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Abstract
Wireless networking provides many advantages, but it also coupled with new security threats and alters the organization's
overall information security risk profile. Meanwhile, researchers are also actively working to enhance the security of
embedded devices. However, previous studies have overlooked the insecurity of a particular device category, known as End-
of-Life (EoL) devices. When a product reaches its EoL phase, vendors discontinue its maintenance, including the provision
of bug fixes and security patches. However, many EoL devices remain on the internet with several critical vulnerabilities,
thereby creating a fertile ground for botnets and cyber-attacks. Due to the lack of security updates, hardening the potentially
vulnerable firmware in IoT devices is the most direct and promising defense method, but it has not been fully explored. In
this paper, we propose a systematic active defense approach to harden EoL IoT devices, utilizing a hybrid binary rewriting
method to monitor high-risk APIs and filter attack vectors. The proposed system, called Harden-IoT, consists of three tightly
coupled modules: suspicious code snippets location, attack vector interception, and heuristic firmware repackaging. It can
reinforce different architecture (MIPS, ARM) Linux-Based IoT devices without source code. We evaluate the effectiveness,
adaptability, and overhead of the method using 23 firmware images sourced from various vendors. The results show that
Harden-IoT can effectively defend against multiple types of vulnerabilities under low overhead conditions while also being
able to adapt to different heterogeneous devices.
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1 Introduction

Internet-Of-Things (IoT) devices play a vital and integral
role in our daily life [1–3]. With emerging technologies
such as artificial intelligence, THz and quantum communi-
cations, the development of “B5G/6G” has gained
momentum in recent times [4]. It aims to promote IoT to
Internet of Everything (IoE) and B5G/6G network is the
footstone of smart cities. No doubt B5G/6G IoTwill play an
import role to support the applications of telemedicine,
haptics, and connected autonomous vehicles, However, this

raises concerns of escalating security risks in the tangible
world [5]. A large number of IoT devices are vulnerable [6]
and susceptible to attacks, as past incidents have shown [7].
Furthermore, due to various reasons (e.g., the development
of new technologies or irresponsible manufacturers) [8],
many IoT devices have become End of Life (EoL) devices
[9], meaning no security updates in the future. Since a
significant number of EoL devices remain on the Internet
for an extended period along with numerous vulnerabilities,
they have become a breeding ground for botnets and large
DDoS attacks [10], seriously threatening cybersecurity [9].

Firmware Hardening is a promising method to improve
the current security situation, but it has not been fully
explored. The existing security work in the IoT field is
classified into two categories—vulnerability discovery [11–
13] and intrusion detection [14, 15]. However, both are
unable to directly improve the current security situation
[16, 17]. Although the efficiency of detecting vulnerabilities
has been increased by the research on vulnerability mining,
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hackers may also adopt these methods to mine more vul-
nerabilities for use in attacks. Even if well-intentioned
researchers report the vulnerabilities to the manufacturers, it
is still unknown whether they will responsibly patch them.
Without security updates, reinforcing the potentially vul-
nerable firmware in IoT devices is the most direct and
promising defense method. However, the current academic
attention to this field of research is still very limited, far less
than the previously mentioned vulnerability mining and
intrusion detection.

Hardening the End of Life (EoL) IoT devices faces many
challenges. First, the development environment in IoT
devices is heterogeneous [18], hindering the implementa-
tion of generic defense. Second, various types of vulnera-
bilities are present in IoT devices, making the factors
considered complex [19]. Third, IoT devices usually are
equipped with constrained resources and lack secondary
development interfaces [20], making it challenging to apply
defensive solutions that have been proven effective on tra-
ditional computing platforms [21]. Subject to such chal-
lenges, existing approaches have drawbacks regarding
defense capabilities and range scope. Kelly and Pitropakis
[3] demonstrated that incorrect configuration is the core
reason why IoT devices are susceptible to Mirai botnet
attacks. RevARM [22] and ARMPatch [23] both attempted
to use binary rewriting methods to patch IoT devices. Still,
their consideration of security defense was not compre-
hensive enough, and their architecture was limited to ARM.
Hadar and Siboni [24] propose an innovative cloud-based
framework for protecting IoT devices, but this framework
introduces additional devices, and its defense method
heavily relies on the technical details of vulnerabilities,
which is generally unavailable.

To address existing drawbacks, we design a systematic
approach based on active cyber defense [23–25] to harden
the EoL devices. Our Core idea is to apply the concept of
active defense on general-purpose computing systems to
low-end IoT devices, utilizing binary rewriting to monitor
high-risk APIs and filter attack vectors. We developed a
cross-platform approach, called Harden-IoT, that can rein-
force different architecture (MIPS, ARM) Linux-Based IoT
devices without source code. Harden-IoT consists of three
tightly coupled modules: suspicious code snippets location,
attack vector interception, and heuristic firmware
repackaging.

We evaluated the effectiveness, adaptability, and over-
head of our methodology using 23 firmware images sourced
from various vendors such as D-Link, Netgear, Linksys,
TP-LINK, and Cisco. Results show that Harden-IoT can
effectively defend against multiple types of vulnerabilities

under low (36.5%) overhead conditions and adapt to dif-
ferent heterogeneous devices.

The contributions of this paper are as follows:

1. We have designed a universal method that implements
active defense on low-end EoL devices through binary
rewriting.

2. Based on tests conducted on devices of different brands
and models, we evaluated the defense capability of our
method.

3. To the best of our knowledge, this is the first
reinforcement method that ordinary consumers can
practically use without expert knowledge, and without
requiring the involvement of vendors.

2 Background

This section aims to demonstrate the importance of our
research. Firstly, we elaborate on the weak security situation
in the current IoT field. Then, some related work is listed
and analyzed for its shortcomings.

2.1 Security status of IoT device

In recent years, the Internet of Things has flourished,
bringing various conveniences to production and daily life
through these devices. According to Statista [3], there were
23.14 billion connected IoT devices worldwide in 2018,
which is projected to increase to 75.44 billion by 2025 [4].
Poor code robustness and lack of basic security measures
[26, 27] make IoT devices the primary target of network
attacks [28].

For example, in 2016, a large-scale cyber-attack occurred
where attackers exploited vulnerabilities in IoT devices to
connect them to a massive botnet, Mirai [29], which was
then used to launch targeted attacks against networks. This
attack caused a global network outage and severely
impacted various sectors such as finance, manufacturing,
healthcare, and public services.

The constantly-emerging vulnerabilities in IoT provide
attackers with the possibility to control devices in bulk,
while the security and privacy of users heavily rely on
security patches from manufacturers [1]. However, the fact
remains that manufacturers always lag behind attackers in
fixing these vulnerabilities.

To make matters worse, due to reasons such as the
release of new products, manufacturers going out of busi-
ness, and irresponsibility, many IoT devices are abandoned
by their manufacturers [9]. Manufacturers will no longer
provide security patches for these IoT devices, and they are
referred as End of Life (EoL) devices. As the lifecycle of
electronic devices is long, research has shown that there are
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still a significant number of EoL devices connected to the
Internet, and the vulnerabilities on these devices not only
provide breeding grounds for large-scale network attacks
but also seriously endanger the security and privacy of
countless consumers.

Furthermore, as time goes on, a significant number of
devices will become vulnerable EoL devices. Therefore, it
is a crucial research direction to enhance the security pro-
tection capabilities of EoL devices.

2.2 Related work

However, in the currently intensively studied field of net-
work security, there is rarely work dedicated to hardening
EoL devices to improve the current security situation. Prior
works mainly focused on vulnerability discovery. The fol-
lowing are representative works in the field of vulnerability
discovery.

In 2013, RPFuzzer [30] was a fuzzing framework
specifically designed for finding protocol vulnerabilities for
router devices.

In 2018, IoTFuzzer [31] leveraged the companion mobile
apps of IoT devices to perform efficient black-box fuzzing.

In 2019, FIRM-AFL [32] was presented as a high-
throughput grey box fuzzer for firmware running a POSIX-
compatible operating system through augmented process
emulation.

In 2019, DTaint [33] adopted pointer alias analysis to
improve the data flow analysis and utilized data structure
similarity matching to construct data dependence between
functions invoked by indirect calls.

In 2020, KARONTE [34] was a static analysis frame-
work for embedded firmware that can discover vulnerabil-
ities due to multi-binary interactions. The authors achieve
this goal by modeling and tracking multibinary interactions.

In 2021, SaTC [14] performed a taint analysis to discover
bugs. It utilizes shared keywords related to user input in the
front-end and back-end to infer the taint source.

Even though the academic community continues to make
new advances in vulnerability discovery, these vulnerabili-
ties may not be disclosed and fixed responsibly. Hence, the
eradication of harm induced by vulnerabilities in cyberspace
has emerged as a significant research question, with defense
being commonly regarded as the most efficacious approach
to tackle it.

Besides the work of vulnerability mining mentioned
above, the following tasks aim to defend the attack from
hackers.

In 2020, Kelly and Pitropakis [3] analyzed how Mirai
infects IoT devices and proposed six defense measures from
the perspective of service configuration. The experiment
showed that devices are vulnerable to Mirai attacks with the
manufacturer's default configuration.

In 2017, RevARM [22] was designed to accurately
rewrite ARM binaries without source code across various
platforms; it could be used for security applications.

In 2021, Huang and Song [23] designed a static binary
patching solution suitable for vulnerability mitigation on
ARM platforms.

However, these defense works are either insufficient in
application scope or in defensive capacity. They fail to solve
the reinforcement of a wide range of EoL devices to resist
hacker attacks. So, this paper aims to fill this gap, designing
a novel method to hardening the EoL devices.

3 Methodology

This section describes how our method bridges the afore-
mentioned gaps. Firstly, we model the threat of EoL devices
to determine the scope and problem boundaries of our
research. Subsequently, we provide a theoretical overview
of our approach.

3.1 Threat model

Based on previous research [1, 27] by numerous scholars,
we have modeled the threats to IoT devices as follows.

1. Attackers can manipulate the packets of network
requests to achieve remote interaction with IoT devices
[35], but they cannot directly interact with the device
through physical means [36].

2. Multiple types of vulnerabilities exist in IoT devices
[37], including Buffer OverFlow (BoF), Command
Injection (CI), and Information Leaking (IL), which are
closely related to the use of sensitive functions.

Besides considering the above-mentioned threats, we
also clarify the research subject. The most widely used
Linux-Based devices are selected as our research targets.
Our primary target is EoL devices, and thus we mainly
focus on defending known vulnerabilities but also apply to
the protection against 0 day vulnerabilities.

To broaden the applicability of our hardening solution,
we have established two hypothetical conditions which the
majority of devices are able to meet:

1. Regular users can utilize the firmware update feature
embedded in their devices to upload new firmware for
the purpose of updating [38].

2. Moreover, the firmware installed in EoL devices is
predominantly unencrypted, thereby harboring the
potential for repackaging [39].
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3.2 Challenges

Upon determining the threat model, this section will scru-
tinize the challenges present in this field.

Challenge 1 The multitude of vulnerability types in IoT
devices makes it an exceptionally challenging task to devise
effective defenses against a variety of vulnerabilities.

Challenge 2 Designing a universal approach to accom-
modate a large number of fragmented Internet of Things
(IoT) devices is a challenging task due to their wide
heterogeneity and lack of secondary development
interfaces.

Challenge 3 Effectively defending IoT devices under
low-load conditions is a formidable challenge due to the
constraints in resource availability.

3.3 Our solutions

After defining the threat model, this section expounds on
our proposed solution. Based on the review, it is evident that
EoL devices possess numerous types of vulnerabilities,
many of which are closely associated with the use of sen-
sitive Application Programming Interfaces (APIs) [9].
Therefore, our core insight is to monitor sensitive APIs and
capture attack vectors before a vulnerability is exploited and
subsequently block them to safeguard the devices. This idea
requires the use of binary rewriting to modify the closed-
source program. However, due to the challenges mentioned
earlier, such as diverse IoT firmware and more complex
development environments, existing binary rewriting
methods may not sufficiently meet our requirements. Thus,
we have developed a hybrid binary rewriting approach that
combines high-level language with machine code, utilizing
widespread dynamic loading mechanisms present in IoT
devices to support our hardening solution better. After
rewriting the original program, we employed a heuristic
firmware repackaging method to package the program into
new firmware, making it easy for end-users to utilize our
solution.

4 System design

Based on the aforementioned solution, we designed a pro-
totype system named Harden-IoT, As shown in the Fig. 1, it
consists of three closely related modules: Suspicious Code
Snippet Location, Attack Vector Interception, and Heuristic
Firmware Repack.

The first module, Suspicious Code Snippet Location, is
designed to identify vulnerable code snippets in the firm-
ware. This module generates a list of all suspicious code
locations.

The second module, Attack Vector Interception, takes the
output from module ❶ as input and aims to detect and
intercept attack vectors by monitoring the execution of
suspicious code snippets. This module generates a hardened
binary program.

The third module, Heuristic Firmware Repackaging,
takes the output from module ❷ as input. As a response to
the limitations of the current tool, it has been designed with
6 optimization measures. This module repackages the
modified file system into a new firmware.

4.1 Suspicious code snippet location

In this module, the firmware image is received as the input.
Instead of using traditional tools such as binwalk, we use
the more powerful unpacking tool unblob [40] to extract the
file system (usually named as rootfs) from the original
firmware. unblob is an accurate, fast, and easy-to-use
extraction suite which release on Github with 1.8k stars.

Because the most vulnerable targets are network service
programs, we then traverse rootfs to locate their exe-
cutable files after unpacking. Our protected targets include
well-known services such as HTTPD and UPnP, as well as
vendors’ private service programs such as cfgserver in
ASUS and HNAP in D-Link. Additionally, we consider
Common Gateway Interface (CGI) [41] programs as pro-
tected targets due to the potential for multiple types of
vulnerabilities and their invocation by web services. Fol-
lowing acquisition of the binary files of our protected tar-
gets, a static analysis is performed on them.

Static analysis, due to its inherent limitations, cannot
simultaneously maintain low false negative and false posi-
tive rates. As our aim is defense, it is crucial to strike a
balance between detecting as many possible vulnerabilities
as possible and reducing ineffective monitoring. The fol-
lowing shows how we achieve this goal. Firstly, not all
functions require monitoring. We first defined some sensi-
tive APIs based on the descriptions in the literature [14, 42],
as shown in Table 1.

As shown in Table 1, when sorting sensitive APIs, we
considered not only common dangerous functions and also
some vendor-defined functions that involve risky opera-
tions. Additionally, we associated sensitive APIs with their
corresponding vulnerability types. We considered five types
of vulnerabilities: Command Injection (CI), Information
Leak (IL), SQL Injection (SQLI) and Buffer OverFlow
(BOF). All calling points of these sensitive APIs will be
located, but it is clearly impossible that all these calling
points are vulnerable. So, to avoid unnecessary instrumen-
tation and improve the efficiency of reinforcement, we need
to recognize the high-risk sensitive APIs calling points
through further analysis.
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Sall ¼ SijSi : Any Calling Points to Sensitive APIsf g ð1Þ

Ssafe ¼
Fixed String si 2 CI ; IL; SQL;FSTf g

Len sourceð Þis fixedsi 2 BOFf g
Len sourceð Þ\Len destinationð Þsi 2 BOFf g

8
<

:

ð2Þ
Srisk ¼ Sall � Ssafe ð3Þ
As shown in the Formula 1, Sall represents all calling

points of sensitive APIs, and we defined the safe calling
point Ssafe if it satisfies any of the following three
requirements:

(1) If the vulnerabilities types of sensitive APIs are CI,
IL, SQL, FST and its arguments are fixed strings;

(2) If the vulnerabilities type of sensitive APIs is BOF
and its length of source string is fixed;

(3) If the vulnerabilities type of sensitive APIs is BOF
and its length is smaller than the destination buffer
size.

After dropping out these “safe” calling points, the rest are
recognized as high-risk calling points Srisk . However, the
number of Srisk is still considerable, which will affect the
efficiency of defense. Therefore, we furtherly designed a
lightweight taint analysis algorithm to precisely locate the
potential vulnerability point Spotential .

As the algorithm 1 shows, Initially, all external param-
eters are set as initial taint sources. Then, the decompiled
code of each function in the program is traversed line by
line. Each line of code is checked for direct assignment
operations to variables. If the source variable is in the initial
taint source, the target variable is added to the list of taint
variables. When a risk point Srisk is encountered, the context
of calling sensitive APIs is checked to determine whether
there are any taint variables. If there are taint variables, the
point is identified as a potential vulnerability point Spotential
and is added to the list and output.
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BIN
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Reinforced Image
Services Program

Hardened 
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Fig. 1 Overview of Harden-IoT

Table 1 Info of Sensitive APIs

Seq Vuln type Sensitive APIs

1 Command Injection (CI) system, execve, eval, dosystemcmd, lxmldbc_system, tp_systemEx,
popen, COMMAND, SLIBCExec, SLIBCBackgroundExec

2 Information Leak (IL) open, fopen

3 SQL Injection (SQLI) sql_execute, SYNODBExecute

4 Format Strings (FST) vsprintf, snprintf, fprintf

5 Buffer OverFlow (BOF) strcpy, memcpy, sprintf, sscanf
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4.2 Attack vector interception

4.2.1 Detect and intercept the attack vector

Once the potential vulnerability points Spotential have been
identified, we apply active defense techniques at these
points to intercept the attack vectors. Firstly, we categorize
the attack vectors, as shown in Table 2, as different attack
vectors possess distinct characteristics. We employ different
identification strategies to detect these attack vectors, and
upon detection, intercept the trigger of vulnerabilities by
removing the harmful parts within their parameters.

As shown in Table 2, attack vectors are classified into
two types: Special Char and Strings Length. Special Char
refers to the injection of special characters by attackers to
break the security assumption and execute malicious code
while exploiting vulnerabilities. The vulnerabilities
involved include command injection, information leakage,
SQL injection, and format string vulnerabilities. Strings
Length refers to the use of very long strings by attackers to
destroy memory boundaries and execute malicious code.
The main vulnerability involved is buffer overflow.

For Special Char attack vectors, our detection method is
string checking. During runtime, we monitor the execution
of sensitive APIs, obtain their parameters, and then check
for the presence of special characters in the parameters. If
any special characters are found, an alert is issued, and
those characters are removed to block the attack vector and
protect the device from being compromised.

For Strings Length attack vectors, our detection method
is buffer checking. Similar to the previous method, we
obtain the parameters of sensitive APIs at runtime and
check their length. If the length of the parameter exceeds the
buffer length, an alert is issued, and the excessive part of the
parameter is removed to block the attack vector and protect
the device from being compromised.

4.2.2 Hybrid binary instrumentation

To deploy the aforementioned defense measures at these
potential vulnerability points Spotential without obtaining the
source code of the program, we must rely on static binary
instrumentation to inject the defense code into the original
program. However, as we cannot obtain the source code of
these programs, we must rely on static binary instrumen-
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tation to inject defense code into the original program.
Current static binary instrumentation methods only support
the use of restricted assembly programming by analysts to
inject additional code. This requires a significant amount of
expert knowledge and manual effort, making it difficult to
scale to the large quantity of diverse IoT devices.

To address this issue, we have designed a novel instru-
mentation framework that allows the use of high-level
languages to write injected code. This framework utilizes
the widespread use of the dynamic loading mechanism [43]
in IoT devices to combine high-level languages with
machine instructions, providing high programmability and
adaptability to support the implementation of our defense
methods.

We believe that instrumentation can be divided into two
core modules, execution flow hijacking and injected code
generation. Existing static analysis methods bind these two
core modules together and implement them using pure
assembly programming, which is the main reason for their
poor adaptability and low programmability.

Therefore, our new framework separates these two core
modules and continues to use assembly language to support
execution flow hijacking. We then innovatively use high-
level languages to write injected code, which is compiled
into a shared library using cross-compilation tools. This
shared library is loaded using the dynamic loading [43]
mechanism widely available in IoT devices, thus achieving
an organic integration between high-level languages and
assembly language.

As the figure shows, the whole instrumentation process
can be divided into three steps: expansion, hybrid instru-
mentation and establishment of shared library.

Expansion it aims to enlarge the space of original binary
for following inserted machine instructions.

First, it creates a new section or modify an unused sec-
tion within the ELF structure of a program binary to add a
new memory space that is accessible for reading, writing,
and executing (RWX). Then, a new entry is added in the.-
dynamic section for loading the extra self-made shared
library. After that, the extended binary has a large enough
memory space to afford the extra instructions for instru-
mentation. In addition, it could load a self-made dynamic
module which could be written in high-level language at
runtime.

Hybrid Instrumentation To link high-level languages and
reduce repetitive instructions, as shown in Fig. 2, we opti-
mize existing trampoline method, making the inserted
instructions consist of three parts for accomplishing three
tasks.

(1) the replaced instruction which hijack control flow at
basic block;

(2) the direct transfer instructions which store run-time
state before change in the following operation;

(3) the common transfer instructions which set the
parameters for invoking defense primitives in the
shared library written in a high-level language.

Through cross-compile, the high-level language source
code turns into a dynamically loadable shared library and is
loaded to memory through adding a new entry pointed to
shared library in the. dynamic section of Executable and
linkable Format (ELF).

Due to the aforementioned hybrid instrumentation
method that requires compiling defense code, written in
high-level languages, into shared libraries compatible with
the original program, a suitable cross-compilation toolchain
is necessary. However, in most cases, vendors do not dis-
close their original cross-compilation toolchains, making it
challenging to obtain one. Therefore, we designed a method
to automatically generate a suitable cross-compilation
toolchain. First, we inferred the cross-compilation tool-
chain's configuration information from the firmware infor-
mation, and then handed over these configurations to a
universal cross-compilation tool generator to create a tool-
chain that matches the corresponding firmware.

This involves defining configuration information. Since
the high-level language we use to write defense code is C,
as long as the shared library can correctly call the C lan-
guage API in the firmware, it will be compatible with the
original program. Therefore, we define the configuration
information for the cross-compilation tool as follows for-
mula. Arch refers to the architecture of the target image, it
could be ARM and MIPS; Endian indicates the order of
bytes in memory, it could be little endianness or big endi-
anness; Libc stands for the type and version of the standard
C library used in the image. Float stands for the strategy
used by the target device when handling floating point
arithmetic.

Table 2 Info of Attack Vector
and Detection Strategy

Seq Vuln type Vector type Judgement rules Marked string

1 Command injection Sensitive string Substring check ;whoami;ps -a

2 Information leak Special char Substring check ../../etc./shadow

3 SQL injection Special char Substring check (“,&,|,')

4 Format strings Special char Substring check %n, %p

5 Buffer overflow Strings Length Buffersize check check buffer size
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Conf ¼ \Arch;Endian; Libc;Float[ ð4Þ
In the unpacking process, we use static analysis to infer

this information, and then pass the information to the
buildroot [44] tool to obtain a toolchain that is compatible
with the original firmware.

4.3 Heuristic firmware repacking

IoT repackaging devotes to tampering with a legitimate
firmware package by modifying its content and re-dis-
tributing it in the wild [39]. This technology is often abused
by hackers to carry out various attack behaviors, but we will
utilize this technology to persistently deploy our defense
measures.

The state-of-the-art tool for firmware repackaging is
Firmware-Mod-Kit (FMK), which often encounters many
failures. Through extensive experimentation, we have
identified the root causes of these failures. Drawing inspi-
ration from these causes, we designed a novel heuristic
repackaging method that incorporates five optimization
measures to improve the success rate of automated
repackaging.

1. Perceiving and Maintaining the Original Structure
of Firmware: The rootfs component in firmware is the
core of operations and our modifications are limited to
it. However, rootfs is not the entirety of the firmware
and is often located in the middle of the firmware.
Existing tools ignore the original structure of firmware
and the repackaged firmware may not pass the vendor's
format verification. Therefore, when unpacking the
firmware, we perceive its original structure and collect
the header and footer of the original firmware for
restoration during repackaging.

2. Maintaining Consistency in Filesystem Packaging
Details: Rootfs has different filesystem packaging
formats. When unpacking, we record the core param-
eters, such as block size and specific version number of
the filesystem. During repackaging, we use the original
parameters for rewriting and restoration to ensure
consistency to the greatest extent possible.

3. Maintaining Consistent Filesystem Properties: Dif-
ferent directories within Rootfs have varying

permission assignments and various symbolic link files.
Existing tools may easily disrupt these structures. Thus,
during repackaging, we check whether these properties
are consistent with their original values.

4. Minimizing Changes in Filesystem Size: In scenarios
of IoT devices with limited resources, the smaller the
modifications made to the firmware, the higher the
success rate of repackaging. Therefore, during repack-
aging, we focus on reducing the size of the additional
code inserted. This is mainly achieved by using highly
optimized compilation options during cross-compilation
to reduce the size of binary files.

5. Reducing Redundancy in Files: In order to offset the
increase in rootfs caused by security measures, we have
compressed some redundant files, such as JS and PNG
files used in WEB access. These files do not change
their semantic meaning after compression, and thus do
not affect the original functionality. By doing so, we
ensure that the modified rootfs size is as close to the
original size as possible, thus improving the success
rate of repackaging.

5 Evaluation

We evaluate Harden-IoT with three tasks to answer the
following research questions:

RQ1 Effectiveness, Can Harden-IoT defense various
type vulnerabilities?

RQ2 Adaptability, Can Harden-IoT adapted to hetero-
geneous IoT devices?

RQ3 Low Overhead, Does Harden-IoT can defense IoT
devices with low runtime overhead?

5.1 Effectiveness

We selected 13 vulnerabilities, including CI, BOF, SQLI,
FST, and IL 5 types, associated with 11 devices from eight
different vendors. For these 11 devices with vulnerable
firmware, we conducted emulations and used Harden-IoT to
harden the firmware. We then launched attacks on both the
original and reinforced firmware using exploit scripts

Fig. 2 Detail of Hybrid Instrumentation
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capable of triggering each specific vulnerability. If a device
was breached, the corresponding cell in the exploit result
column was marked as ”X“, while if the attack was
unsuccessful, it was marked as a ”√“. The experimental
results are recorded in Table 3 which clearly shows that
Harden-IoT has successfully defended against all vulnera-
bilities. This confirms the effectiveness of our defense
measures.

5.2 Adaptability

To test the adaptability of Harden-IoT, this chapter selects
10 representative devices as experimental targets. As shown
in Table 4, these devices include three architectures, ARM
and MIPS, and multiple libc versions. We use Harden-IoT
to reinforce these devices and observe whether they can
operate normally after reinforcement. The experimental
results show that Harden-IoT can be reinforced on all 10
devices, which demonstrates its sufficient adaptability.

5.3 Low-overhead

To measure the performance of Harden-IoT, we conducted
the following experiments on 10 devices. The information
of these devices is listed in the Table 4. We prepared 240
network requests, sent them to both the original and rein-
forced devices, and recorded their average response time.
Changes in response time can be used to calculate the
impact of reinforcement on device load. The experimental
results are recorded in Fig. 3, where the rectangle pink color
column represents the number of defense points arranged in
the program, the rectangle light blue column represents the
average response time of the original device, and the rect-
angle violet column represents the average response time of
the reinforced device. And the device id in Fig. 3 is cor-
responding to the seq in Table 4. The experiment showed
that the more defense points arranged in the program, the
greater the increase in response time. However, the overall
average data shows that the increase in average response

Table 3 Info of Evaluation
Vulnerabilities

Vuln-ID Type Brand Device API Exploit Result

Origin Harden-IoT

CVE-2018–16333 BOF Tenda AC15 dosystemcmd x √
CVE-2020–10987 CI Tenda AC15 dosystemcmd x √
CVE-2020–15916 CI Tenda AC15 dosystemcmd x √
CVE-2020–8515 CI Draytek Vigor2960 popen x √
CVE-2020–14472 CI Draytek Vigor2960 popen x √
CNVD-2022–31604 IL ASUS RT56u open x √
CVE-2021–1610 CI Cisco RV160 system x √
CVE-2020–3331 BOF Cisco RV110 sscanf x √
CVE-2019–16057 CI D-Link DNS320 system x √
CVE-2015–2051 CI D-Link DIR645 lxmldbc_system x √
CVE-2022–44251 CI TOTOLink NR1800X dosystem x √
CVE-2019–20760 CI NETGEAR R9000 system x √
CVE-2021–33180 SQLI Synology DS220j SYNODBExecute x √
CVE-2018–14713 FST ASUS AC3200 sprintf x √

Table 4 Info of evaluation
devices for adaptability

Seq Brand Device Type LIBC Float Endian Program

1 Cisco RV110 MIPS uclibc_0.9.33 Hard Little httpd

2 Tenda AC15 ARM uclibc_0.9.30 Soft Little httpd

3 D-Link DIR-810L MIPS uclibc_0.9.28 Hard Little cgibin

4 D-Link DIR-850L MIPS uclibc_0.9.28 Hard Big cgibin

5 ASUS EA4500 MIPS uclibc_0.9.33.2 Hard Big httpd

6 TP-Link WR940N MIPS uclibc_0.9.30 Hard Big httpd

7 ASUS AC56U ARM musl_1.2.3 Soft Little httpd

8 NETGEAR R8000 ARM uclibc_0.9.33 Soft Little httpd

9 D-Link DIR-665 ARM glib_2.5 Hard Little cgibin

10 Cisco RV110 MIPS uclibc_0.9.33 Hard Little httpd
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time is 36.5% less than 40%, which achieves low overhead
on resource-limited IoT devices.

6 Discussion

In this section, we make a discussion about the limitation
and capability of our method. Our Harden-IoT relies on the
hybrid binary instrumentation method which is based on the
dynamic loading mechanism. In theory, this method is
applicable to all devices that support the dynamic loading
mechanism. Among these devices, Linux-based devices are
a significant category, and they have been selected as the
subjects of our experiments. We plan to expand the scope of
our system, Harden-IoT, in the future by integrating it with
other systems like the Cisco IOS system, which also utilizes
dynamic loading mechanism. Currently, our current meth-
ods can only defend against vulnerabilities found in binary
programs. However, in order to enhance our defense
capabilities, we intend to conduct research on protective
methods specific to script programs in the future. By the
way, hybrid binary instrumentation is a highly extensible
method that allows users to customize the modified code. In
the future, we will try to use this method to enhance fuzzing
and reverse engineering.

7 Conclusion

There are millions of vulnerable IoT devices on the internet,
and more and more of these devices are abandoned and
become EoL devices. Previous security research has
neglected the security risks associated with EoL devices and
the necessity of hardening them. This paper summarizes the
challenges of hardening EoL devices and innovatively
applies the concept of active defense to resource-limited IoT

devices, designing a defense method to intercept attack
vectors. We implemented our prototype system, Harden-
IoT, by using hybrid binary instrumentation and heuristic
firmware repackaging. We conducted experiments to
demonstrate the ability of Harden-IoT to protect effectively
against various vulnerabilities when operating under low
load circumstances. Additionally, it can adapt to a range of
heterogeneous devices.

Data availability No dataset was generated or analyzed during this
study.
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