scientific and reasonable transportation decision-

makings. Since networks play a key role in data-driven

intelligent decision-makings [39, 40], novel technologies

have been taken into consideration to improve the trans-

portation scheduling performances, such as pricing mech-

anism [41], digital twin [42] and blockchain [43].

In conclusion, there are issues with the current study on

vehicle routing based on urban road networks, including

the simplicity of routing indications, a lack of accuracy,

and a lack of dynamic collaboration. In order to adequately

capture the dynamic strategy when several cars at various

crossings simultaneously pick routes, this research builds a

unique dynamic real-time multi-intersection route selection

model. The efficiency of route selection is greatly

increased by a calculation method for the utility value of

optional routes for moving vehicles that not only considers

the various preferences of the vehicles for route selection

and dynamic and unreliable real-time road condition

information, but also takes into account the impact of route

traffic conditions. precision and potency. To resolve the
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challenges faced when multiple vehicles select their routes,

an adaptive learning method is proposed. This approach

aims to optimize the use of urban road network resources

by ensuring an even distribution of traffic across available

routes, all while taking into account the preferences of each

vehicle.

3 System model

Prior research did not concentrate on how cars at several

junction’s impact one another when picking routes. A

dynamic real-time multi-intersection routing model is

therefore suggested in this article for urban traffic networks

like those in Fig. 1. This traffic model, in contrast to pre-

vious traffic models, is a model for simultaneous dynamic

route navigation for a large number of cars at several

junctions in the metropolitan road network. There are many

factors that need to be taken into account for route navi-

gation based on real-time dynamic traffic information,

including not only the driver’s subjective preferences for

the road and objective attributes, but also the cost associ-

ated with the route selection, potential emergencies on the

road, etc. By sharing information, vehicles on the road

identify their optimal paths, optimizing the overall usage

rate of the urban road system while also catering to their

individual preferences. The model definition is thoroughly

explained in Sect. 3.1. The specific method of utility

computation is provided in Sect. 3.2.

3.1 Problem model

Let a directed graph G(L, E) denote the traffic network, in

which L denote the collection of intersections, and E is a

collection of road segments between intersections, as

shown in Fig. 2. Suppose the number of intersections in the

urban traffic network is m, and lxðx ¼ 1; 2:::;mÞ represents

the xth intersection, then L ¼ l1; l2; :::; lmf g. For any adja-

cent intersection lx and lx, ðlx; lyÞ 2 E represents a road

section that can directly reach intersection ly from inter-

section lx. If ðly; lxÞ 2 E, it does not mean that ðlx; lyÞ 2 E

must be established. ln lxð Þ represents the set of all neighbor

which drive to lx, and OutðlxÞ represents the set of all

neighbor from lx. Turn lx; ly
� �

represents the collection of

intersections that vehicles driving from intersection lx to ly.

If it is possible to return to lx from intersection ly, then

Turn ly; lx
� �

¼ OutðlyÞ � lxf g. If it is not possible to return

lx from the intersection ly, then Turnðly; lxÞ ¼ Out ly
� �

.

The number of driving vehicles in the above urban

traffic network is set to n, and N ¼ 1; 2; :::; i; :::; nf g
denotes the number of vehicles. Among them, the start and

end point of the ith vehicle are denoted as oi and di,

respectively. At the current moment t, the set of

Fig. 1 Proposed system model
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intersections the vehicle has passed, the intersection it just

left and the intersection it is about to drive to, are repre-

sented by Qt
i, f

t
i and gti respectively. When the vehicle is

heading towards the intersection gti, according to the

combination of the preference and cost of the optional path

ahead estimated, combined with the traffic condition

information obtained through real-time monitoring, select

an optional path to turn, and use lk to represent the inter-

section that the vehicle chooses to turn in the next time

step, that is lk 2 Turnðf ti ; gtiÞ.Use Action i; tð Þ to represent

the steering action of the vehicle at the current moment t,

then:

Actionði; tÞ ¼ ðgti ! lkÞjlk 2 Turnðf ti ; gtiÞ
� �

ð1Þ

Use Rk
gti ;di

to represent at the current moment t, the ith

vehicle drives to the intersection gti and passes through the

intersection lk to reach the set of all optional paths to the

destination di, where the hth optional path is expressed as

rk;hgti ;di
, the road segment number of the path is expressed as

Sk;hgti ;di
.

Taking into account potential uncertainties on the

upcoming route, as well as the driving conditions and their

impact, vehicles approaching each intersection must weigh

the desirability of available paths before making a choice.

Factor value and cost value, and finally the utility value of

the vehicle for the optional route can be obtained. Here,

using the utility function, uk;hgti ;di
represents the utility value

corresponding to the ith vehicle driving to the intersection i

and turning to the intersection lk at the current moment t,

and arriving at the destination di via the hth optional route,

which is defined as follows:

uk;hgti ;di
¼ p� Pk;h

gti ;di
� b� Bk;h

gti ;di

� c� Ck;h
gti ;di

; p; c; b 2 ð0; 1Þ
ð2Þ

Among them, Pk;h
gti ;di

, Bk;h
gti ;di

, Ck;h
gti ;di

respectively represent the

vehicle’s preference value, uncertainty factor value and

cost value for the corresponding optional route; p, b, and

c are multiplicative factors, respectively representing the

preference value, uncertainty factor value, and weight ratio

of the cost value when the vehicle to be steered chooses an

optional route. According to the different urban traffic

network standards where the vehicle is located, for exam-

ple, the vehicle traffic efficiency, driving safety, etc., p, b,

and c take different values respectively. The values of p, b,

and c depend on factors such as city size and road network

traffic flow. When the city scale is large and the corre-

sponding road network traffic volume is large, vehicles will

focus on traffic efficiency, and will first consider avoiding

the congested path, the preference for the path is secondly

considered. At this time, the values of b and c are too large,

and the value of p is too small. When the city scale is

relatively small and the corresponding road network traffic

flow is relatively small, the vehicles will focus on the

preferred route. At this time, the value of p is relatively

large, and the values of b and c are relatively small. Based

on the above principles, the specific values of p, b, and

c can obtain optimal values in multiple experimental

explorations. The greater the utility value of the vehicle for

the optional route, the greater the possibility of choosing

the route.

To achieve a balanced distribution across available

routes and prevent traffic congestion, while also taking into

account the desirability of each path, vehicles at intersec-

tions, just before turning at time t, rely on real-time traffic

data from ahead, the congestion game is carried out

through information interaction, and the driving route is

selected based on the adaptive learning algorithm, so that

the strategy can ensure that the respective expenses does

not exceed the expected threshold. To achieve Nash equi-

librium, while maximizing the utilization efficiency of

urban road network road resources. According to the above

description, the dynamic multi-intersections approach for

traffic network is to solve the following parameter opti-

mization problem.

utiðrt
�
i ; r

t�
�1Þ� utiðrt

�
i ; r

t�
�1Þ; 8rti 2 Rt

i

s:t:timek;hgti ;di
� t Mk

gti ;di
jp�ði; tÞ

distk;hgti ;d
i � d Mk

gti ;di
jp�ði; tÞ

oilk;hgti ;di
� o Mk

gti ;di
jp�ði; tÞ

i ¼ 1; 2; :::; n; lk 2 Turnðf ti ; gtiÞ; h ¼ 1; 2; :::;Rk
gti ;di

8
>>>>>>>>><

>>>>>>>>>:

ð3Þ

Fig. 2 Graphical model of traffic intersection
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Among them, rt
�

i represents the optimal path selected by

the i-th vehicle at the current moment t; r
ð
�it

�Þ represents

the current moment t, a vector composed of the routing

strategies of all vehicles except the ith vehicle; uti is the

utilization factor of the ith route selection at time t; Rt
i is the

set of optional paths for the ith vehicle at the current

moment t; p�ði; tÞ represents the optimal strategy of the ith

vehicle for other vehicle route selection at the current

moment t; t Mk
gti ;di

, d Mk
gti ;di

, o Mk
gti ;di

and timek;hgti ;di
, distk;hgti ;di

,

oilk;hgti ;di
represent the time-consuming cost threshold and the

cost-distance threshold corresponding to the ith vehicle

driving to the intersection gti and turning to the intersection

lk to reach the destination di at the current moment t, the

fuel consumption cost threshold, and the expected time-

consuming cost value, the consumption distance cost value,

and the fuel consumption cost value corresponding to the

hth path to reach the destination.

3.2 Utility calculation

Future path selection criteria when a vehicle is about to

turn while being driven take into account a variety of

factors in addition to distance and travel time, such as the

number of lanes, the presence of pedestrian crossings, the

quality of the lighting, etc., of the road sections included in

the path, as well as the various subjective preferences of

drivers for the route. These elements work together to

determine the vehicle’s preference for a particular road

section, and the precise specifications are displayed in

Table 1.

According to the relevant parameters described in

Table 1, they can be weighted and combined to calculate

the route priority P, which is expressed as follows:

P ¼ alt � w1 þ lan� w2 þ sdw� w3 þ lgt � w4

þ cpl� w5 þ fmy� w6
ð4Þ

Among them, w1�w6 represent the independent weight

multiplication factors corresponding to the corresponding

parameters. The larger the factor, the more important the

corresponding parameters are, and their sum is 1. In this

scenario, the priority is determined by the total of prefer-

ence values for all segments along the route. A higher

calculated preference value indicates a stronger inclination

of the vehicle to choose that road, making it more likely for

that particular route to be selected.

There may occasionally be some unforeseen incidents

on the road ahead while the car is being driven, such as

traffic accidents, temporary controls, etc. These occur-

rences make up the unpredictable aspects that must be

taken into account when the vehicle selects a route. In

Table 2, the particular parameters are described.

The severity of the emergency’s effects on the traffic

throughout the whole road segment are the key factors

taken into account when determining the value of each

uncertainty element. For the hazard of unexpected traffic

accidents, for instance: If the effect of the collision is so

severe that the cars on this road section cannot continue to

pass, then this value can be set to 1, which denotes that

the vehicle will not select this road section while turning. If

a traffic collision occurs, but the effect on traffic on this

stretch of the road is not extremely severe and some cars

may still pass without incident, then the value is between

[0,1], and the value is chosen based on how serious the

accident was. The higher the value, the more significant its

effect on traffic, leading to more severe accidents. The

computation method remains consistent for uncertainty

factors associated with different emergencies, such as

temporary controls. The uncertainty factor value B related

Table 1 Parameters for preference determination

Type Parameter Ranges Specific description

Objective attributes of

road sections

alt 1;�1f g Indicates whether the selected road segment is reachable to the destination. If the value is -1, it

means it is not reachable; At the same time, set the entire preference value to -1, and the

following parameters will no longer refer to

lan 0; 1½ 	 Indicates the condition of the road section (including road width, flatness, etc.). The larger the

value, the better the condition of the road section

sdw 0; 1f g Indicates whether there is a crosswalk on the road section: If there is, the value is 0; otherwise,

it is 1

lgt 0; 1½ 	 Indicates the lighting conditions of the road section: If it is daytime, the value is set to 1; If it is

night, the larger the value, the better the lighting equipment of this road section

Driver’s subjective

preference

cpl 0; 1½ 	 Shows the driver’s level of adherence to the route advice system. The greater the value, the

more frequently the driver takes the route that the algorithm suggests

fmy [0,1] Indicates the driver’s familiarity with the road section. The larger the value, the more familiar

with the road section, the greater the probability of choosing this road section
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to this section may be determined using the values pro-

vided for various crises, as illustrated below:

B ¼ accident � a1 þ activity� a2 ð5Þ

where a1 and a2 represent the independent weight multi-

plication factors corresponding to the corresponding

parameters. The importance of the related characteristics

increases with the size of the factor, and their total is 1. The

total of the values for each part of the road denotes the

route uncertainty factor. The larger the estimated uncer-

tainty factor value, the less likely it is that the vehicle will

turn to pick the road.

The driving vehicle must also take into account the

driving circumstances of each route after determining the

values of priority and uncertainty. When a vehicle picks a

certain path to turn on, it will increase the traffic flow of

that path, which will have an effect on the way’s driving

conditions. It will also be impacted by the path’s current

congestion status. This impact is known as the cost price

paid by the vehicle for selecting the route and includes the

expected time cost, the expected distance cost, and the

expected fuel consumption cost. In Table 3, the particular

parameters are explained.

Among the aforementioned parameters, the expected

distance cost can be calculated relatively easily by the ratio

of actual and expected lengths, whereas the expected time

cost and expected fuel consumption cost calculations are

more challenging because they depend on how congested

the corresponding path is. This work introduces the con-

gestion coefficient tau, whose value is connected to the

actual number of cars on the road q, D shows the con-

gestion capacity, Y denotes the capacity of threshold

parameter. In general, the more congested a road is, the

higher the corresponding traffic congestion coefficient of

the road is, and the different stages of traffic flow (such as

free flow, semi-free flow, congestion flow, etc.) will result

in different increases in the traffic congestion coefficient.

Calculated specifically as follows:

s ¼
1; q\Y

q=Y ; Y � q\D

D=Y þ eq=D; D� q

8
><

>:
ð6Þ

The expected time-consuming cost of a path is the result of

adding the expected time-consuming times of all the road

sections and the expected time of the path ratio. The

expected time-consuming of a road section can be calcu-

lated as the product of the average travel time of the road

section and the congestion coefficient of the road sec-

tion. The ratio of the predicted fuel consumption on each

road segment to the projected fuel consumption. The cost

value C corresponding to a path can be computed by

adding the predicted cost values stated above:

C ¼ time� t1 þ dist � t2 þ oil� t3 ð7Þ

where the independent weight multiplication factors t1

through t3 that correlate to the respective parameters are

represented by these numbers. The importance of the

related characteristics increases with the size of the factor,

and their total is 1. The probability that the turned vehicle

Table 2 Parameters for traffic uncertainty

Parameter Ranges Description

activity ½0; 1	 [ 1f g Indicates the value of the uncertainty factor brought by the temporary traffic control due to major events on the

selected road segment. According to the degree of impact of the event on road traffic

accident ½0; 1	 [ 1f g Indicates the value of the uncertainty factor brought by sudden traffic accidents on the selected road segment.

According to the degree of impact of the accident on road traffic

Table 3 Parameters for route cost estimation

2–4 Parameter

Time Dist Oil

Description Indicates the expected time cost of the

vehicle on the selected route. According

to the congestion degree of each road

section, combined with the average

driving time of the road section to

calculate

Indicates the expected distance cost of the

vehicle on the selected route. The sum

of all road distances on the selected path

is compared with the expected distance

of the driving vehicle from the current

intersection to the destination

Represents the expected fuel

consumption cost of the vehicle on the

selected route. According to the

congestion degree of each road section,

combined with the average fuel

consumption of the road section to

calculate
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will pick the road decreases as the predicted cost value

increases.

4 Proposed algorithm

The suggested algorithm refines its dynamic route selection

approach, allowing numerous vehicles throughout the road

network to navigate through a stochastic congestion game.

Leveraging the Markov learning process, it helps each

vehicle discover and choose the optimal path, ultimately

reaching a mixed Nash equilibrium. The traffic flow and

the computation link between utility values are described in

Sect. 4.1. The stochastic congestion game among auto-

mobiles is described in Sect. 4.2.

4.1 Traffic flow and utility value

In order to express the relationship between the traffic flow

in the urban road network and the utility value of a vehicle

choosing a certain route, the following symbols and terms

are defined in this paper. N ¼ 1; 2; :::; nf g represents n

driving vehicle agent sets. Ri ¼ 1; 2; :::h; :::;Mif gði 2 NÞ
represents the optional path set of the ith vehicle agent, and

R�i denotes the agents except the ith vehicle agent gather.

If the start and end points of two vehicles are the same,

their optional path sets are also the same. ri 2 Ri denotes

ith vehicle agent route, and r�i 2 R�i denotes the routes of

other vehicle agents. The routing strategy of all vehicles

can be expressed as a vector

r!¼ ðr1; r2; :::; ri; :::; rnÞ 2 R, r!¼ ðri; r�iÞ 2 R, where

R ¼ R1 � R2 � ::: � Rn. uið r!Þ : R ! R represents the

utility value obtained by the ith vehicle agent under the

path selection strategy r of all vehicle agents. The utility

value for a vehicle selecting a specific route is chiefly tied

to the value of each segment on that route. Apart from the

vehicle’s preference for the route and the accompanying

uncertainties, this can be deduced from the utility value

computation method discussed in the prior section

regarding vehicle route choices. It has to do with how

traffic is moving. This value is specified as follows, how-

ever it relies on how each vehicle chooses its routes.

It is known that E represent the number of sections, and

qe is defined as the traffic flow and e 2 E. The optional path

set Ri 
 2jEj of vehicle iði 2 NÞ, one of which is an

optional path h 2 Ri, consists of several road sections

e 2 h. At time e 2 t, the number of times vehicle i visits the

optional path hðh 2 RiÞ is a 0-1 function, defined as

follows:

zti;h ¼ 1 rti ¼ h
� �

ð8Þ

Among them, 1 �f g is an indicator function: if the judgment

in the braces is true, the value is 1; Otherwise, it is 0.

Therefore, the traffic flow is expressed as:

qte ¼
X

i2N

X

h2Ri

dei;hZ
t
i;h; 8e 2 E ð9Þ

Among them, dei;h

n o
represents the relationship matrix

between a road segment and all the optional routes. The

factor dei;h represents the relationship between the option

route and preferred segment e. Assuming that each vehicle

selects a route independently according to a certain fixed

probability based on past historical experience, and each

vehicle can observe the route selection of other vehicles by

using the utility calculation formula in Sect. 2, the average

utility utiðrti ; rt�iÞ of vehicle i to the selected route at time t

can be calculated. In order to stabilize the random route

selection process of the vehicle, a noise etiðrtiÞ generated by

random selection is added to form the known utility Ut
i of

vehicle i at time t, as follows:

Ut
i ¼ utiðrti ; rt�iÞ þ etiðrtiÞ ð10Þ

Assume that at each time t, all vehicles observe the known

utility of choosing a route at each previous time

ð0; 1; :::; t � 1Þ, and refer to this information to select the

route at time t. According to the known utility value at each

previous moment, the estimated utility of vehicle i for route

h at time t (the utility value is the maximization target of

ith vehicle path selection) can be obtained as:

ûti;h ¼
1

Zt
i;h

Xt�1

s¼0

US
i Z

S
i;h ð11Þ

Among them, Zt
i;h represents the number of times ith

vehicle visits path h until time t (not including this time),

defined as follows:

Zt
i;h ¼

Xt�1

S¼0

ZS
i;h ð12Þ

Combining formula (11) and formula (12), formula (13)

can be obtained, that is, according to the estimated utility

of the ith vehicle for the path h at the previous moment and

the known utility known at the current moment t, the path h

at the current moment t can obtain the estimated utility of:

ûti;h ¼ ût�1
i;h þ

1 r̂t�1
i ¼ h

� �

Zt
i;h

Ut�1
i � ût�1

i;h

� �
ð13Þ

4.2 Traffic flow and utility value

The negotiation process is known as a random congestion

game and occurs when all cars in the urban road network

pick the optimum path close to the intersection. This
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negotiation is based on the projected utility of the other

route. Each vehicle in the game chooses an optional path

that, according to the adaptive learning algorithm, maxi-

mizes the estimated utility and, with a high probability,

reaches a mixed Nash equilibrium. The adaptive learning

algorithm combines utility learning and policy learning to

concurrently update the program along with the parameters

of the Logit model. This method relies on the best response

function derived from the estimated utility. This response

function is progressively refined using stochastic approxi-

mation theory, given that the current vehicle cannot access

the utility values of the paths not chosen.

4.2.1 Hybrid strategy

In this paper, a hybrid strategy ptiðriÞ is used to represent

the probability that vehicle i chooses an optional route ri at

time t, namely:

ptiðriÞ ¼ Pr½rti ¼ ri	 ð14Þ

Among them, for any optional path 1� h�M of ith

vehicle, there are 0� ptiðhÞ� 1 and
PMi

h¼1 p
t
iðhÞ. The

average utility based on the hybrid method is expressed as:

uið p!Þ ¼
X

p

½uið r!Þ	 ¼
X

r!2R

uið r!Þ
Y

j2N
pjðrjÞ ð15Þ

The equilibrium based on the Nash principle is obtained

when the optimal path compared to how other cars choose

their paths, which means that the conditions listed below

are met.

uiðp�Þ ¼ max
ri2Ri

uiðri; p��iÞ ð16Þ

4.2.2 Optimal response function

Because decisions made by one vehicle will have an impact

on other decisions made by other vehicles, each vehicle

chooses the optimal route according to the estimated utility

ûiðhÞ of the available routes, making their decisions prob-

abilistic rather than deterministic. Each vehicle chooses its

best answer through an optimum response function in

accordance with the likelihood of each vehicle’s route

selection and the related optional route estimate utility, in

order to locate the Nash equilibrium point of route selec-

tion. Based on [44], the following definition represents the

ideal response function for ith vehicle to select a path:

rti;h ¼ arg max
pi2

P
i

X

h2Ri

pti;hû
t
i;h þ liWiðptiÞ

" #

ð17Þ

Among them, li [ 0 is a user-related smooth parameter,

and Wi : 4ðRiÞ ! R is a smooth and strictly differentiable

function containing the vehicle i information. It is

expressed as:

WiðpiÞ ¼ �
X

h2Ri

pi;h log pi;h ð18Þ

From this, the following optimal response function Logit

type can be obtained:

cti;h ¼
e

ût
i;h
li

� �

P
W2Ri

e
ût
i;w
li

; h 2 Ri; i 2 N ð19Þ

In order for cti;h

n o

t� 0
to effectively respond, the recursive

estimated via known utility approximation. The following

update formula is used to approximate formula (13) [45]:

ûtþ1
i;h ¼ ûti;h þ ntþ1 1 rti ¼ h

� �

rti;h
ðUt

i � ûti;hÞ ð20Þ

Among them, for each ith vehicle, nti
� �

t[ 0
is a deter-

ministic sequence, satisfying the following conditions:
X

t� 0

nti ¼ 1;
X

t� 0

ðntiÞ
2\1 ð21Þ

Ordinary differential equations (ODE) in [46] can approach

the convergence condition of formula (20). The estimated

utility will converge to the anticipated value of the known

utility. In a more general scenario, the system exhibits an

erratic behavior when all cars alter their courses simulta-

neously. Reference [47, 48] has confirmed that the

parameter nt in formula (20) will be a vehicle-specific

parameter if it satisfies the following conditions nti
� �

:

when t ! then
nti
ntþ1
i

! 0

(

ð22Þ

The following lemma is based on the theory of perturbed

differential equations presented in [47, 49]: As long as it

stays limited, the value hatuti given by formula (19) toge-

ther with the vehicle-specific parameter nt will converge to

a recursive set of interconnected chains of traffic flows that

are described by anomalous perturbation differential

equations.

4.3 Adaptive learning algorithm

In the adaptive learning process, the Logit model param-

eters are employed and adjusted iteratively based on the

regret value, which is defined by the realized utility. If

every vehicle consistently chooses a superior route, the

regret value will gradually approach a negligible amount,

increasing the probability of each vehicle selecting the best
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path. Finally, it is demonstrated that the method converges

to e-Nash equilibrium using the Markov chain model.

4.3.1 Markov learning process

The specific information of each vehicle and the cost of the

chosen road segment rely on the traffic flow of other road

segments when several cars travelling to different inter-

sections play a routing game, disrupting the vehicle’s

routing strategy. Right now, the better response-rather than

the optimal response-is the sensible selection of the vehi-

cle. The state transfer approach used in this study is based

on the Markov learning model for state transfer, which

views the game’s state as a learning level and specifies the

state transfer procedure. At each time step t ¼ 1; 2; :::, use

X(t) to represent the game state, the variable v is the

number of learners in this state, and the learner is the

vehicle that has successfully found the best response path.

The remaining ðn� mÞ vehicles are non-learners. Mark the

non-learner’s path selection behavior as 0. On the other

hand, mark the learner’s path selection behavior as 1, and

the learner will keep the behavior unchanged in the next

time step.

Use rm to represent the probability that a certain vehicle

chooses the best route in the state X(t), and ð1 � rmÞ rep-

resents the probability that a certain vehicle does not

choose the best route. Then as shown in Fig. 3, the state

transition probability is expressed as:

Pr½Xðt þ 1Þ ¼ mþ 1jXðtÞ ¼ m	 ¼ n� m
n

rm; 0� m� n� 1

Pr½Xðt þ 1Þ ¼ m� 1jXðtÞ ¼ m	 ¼ m
n
ð1 � rmÞ; 1� m� n

Pr½Xðt þ 1Þ ¼ mjXðtÞ ¼ m	 ¼ n� m
n

ð1 � rmÞ þ
m
n
rm; 0� m� n

Pr½Xðt þ 1Þ ¼ m0jXðtÞ ¼ m	 ¼ 0; m0 62 m� 1; mþ 1f g

8
>>>>>>><

>>>>>>>:

ð23Þ

Each vehicle is unaware of its current situation, despite

the information analysis centre knowing it. The Markov

chain model will converge to a stable migration probability

since it is irreducible and non-periodic, in accordance with

the features of the Markov chain. This probability may be

discovered by solving the following equation [50–52]:

kmþ1

km
¼ n� m

mþ 1

� 	
rm

1 � rnu

� 	
;
Xn

m¼0

km ¼ 1 ð24Þ

4.3.2 Algorithm process

In the process of each vehicle driving to the intersection to

choose the forward path, given the initial path selection

behavior vector and the corresponding utility value

r!0
; U
!0

n o
, the following path selection behavior and

utility value r!t
; U
!tn o

ðt[ 0Þ will be generated succes-

sively. It is assumed that ith vehicle only knows the real-

ized utility value Ut
i

� �
at each stage t[ 0, and makes a

probability distribution on the selection of alternative paths

based on certain rules. The information center computes

the utility value of the route and sends it to each vehicle so

that the driving vehicle is aware that each time has passed.

This is done on the basis of the route selection vector

generated by each vehicle agent on the optional route based

on the hybrid strategy. The moving vehicle chooses the

current course via exploration and the best path at the

moment based on the realized path utility value at each

instant TBR (tentative best route).

1) Path Initialization The adaptive learning algorithm is

started, and this procedure is referred to as the initialization

condition, when the vehicle agent is about to arrive at the

intersection and sends the preference information of the

road ahead to the information center, realizing that it needs

to negotiate the route selection. At t ¼ 0, each agent selects

r0
i in a random manner. At the next moment t ¼ 1, take this

path as the TBR h� ¼ r1
i ¼ r0

i .

2) Learning Stage Each vehicle i explores to select a

tentative optimal path TBR h�, and then includes this path

into the optimal path set (i.e., with the goal of maximizing

the estimated utility of each vehicle):

Bt
i ¼ h� 2 Ri : h

� ¼ arg max
ri2Ri

ûiðriÞ

 �

ð25Þ

Based on the following probabilistic assignment rules

(choose the path with the highest estimated utility with

high probability, and randomly select other paths with low

probability), vehicle i selects the heuristic optimal path h�

by exploration:

ptiðriÞ ¼
ebtiðriÞ þ ð1 � eÞ; ri ¼ h�

eð1 � bðh�ÞÞ
jRij � 1

; ri 6¼ h�

8
<

:
ð26Þ

Among them, e is a small number with arbitrary outcomes.

The selection probability is expressed as:

Fig. 3 Variation of probability based on state
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btiðriÞ ¼ Ke
ûiðriÞ
lt
i

� �

; ri ¼ h� ð27Þ

Among them, K is a parameter that is deployed for nor-

malization, lti is the Logit parameter. It is automatically

updated according to the user’s experience:

lti ¼ max½el; lti	

lti ¼ lt�1
i þ Ht

i � lti
t

8
<

:
ð28Þ

Among them, Ht
i represents the regret value of the vehicle,

defined as Ht
i ¼ Ut

i � U
t
i, where, U

t
i ¼

Pt
s¼1 U

s
t =t. When

the time t becomes very large, the regret value Ht
i is close

to 0.

The new path selection vector r!t
is generated according

to the mixed strategy p!i
of each vehicle.

The first equation in Eq. (26) shows that: Vehicle i

assigns probability ebiðh�Þ to each optional path at least,

and assigns a little more probability to TBR, so as to

strengthen TBR. Equations (26) and (27) represent the re-

planning (adaptive learning) process of vehicle i to tenta-

tively select TBR.

3) Path Selection Iterative Process

If TBR is frequently chosen, the vehicle will maintain its

path choice in the subsequent phases; if the hybrid strat-

egy’s path choice is not TBR, the vehicle will continue to

investigate TBR in accordance with formulas (26) and (27).

4) Output Optimal Path Selection

When the route selection of each vehicle reaches the

Nash equilibrium or when a certain distance from the

connection point (based on GPS positioning) is computed,

the algorithm stops if each vehicle agent has located its

own TBR within the stipulated number of repetitions. An

example of a termination condition is this. The vehicle

agent goes to the associated junction to continue driving in

accordance with the final route selection scheme after the

algorithm has been run.

Figure 4 displays the detailed flowchart of the adaptive

learning algorithm. The approach boasts advantages such

as high precision, impressive adaptability, and robust

resilience. This is attributed to its consideration of the

interplay between vehicles navigating multiple intersec-

tions in the urban traffic grid while concurrently selecting

their paths.

5) Computational Complexity

The dynamic programming approach is used in the

adaptive learning algorithm to solve, and the algorithm’s

time complexity is OðnmÞ. Compared to conventional path

selection methods which have time complexity of Oðn2Þ
and Oðn3Þ, respectively. The network environment has

significantly lowered vehicle average journey times and

dramatically slowed down the congestion of the whole

urban traffic network.

4.3.3 Algorithm convergence

Assuming that the congestion game has a pure Nash

equilibrium, then the behavior vector r!t
generated by the

adaptive learning algorithm will converge to the e-Nash

equilibrium with probability q\1 when e is very small and

the time t is very large.

First, for the stationary probability, there is the follow-

ing formula:

km ¼
mþ 1

n� m

� 	
1 � rm
rm

� 	
kmþ1; 0� m� n� 1 ð29Þ

Among them, rm ¼ 1 � eð1 � b�mÞ, b�m is the selection

probability assigned to the tentative best response path

TBR when the number of learners is m. Define r ¼
min0� m� n rm is the lowest probability of selecting TBR,

and e can be selected to ensure that d ¼ ð1 � rÞ=r\1. If

e� 1=n is chosen, then there is the following formula:

k0 � :::� kn�1 � kn ð30Þ

Assuming the last state, all vehicles have found the TBR

with probability 1, that is, kn ¼ q ¼ 1. This means that

k0 ¼ kn�1 ¼ 0, and all vehicles have almost converged to a

pure Nash equilibrium, which may occur in the problem

that vehicles know each other’s path choices. However, in

the problem that vehicles do not know each other’s route

selection, the probability q must be less than 1. According

to formula (21), for a given probability kn ¼ q, the

sequence equation kn�1; kn�2; :::; k0f gf g, and their sum is:

U ¼
Xn�1

m¼0

km ¼ n
n� 1

2
:::

1

n

� 	
dn þ :::þ n

n� 1

2
d2 þ nd

� 	

q ¼q
Xn

m¼1

n

m

� 	
dm

ð31Þ

Using the binomial formula, we can get

U ¼ q 1 þ nð Þn � 1f g. Thus:

q ¼ 1

1 þ dð Þn ¼ 1 � e 1 � bð Þf gn\1 ð32Þ

If the minimum probability b� assigned to TBR is close to

1, then the probability q that all users will successfully find

the best path will also be very close to 1. However, using

very small values of e will have the opposite effect. At a

relatively early stage of an iteration, a vehicle will choose

the wrong path with a high probability, and then correct it.

If some lower probability is added, meaning that some

vehicles are allowed to get better responses, that is,
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q ¼ kn þ lambdan�1 þ :::þ lambdan�s, then the e-Nash

equilibrium will be achieve.

5 Simulation results

The suggested model is tested in this research using JADE

as the agent simulator, VanetMobiSim as the vehicle

movement simulator, and tests on a synthetic road network

and a real road network, respectively. Using Scenario

Extended Markup Language files, several road networks

are constructed in VanetMobiSim, and agent behavior

(representing the concept of the suggested solution) is

simulated in JADE. The artificial road network with several

junctions that Sect. 5.1 sets up has varying numbers of

intersections and cars. This study contrasts the introduced

model with three non-negotiation algorithms to illustrate

that the route selection for multiple vehicles in the sug-

gested model, post-negotiation, is more accurate and

effective. To further validate the applicability of the rec-

ommended model in actual traffic conditions, Sect. 5.2

extends to a larger real-world road network and evaluates

Fig. 4 Proposed algorithm flowchart
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under different traffic density scenarios (smooth flow, open

flow, mixed flow, and congested flow).

5.1 Scenario 1: artificial road network

In this case, a particular section of the man-made road

network is chosen as the experimental object. The road is

made up of 3 subsidiary arterial roads and 5 main arterial

roads (solid lines). (dotted lines). The roads in the road

network cross each other and are bidirectional. The 7

destination nodes have the letters A through G. They serve

as either the starting point or the finishing point of the

journey in the simulation experiment, as seen in Fig. 5. A

primary or a less-than-ideal preferred route is first arbi-

trarily allocated to each vehicle agent. A road stretch will

begin to experience congestion if the vehicle capacity

surpasses the threshold capacity. This will result in slower

vehicle speeds. The vehicle’s driving speed is further

lowered and enters a very slow driving stage when the

road’s vehicle capacity surpasses its traffic capacity.

In order to verify the influence of using the proposed

model for mutual negotiation between vehicles to reduce

the travel time of the entire road network, this paper

compares the model with three non-negotiation algorithms

by changing the weight coefficients of different parameters

in the path utility calculation formula: Shortest path algo-

rithm ðp ¼ 0; b ¼ 0Þ, preference-based algorithm

ðc ¼ 0; b ¼ 0Þ, preference-based shortest path algorithm

ðp ¼ c and p! ¼ 0; b ¼ 0Þ. These algorithms lack inter-

vehicle communication, making it impossible for cars to

mutually negotiate the avoidance of route selection con-

flicts. It does not take into account the possibility of

unpredictable crises on the road either. In the shortest path

algorithm, regardless of whether the road attribute of the

path is in line with the vehicle preference, all vehicles

choose the path that has the shortest driving distance from

the source address to the destination. The utility of

choosing a path is solely dependent on the path that is

chosen. The usefulness of selecting a route solely depends

on the related vehicle’s preference value for this route in

the preference-based algorithm. Regardless of whether the

path exceeds the road capacity, all cars pick the shortest

way among their preferences in the preference-based

shortest path selection process.

Set the scale of road network negotiation from small to

large and choose four (1,2,5,6), nine (1,2,3,5,6,7,9,10,11)

and sixteen (16) junctions to observe the performance of

the proposed model in various sized road networks. A, B,

C, and D are utilized as source addresses and E, F, and G

are used as destinations in the simulation experiment.

Vehicle agents communicate with one another and nego-

tiate a course before they arrive at each crossing. This

procedure assumes that the vehicle is completely aware of

the traffic conditions at the intersection up ahead and that

(global positioning system (GPS) information is accurate.

The suggested model’s percentage trip time decrease in

comparison to the three non-negotiation methods in various

circumstances is depicted in Fig. 6.

It can be seen from the simulation results in Fig. 6 that:

1) The suggested model may minimize driving time for

road networks with several junctions compared to the

three non-negotiation techniques, particularly com-

pared to the shortest path approach, which can cut

driving time by 5% to 37%. To reduce travel time

expenses, the suggested model calls for cars to

coordinate their dispersion on different routes and

communicate with one another. Because all cars only

select the shortest way in the shortest path algorithm

(regardless of the road capacity restriction), conges-

tion is a result of this behavior. The user’s preference

(possibly more than one path is preferred) drives both

the preference-based algorithm and the preference-

based shortest path algorithm; in fact, this will result

in a certain percentage of vehicles being dispersed on

some optional paths rather than being crowded in one

path on the shortest path. As a result, the suggested

model typically outperforms the shortest path algo-

rithm in terms of benefits, as opposed to both the

relative preference-based algorithm and the prefer-

ence-based shortest path algorithm;

2) As more intersections are factored in, the percentage

decrease in driving time actually increases, rather

than diminishes, when the number of vehicles

surpasses the road network’s capacity threshold.

However, the percentage of time saved is at its

smallest when the number of vehicles goes beyond

the congestion capacity. This demonstrates that:

When the number of vehicles on the road network

is just starting to rise, route selection through vehicle

negotiation can improve the distribution of vehicles

on the road network, but when the road network is

too congested, vehicle negotiation has little impact

on the distribution of traffic flow;

3) The reduction in travel time becomes increasingly

evident as more junctions participate in negotiation

and route optimization. This demonstrates that the

proposed model’s proposed model’s more junctions

engaging in negotiation, the longer the distance

travelled by participating cars, and the share of travel

time reduction will be larger. This is due to the fact

that there are more intersections encountered by the

vehicle in this scenario, giving it more opportunities

to negotiate a better route allocation that will allow it

to travel more efficiently through the urban road
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network and maximize the use of its available

resources.

5.2 Scenario 2: real road network

The suggested model is tested for stability and scalability

in this research via comparison tests on a bigger actual grid

road network. As seen in Fig. 7, the suggested model is

used in this case to analyses an actual grid network in the

Seoul District of Korea. The urban road network has 24

major junctions, of which intersections 1–4, 6, 11, 12, 16,

20, 22, and 24 are utilized as the start and finish locations

of the test road network. Each of the 36 road sections that

make up the road network’s roadways is a two-way street.

The specifications for the real state of the road are estab-

lished, and a random value is chosen for each driving

vehicle’s preference attribute for each road stretch. There is

a speed restriction and each portion of the road crosses over

the others.

In order to observe the performance of the proposed

model in different traffic flow densities, this paper conducts

experiments on the road saturation of 0.1, 0.2, 0.3, 0.4, 0.5,

0.6, 0.7, and 0.8 in the traffic network. The corresponding

traffic flow states of 0.1 0.2, 0.3 0.4, 0.5 0.6, 0.7 0.8

respectively represent free flow after 10:00 at night, free

flow at 3:00 p.m. For the four common traffic scenarios at

7:00 8:00 am, the number of cars observed is about 9,000

� 90,000.

Choose any intersection in the road network as the

source and destination, then contrast the suggested model

with the three non-negotiation algorithms shortest path,

preference-based, and preference-based shortest path. In

these four circumstances, Fig. 8 compares the proposed

model’s trip time reduction percentages to those of the

three non-negotiation procedures.

Fig. 5 Traffic network scenario

using artificial approach
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It can be seen from the results in Fig. 8 that:

1) The suggested model still reduces travel time by 8%

to 36% compared to the three non-negotiation

methods, despite the bigger scope of the road

network and the presence of more cars;

2) The suggested model’s driving time reduction % in

comparison to the three non-negotiation methods

constantly rises as road saturation levels out. The

driving time of the suggested model has the maxi-

mum percentage of time reduction when the road

saturation hits 0.5, or in the mixed flow stage when

the road is slightly crowded. The negotiating

Fig. 6 Driving time reduction of the proposed algorithm in artificial traffic configuration under different path allocation methods

Fig. 7 Illustration of real road network

Fig. 8 Driving time reduction of the proposed algorithm in real traffic

configuration under different path allocation methods
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outcome of the suggested model, however, reduces

the percentage of travel time reduction when traffic

volume rises and the route enters an extremely

crowded congestion flow condition. This matches the

experimental findings from the simulation on the

made-up road network.

However, there are still several limitations regard-

ing the proposal in this work. First of all, the

experiment results are obtained from artificial road

network instead of real-world road networks. Second,

the traffic conditions are often varied with time

critically; therefore, it is necessary to integrate the

time factor into transportation route scheduling

problems in the future work.

6 Conclusion

This paper proposes a new algorithm in order to efficiently

reduce the problem of urban traffic congestion while taking

into account the individual traffic demands of driving

vehicles and the dynamic uncertainty of traffic conditions

in the urban road network. The driving vehicles in the road

network are based on the preference of the optional route,

combined with the current traffic conditions of the optional

route, and they continuously update the forward route using

the adaptive learning method to ensure that each driving

vehicle’s route selection strategy reaches Nash equilibrium

while maximizing the application efficiency of road net-

work resources. Numerous tests were conducted to test the

viability of the suggested model, and the following findings

were made.

In the following two areas, further study is still required.

First of all, the influence of the traffic light cycle at the

junction on vehicle route selection will be taken into

consideration. Second, further examine the impact of

modifying the proportion of cars that do not follow the

system’s advised route on the average travel time of

vehicles in the overall metropolitan road network. Third,

the collaboration and sharing among different parties

inevitably disclose partial sensitive information of people

[53–56]. So how do you cope with such an important data

sharing problem with privacy protection is still an open

problem that requires intensive study.
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15. Oszczypała, M., Ziółkowski, J., Małachowski, J., & Lęgas, A.
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