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Abstract
In this work, a microstrip diplexer with 0.004 kg2 (10.1 9 23 mm) overall size is designed, analyzed and fabricated. The

proposed diplexer has the smallest size compared to the previously reported microstrip diplexers. The proposed diplexer

has a simple and novel structure, wide flat channels and very low S11j jdB. An innovative microstrip structure based on thin

coupled lines is used to design of the proposed diplexer. Since in a simple structure the possibility of manufacturing errors

reduces, having a simple structure is one of its advantages. Another advantage of this diplexer is two low S11j jdB of 0.17

and 0.14 dB at the lower and upper channels. The operational frequencies of our diplexer are tuned to work at 0.9 GHz and

1.8 GHz for GSM application. It has the privileges of very compact size, simple structure, small S11j jdB, two wide fractional
bandwidths (FBWs) of 21 and 24.3% and acceptable S11j jdB and isolation. Due to its two wide FBWs, the presented

diplexer is suitable for broadband communication systems. We have fabricated and measured the introduced diplexer to

verify the design methodology and simulation results. The obtained results of the diplexer measurement confirm the

simulation.
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1 Introduction

Due to being planar, low weight, low cost and easy to

fabricate, compact microstrip devices, i.e. couplers, filters,

diplexers and multiplexers, have been very much needed

by modern high-speed wireless communication systems

[1–5]. To segregate signals and multiplex them, compact

microstrip diplexers are the key devices. Recently,

achieving a compact high-performance microstrip diplexer

has been a challenge for designers. Accordingly, some

microstrip structures are introduced to access dual-band

bandpass-bandpa]ss diplexers [4–23]. A common disad-

vantage of the designed diplexers in [1–4] and [6–20] is

occupying large implementation areas. On the other hand,

some communication links with high data rates are forced

to use a wide fractional bandwidth (FBW). Nevertheless,

the proposed diplexers in [1–4] and [6–21] could not

increase FBWs significantly which is another common

problem of them. Different types of coupled structures are

used to design the microstrip diplexers in [4, 6–10]. Cou-

pled meandrous cells in [4], stub-loaded coupled lines in

[6], mixed electromagnetic coupling in [7], four coupled

loops with step impedance cells in [8], coupled spiral cells

in [9] and coupled E-shape structures in [10] are used. In

[4], the second channel is narrow and cannot be used

practically. Also, we can see the problem of low selectivity

at the second channel of the designed diplexer in [6]. The
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reported structures in [7–10] have undesired S11j jdB. Using
interdigital cells, the problem of high losses is solved in

[11], but it could not improve the sharpness of its pass-

bands edges. In [12], a diplexer with large S11j jdB is pro-

posed using ring resonator. To improve the bandwidths, a

microstrip diplexer is presented in [13]. To design this

diplexer, coupled step impedance cells are used which

increase its FBWs up to 16.8%. Using half- and quarter-

wavelength resonators, a novel diplexer with two narrow

channels and high S11j jdB is presented in [15]. Dual-mode

ring filters in [16], coupled triangular microstrip structure

in [17] and open rings in [18] are used for designing

microstrip diplexers. In [19], engraved patches and triangle

structures are used. Using computational intelligence, a

microstrip multiplexer is obtained in [20]. In [20], a com-

pact microstrip diplexer is presented for broadband wire-

less applications. In [21], a small microstrip diplexer is

designed using coupling meandrous open-loops. In [24], a

compact microstrip diplexer consists of a BPF and a low-

pass filter (LPF) is introduced. In [25], a compact micro-

strip lowpass-bandpass diplexer with high isolation is

presented. A high-selectivity microstrip diplexer is repor-

ted in [26] to work at 1.496 GHz and 2.759 GHz. A

microstrip diplexer with close channels is designed in [27]

for L-band applications. A high-isolation microstrip

diplexer with high S11j jdB is presented in [29] for 5G

applications. The proposed diplexers in [26–29] have large

sizes.

In this work, thin microstrip lines are coupled for

designing a compact wideband microstrip diplexer. Our

proposed diplexer is designed for GSM applications i.e. 0.9

GHz and 1.8 GHz. Duo to the use of only thin microstrip

lines, the proposed diplexer has a completely new struc-

ture. But in the previous structures, in addition to thin lines

patch or stepped impedance cells are used to create some

essential capacitors. Meanwhile, by using a prefect math-

ematical design method this new structure can reduce the

overall size and improve the performance simultaneously.

The presented diplexer is well miniaturized so that it

occupies only an overall size of 0.004 kg
2, which is the

smallest area compared with the previously reported

diplexers. Moreover, it has desired S11j jdB at the upper and

lower channels. The other parameters of our diplexer such

as frequency selectivity, S11j jdB and isolation are suitable.

Meanwhile, several TZs exist in its stopband. The paper

structure is presented as follows: Firstly, an innovative

resonator is presented and analyzed. Secondly, two

microstrip BPFs are designed using the analyzed resonator.

Thirdly, a microstrip diplexer is created by integrating the

BPFs. Fourthly, our diplexer is simulated using ADS

software. Finally, the fabricated diplexer is measured.

Also, our proposed design is compared with the other

previously reported diplexers to show its features.

2 Designing method

Our proposed resonator consists of coupled thin lines. It

includes a pair of coupled lines, which are connected to a

thin rectangular ring as shown in Fig. 1. The LC circuit

model of each thin line is an inductor while the coupling

between lines creates several small capacitors. Due to

having the microstrip cells with the capacitance and

inductance features, our proposed structure can create a

passband. An equivalent LC circuit (approximated) of the

coupled lines with an input impedance of Za is also shown

in Fig. 1. The capacitor Cc is created due to the coupling

effect, while the inductor L3 is the equivalent of the thin

line with the physical length l3. In the exact model, we have

to divide the line with the physical length l3 into a large

number of small lines, where there are several coupling

capacitors. However, using the approximated model gives

sufficient information about the resonator action and makes

the calculations easier. The inductors L1 and L2 are the

equivalent of the lines with l1 and l2 lengths, respectively.

The capacitors created at the corners have a little impact at

frequency f\ 10 GHz. Hence, we can eliminate them and

Fig. 1 Presented resonator and the approximated coupled line LC
circuit
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show the line with the physical length l1 only by an

equivalent inductor.

Our resonator is symmetric; hence we can perform the

even and odd modes analysis to get information about the

proposed resonator. Accordingly, at x (which is an angular

frequency), the impedance from the input port to the output

port (Z) is obtained as follows:

Z ¼ jxL1ð2jxL2 þ ZaÞ
2jxL2 þ Za þ jxL1

ð1Þ

where
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In the above equations, the inductances L1 and L2 are

the equivalents of the transition lines with the physical

lengths l1 and l2 respectively (depicted in Fig. 1). The

capacitor produced by the coupling structure is in fF, hence

it is very small. The inductors and angular frequency are in

nH and GHz, respectively. Accordingly, we can rewrite (2)

by applying this approximation as follows:

1ii � 6x2L3CC þ 4x4L23C
2
C

3ii � 8x2L3CC þ 4x4L23C
2
C

(
) Za �

1

jxCC
ð3Þ

Now, by substituting Za in Z of (1), the impedance Z can

be calculated as:

Z ¼ jx
L1ð1� 2x2L2CCÞ
1� x2CCðL1 þ L2Þ

ð4Þ

For the odd mode, the numerator of (4) must be zero. On

the other hand, the denominator of (4) should be zero for the

even mode analysis. Hence, the angular resonance frequen-

cies of the odd and even modes are obtained as follows:

Odd mode:

1� 2x2
0L2CC ¼ 0 ) xo ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2CCL2

r
ð5Þ

Even mode:

1� x2
eCCðL1 þ L2Þ ) xe ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CCðL1 þ L2Þ

p ! xe

� 1ffiffiffiffiffiffiffiffiffiffiffi
CCL1

p ð6Þ

In Eq. (6), xe andxo are the even mode and the odd mode

resonance frequencies respectively. As presented in Fig. 1, the

stubwith the physical length l2 is very small so we can assume

thatL2\\L1. Therefore,xowill be (2CCL2)
-0.5.Hence,we can

say that xe \\ xo where xe is the main and the xo is a

harmonic which should be attenuated. On the other hand, we

can tune the values of CC and L1. According to (5) and (6) and

the above discussion, xe is strongly affected by the stub with

the physical length l1 and the value of CC., as well. By

decreasing the spacebetween thecoupled lineswecan increase

CC. Therefore, we can reduce the length l1which saves the size

significantly. Having some information about how the res-

onator works helps us to reduce dimensions and adjust the

operational frequency simultaneously. Using the analyzed

resonator, two bandpass filters (BPF1 andBPF2) are designed,

as shown in Fig. 2(a), (b). Each BPF includes two pairs of the

proposed resonatorwhich are coupled. The dimensions of both

BPFs are in millimeter. The resonance frequency of each BPF

is tuned by adjusting the most important physical dimensions

in accordance with the formula of the even mode analysis, as

presented in (6). As mentioned in the resonator analysis, the

gaps between coupled lines are very small which leads to

increase thevalues of coupling capacitors.Therefore,we could

decrease the overall dimensions in accordance with Eq. (6).

The S-parameters of BPF1 and BPF2 are shown in

Fig. 2(c), (d), respectively. BPF1 works at fo1 = 930 MHz

with two low return and S11j jdB of 19 and 0.09 dB,

respectively. The fractional bandwidth (FBW) of this filter

is 22.6%. It could attenuate the harmonics up to 2.6 GHz

which is 3.1 9 fo1. Therefore, it suppressed the 1st, 2nd

and 3rd harmonics. As shown in Fig. 2(d), BPF2 resonates

at fo2 = 1.78 GHz with 0.14 dB S11j jdB and 16 dB return

loss. The -3dB-passband of BPF2 is from 1.5 GHz to 1.94

GHz with 25.7% FBW. Since BPF1 and BPF2 work at 930

MHz and 1.78 GHz, they are suitable for GSM applica-

tions. As shown in Fig. 2(d), it attenuates the undesired

harmonics up to 5.4 GHz (3 9 f02) so that they are atten-

uated from the first up to 3rd harmonics. Moreover, both

filters have reasonable frequency selectivity. Figure 3(a),

(b) show the surface current density distributions of BPF1

and BPF2, respectively. From these figures it is clear that

the lengths T and D have significant effects on the
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S-parameters of BPF1 and BPF2, respectively. In Fig. 3(c),

(d), the S-parameters of BPF1 and BPF2 are shown as

functions of the lengths T and D. As presented in these

figures, the BPF1 and BPF2 frequency responses are

moved to the lower frequencies by raising the lengths T and

D.

Using the proposed BPF1 and BPF2 a novel microstrip

diplexer with a compact size is proposed. Figure 4 shows

the layout configuration of our diplexer. The presented

diplexer is composed of the introduced BPFs with the

dimensions exactly equal to the designed BPFs. The BPF

with larger dimensions creates the lower channel. The

Fig. 2 a BPF1 layout (unit:mm), b BPF2 layout (unit:mm), c S-parameters of BPF1, and d S-parameters of BPF2
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BPFs are connected directly without an extra matching

circuit which leads to save the size significantly.

3 Results and discussion

The introduced diplexer is designed and simulated using

ADS software. It is fabricated on a Rogers RT/duroid5880

substrate with the following specifications:

er ¼ 2:22

h ¼ 0:7874 mm

Loss tangent ¼ 0:0009

For the measurement, we used an Agilent N5230A

network analyzer. Our diplexer is an ultra-compact struc-

ture with an overall dimension of 0.044 kg 9 0.1 kg
(10.1 9 23 mm), where kg is the guided wavelength cal-

culated at the lower resonance frequency. Figure 5(a)

presents the measured and simulated transfer parameters.

The effective dielectric constant is ere = 1.9 and kg = 0.004

mm at the first resonance frequency. Our presented struc-

ture resonates at 0.9 and 1.8 GHz with two desired S11j jdB
of 0.17 and 0.14 dB, respectively. Another privilege of the

presented diplexer is its wide FBW i.e. 21% and 24.3% for

the first and second channels, respectively. S11 and S23 are

plotted in Fig. 5(b). From Fig. 5(b) it can be seen that S11
at the first and second resonance frequencies are 16.1 dB

and 17 dB, respectively, while S23 is better than 20.5 dB.

Figure 5(b) shows the fabricated microstrip diplexer. There

are two transmission zeros (TZs) at the stopband with the

levels better than -40 dB. These TZs are located near 1

GHz and 2.1 GHz, which are created in the stopband by S21
and S31 respectively. To prove the superiority of our

diplexer, we compared it with the previous diplexers. In

Table 1, the comparison results are shown where fo1 and fo2
are the lower and upper resonance frequencies, respectively

and FBW1 and FBW2 are the FBWs at the lower and upper

passbands, respectively. As shown in Table 1, the previous

work in [14] have the minimum S11j jdB. Also, the proposed
diplexer in [22] has the widest FBW%. Compared with the

previous diplexers, the main advantage of our diplexer is
Fig. 3 a Distribution of current density for BPF1, b distribution of

current density for BPF2, c S21 of BPF1 as a function of T, d S21 of
BPF2 as a function of h D
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its compact size. Our diplexer is 13.5 times smaller than the

proposed diplexer in [14]. Moreover, the introduced

diplexer in [22] has the minimum size. But our diplexer has

lower S11j jdB and it is two times smaller than the designed

diplexer in [22]. From Table 1, it is clear that our designed

structure is the most compact diplexer. Meanwhile, our

diplexer has the widest FBWs, comes after the diplexer in

[22], and has low S11j jdB at the first and second passbands.

4 Conclusion

We designed and analyzed a very compact microstrip

diplexer based on a novel and simple structure. The

designing method started by analyzing a proposed res-

onator, which gave us general data about resonator action.

These data helped us to optimize the proposed diplexer for

better performance and smaller size, easily and efficiently.

Fig. 4 Presented diplexer

Fig. 5 Simulated and measured

results: a transfer parameters,

b S11 and S32 and the fabricated

diplexer
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Then, using the analyzed resonator, two bandpass filters

(BPFs) were designed. Finally, a microstrip diplexer with

high-performance was created by integrating the proposed

BPFs. The presented diplexer operates at GSM frequencies

with an overall size of 232.3 mm2 (0.004 kg
2). Moreover,

having two wide fractional bandwidths makes it suit-

able for wideband applications. It has two low S11j jdB of

0.17/0.14 dB, hence, it is suitable for energy harvesting.

Data availability Data sharing not applicable to this article as no

datasets were generated or analysed during the current study.
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