
NMal-Droid: network-based android malware detection system using
transfer learning and CNN-BiGRU ensemble

Farhan Ullah1 • Shamsher Ullah2 • Gautam Srivastava3,5,6 • Jerry Chun-Wei Lin4 • Yue Zhao1

Accepted: 24 May 2023 / Published online: 27 June 2023
� The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Currently, malware activities pose a substantial risk to the security of Android applications. These risks are capable of

stealing important information and causing chaos in the economy, social structure, and financial sector. Malicious network

traffic targets Android applications due to their constant connectivity. This study develops the NMal-Droid approach for

network-based Android malware detection and classification. First, we designed a packet parser algorithm that filters the

combination of HTTP traces and TCP flows from PCAPs (Packet Capturing) files. Second, the fine-tune embedding

approach is developed that uses a word2vec pre-trained model to analyze features’ embeddings in three different ways, i.e.,

random, static, and dynamic. It is used to learn and extract feature-matrix matrices with related meanings. Third, The

Convolutional Neural Network (CNN) is used to extract effective features from embedded information. Fourth, the Bi-

directional Gated Recurrent Unit (Bi-GRU) neural network is designed to compute gradient computation in the context of

time-forward and time-reversed. Finally, a multi-head ensemble of CNN-BiGRU is developed for accurate malware

classification and detection. The proposed approach is evaluated on five different activation functions with 100 filters and a

range of 1–5 kernel sizes for in-depth investigation. An explainable AI-based experiment is conducted to interpret and

validate the proposed approach. The proposed method is tested using two big Android malware datasets, CIC-AAGM2017

and CICMalDroid 2020, which comprise a total of 10.2k malware and 3.2K benign samples. It is shown that the proposed

approach outperforms as compared to the state-of-the-art methods.

Keywords Network traffic � Malware classification � Transfer learning � Explainable AI � Cybersecurity

1 Introduction

Android is currently the most widely used mobile Oper-

ating System (OS) globally. Because of its widespread use,

it has unfortunately become a favorite of hackers who use

Android to distribute millions of malware attacks. Mobile

applications are no longer limited to telecom services as

they formerly were. They have evolved into being capable

of making online payments, communicating with peers,

and playing games [1]. In the Google Play Store1 compared

to December 2009, there were more than twice as many

applications (apps) available for download in December

2022. In December 2022, there were more than 3.553

million applications (apps) accessible through the Google

Play Store, up from a little over 1 million in July 2013.

Meanwhile, cloud solutions are a major contributor to the

exponential growth of data generated by mobile networks.

When it comes to mobile OSs, Android dominates the

marketplace. These statistics indicate the wide acceptance

of the Android OS. The explosive growth of Android has

produced a thriving ecosystem of Android apps. Numerous

Android app stores account for billions of direct down-

loads. The prevalence of cyberattacks increases in tandem

with the proliferation of mobile devices such as smart-

phones and tablets [2]. Malicious programs are becoming

more ruthless and difficult to combat. As a result, we must

now deal with threats ranging from simple phishing emails

to sophisticated network-based malicious attacks that can

wipe sensitive information. In addition, malicious actors

are getting better at developing malware that can escape

traditional sandboxes [3]. Despite Android’s security fea-

tures and mobile antivirus, sophisticated mobile malware

Extended author information available on the last page of the article

1 https://www.statista.com/statistics/266210/number-of-available-

applications-in-thegoogle-play-store.

123

Wireless Networks (2024) 30:6177–6198
https://doi.org/10.1007/s11276-023-03414-5(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0001-9851-4103
http://crossmark.crossref.org/dialog/?doi=10.1007/s11276-023-03414-5&domain=pdf
https://www.statista.com/statistics/266210/number-of-available-applications-in-thegoogle-play-store
https://www.statista.com/statistics/266210/number-of-available-applications-in-thegoogle-play-store
https://doi.org/10.1007/s11276-023-03414-5

can still infiltrate mobile systems. Mobile devices are fre-

quently linked to individual properties and sensitive data.

The need for a reliable network-based Android malware

detection system is critical. Faruki et al. [4] classified the

mobile malware detection approach into static, dynamic,

and traffic-based categories. Several earlier studies used a

static approach to find security breaches and malware in

Android apps. This approach is difficult owing to code

polymorphism and obfuscation [5, 6]. The goal of dynamic

analysis methods is to alter the OS of a device to monitor

and transfer confidential data. These approaches work, but

they require a lot of execution to cover all app activity

patterns [7]. Numerous malware detection techniques

emphasize network traffic caused by connected apps.

Malware is identified by suspicious network behavioral

patterns. Because the overwhelming majority of Android

malware performs destructive operations through network

traffic, this type of malware detection system is extremely

useful [8]. Malware must communicate with a remote host

via the Internet in order to perform malicious actions.

These footprints allow specific malware to be tracked and

identified. The development and implementation of net-

work-based malware detection systems is also simpler than

those of static or dynamic analysis techniques. For

instance, network-based malware detection may be

implemented at an access point or gateway. These solutions

are solely based on user-generated network traffic data,

ensuring that users continue to have access to their mobile

apps. Furthermore, these methods require no user interac-

tion other than authorizing licenses for the identifying

service. [9]. The purpose of network traffic-based tech-

niques is to find distinguishing characteristics of harmful

data that may be utilized to precisely classify it. However,

selecting effective features is a difficult task.

In this study, the NMal-Droid method is proposed to

classify and detect Android malware by utilizing features

from both HTTP and TCP traffic. HTTP requests are used

since they are the most commonly used protocol for mobile

apps. Network traffic can be classified using the vast

quantity of data that is sent in HTTP requests. Jiang et al.

[10] have recently used HTTP headers to derive a mobile

app’s network profile and categorize it. The HTTP request

header can effectively detect Android malware. However,

it is difficult to retrieve useful information from mobile

apps due to HTTP encryption. To address this issue, we

mined TCP flow to improve malware detection. In this

case, TCP is being studied because it is a popular transport

layer protocol. [11]. A session in TCP flow is a grouping of

messages having the same five-tuple (source IP, source

port, destination IP, destination port, protocol type). Our

findings demonstrate that TCP flows can be utilized to

classify and detect network-based malware. We discovered

that combining these diverse types of network features can

result in an improved detection rate for mobile malware.

The following are the main contributions of this paper:

1. Detect and classify Android malware, we developed

the NMal-Droid approach, which employs fine-tune

embedding and the multi-head ensemble of CNN-

BiGRU. Experimental results show that the proposed

accurately classifies Android malware using the com-

bined features of HTTP traces and TCP flows.

2. For extensive analysis, the word embedding mecha-

nism is fine-tuned with random, static, and dynamic

weights using a pre-trained word2vec model. Further,

we used 5 activation functions to analyze the compar-

ative analysis of the proposed method. It is shown that

the proposed approach obtains the highest performance

on the dynamic-based word2vec model.

3. Extract deep and broad features, a multi-headed

ensemble neural network known as CNN-BiGRU is

designed for accurate malware classification and

detection. Thus, it reduces the challenges associated

with feature selection in network-based malware

detection approaches.

4. The effectiveness of the proposed method is intended

to be interpreted and validated by means of an

explainable AI strategy.

The following is a breakdown of the remaining content:

Section 2 describes the related work, Section 3 thoroughly

describes the proposed methodology, and Section 4 pre-

sents the experimental results. Section 5 discusses vali-

dating the performance, while Section 6 provides the

conclusion.

2 Related work

The Android OS defends effected target machines by uti-

lizing a range of safety features, such as authorization

procedures, as shown by numerous research findings

[12, 13]. However, those who wish to safeguard their

administrative privileges should be familiar enough with

security concerns to warrant that protection. When you put

too much faith in your customers, you open the door for

malicious software like Android malware to infiltrate their

devices and spread to others. The majority of these tools

evaluate apps for suspicious behavior by checking for

things like extra permissions and advertisements. These

anti-virus scanners provide some protection from harmful

programs. Nevertheless, the number and variety of mali-

cious apps is constantly growing and evolving. These anti-

virus utilities protect the device from malicious software.

However, malicious software is constantly adapting and

expanding its range of attack. Therefore, improvements to

6178 Wireless Networks (2024) 30:6177–6198

123

malware detection infrastructure are required. Several anti-

malware tools can now analyze APK files for malicious

code even before they are opened. A static-based method

that reliably categorized malware was established by Sanz

et al. [14]. This method worked by recording the permis-

sions and log files of users. The suggested research

achieved 86.41% classification accuracy. The same method

was utilized by Puerta et al. [15] in to identify malicious

files by utilizing the Drebin dataset, and they observed an

accuracy of 96.05%. A technique of detecting malware that

consists of two stages was presented by Liu et al. [16]. The

first step is to examine the Manifest.xml file of the app,

which lists the privileges that are being requested. The

second step consists of preprocessing the APK file by uti-

lizing the APK toolkits to get the smali code. There is a

possibility that Smali code contains details regarding

asserted privileges, such as API calls, which can be utilized

to identify inappropriate actions. With the proposed

method, detection rates are at 98.6%.

According to Shanshan et al. [17], a malware classifi-

cation system was proposed for analyzing suspicious net-

works by combining HTTP and TCP files. The data transfer

that occurs over the phone app is also carried out by the

wireless device. The cloud is used for the handling of all

data and the identification of malware. This enables mobile

apps to use the fewest resources possible without nega-

tively impacting the user engagement. A detection accu-

racy of 97.89% is achieved for Android malware using a

combination of network flows and machine learning algo-

rithms. Aresu et al. [18] investigate the HTTP-based

transmitted data produced by mobile apps when commu-

nicating with distant malicious servers. Signatures from

various families of malware are generated using a clus-

tering technique. Later, these fingerprints are employed to

spot suspected attacks. Traffic flow was suggested as a

conceptual model by Shanshan et al. [19]. for the tracking

of Android malware. Natural language processing (NLP)

methods are applied to the HTTP text file in order to

conduct a sentiment analysis. When analyzing suspicious

data traffic, these HTTP-based characteristics are used for

investigation. The next step is to identify malicious soft-

ware by analyzing the textual characteristics of data col-

lected from the network. The proposed method classifies

malware at 99%. TextDroid was introduced by Wang et al.

[20]. It parses an HTTP stream for unique characters and

generates n-gram trends to analyze the distribution of the

extracted features. Furthermore, it compiled data sequences

for the purpose of feeding it into a machine learning model

to identify malware. Consequently, this text-based

approach obtained an accuracy rate of 76.99%. TrafficAV

collects information from both TCP and HTTP traffic

attributes and then uses Decision Tree (DT) classifier to

evaluate the classification accuracy. Moreover, the

classification model may not take advantage of both TCP

and HTTP flows, which limits the usefulness of the

approach. Using HTTP traffic, it can identify malicious

code at a rate of 98.16% [21]. The WebEye framework

proposed by Johann et al. [22] effectively creates credible

HTTP traffic. It enriches collected traffic with additional

information, and categorizes files as unwanted or legitimate

utilizing predictive modelling with an average performance

of 89.52%.

Numerous studies utilizing deep learning to categorize

malicious files have yielded improved outcomes [23–25]. It

was proposed by Chen et al. [26] that the CNN method be

used to categorize mobile apps according to their HTTP

flows. The utilization of CNN speeds up the process of

feature selection, which ultimately leads to more accurate

findings related to network traffic. The success rate of the

proposed method increased to 98%. The DeepSign

approach, developed by David et al. [27], makes use of

deep belief networks. It is able to produce unchangeable

and succinct interpretations of the actions that malware

engages in, which enables it to effectively differentiate

nearly all existing malware families with a success rate of

98.6%. Malware can be detected through HTTP requests to

the Android app, as shown by Shanshan et al. [28]. Next, a

multi-view neural net is used to identify potentially mali-

cious activities at varying depths of penetration. This

procedure can be used to concentrate on particular char-

acteristics of input variables by allocating adequate atten-

tion to features. The best and worst prediction accuracy for

this method are 98.81% and 89.35%, respectively.

This study proposed the NMal-Droid approach for

detecting network-based Android malware. Network anal-

ysis collects HTTP and TCP flows because these are the

protocols most commonly used by mobile apps. For

improved detection results, the network embedding process

is fine-tuned with three alternative strategies: random,

static, and dynamic. The multi-headed ensemble-based

CNN-BiGRU model is designed to detect and classify

malware accurately. An explainable AI and t-SNE exper-

iment is carried out for model interpretation and validation.

The novel method can generate distinguishable data,

making it easier to select features for network-based mal-

ware detection systems.

3 Proposed scheme: NMal-Droid

The architectural framework for the proposed NMal-Droid

approach is given in Fig. 1. The combined network flows

for HTTP and TCP are mined from PCAPs using the

packet parser technique. Next, the fine-tune embedding

approach uses word2vec-based transfer learning to analyze

embeddings in three ways. It is employed to discover and

Wireless Networks (2024) 30:6177–6198 6179

123

extract semantic vectors with associated meanings. Finally,

a CNN-BiGRU ensemble with multiple heads is designed

to accurately classify and detect malware.

3.1 Preparing network traffic

We employ HTTP requests because it is the most prevalent

protocol for data transmission. HTTP headers contain

information that can be utilized to categorize malicious

activity. Since most app-to-app communication occurs over

HTTP, it may not be possible to glean any useful infor-

mation from mobile apps. To address this, we obtain HTTP

and TCP flows from PCAP files. Because of its perva-

siveness, TCP is the most appropriate transport layer pro-

tocol for analysis [11]. The PCAP file includes an immense

quantity of network data, some of which may be charac-

terized as noisy for the suggested technique. Algorithm 1

demonstrates the development of a packet parser technique

that can decipher encoded network traffic and mine HTTP/

TCP traffic simultaneously.

Fig. 1 Architectural framework for the proposed work

6180 Wireless Networks (2024) 30:6177–6198

123

The HTTP flows include the following information: host

address, source information, source IP, destination IP,

destination port, number of bytes, packet length, frame

length, and TTL. The source info section also includes a

great deal of additional information, such as GET and

POST commands, as well as URLs, such as ‘‘www.yahoo.

com.’’ TCP flows also involve 3 handshake additional data,

including bytes uploaded and downloaded and total packet

numbers during various sessions. In addition, it includes

the source information formatted as SYN, ACK, and FIN.

Table 1 displays a portion of the source data that has been

extracted from the traffic data. These tangled datasets used

to classify malware are useless and may contain significant

levels of noise. It may cause the proposed method to

become overburdened, lowering malware classification

accuracy. These textual details must be processed and

transformed into smooth HTTP and TCP flow attributes.

To address this issue, we developed a semantic tokenizer

tool that can filter away extraneous data while maintaining

the intended meaning of the input. For instance, choosing a

specific character from the Uniform Resource Locator

(URL) ‘‘www.yahoo.com’’ is pointless. This can only be

used to demonstrate that a whole domain name is recog-

nized as an entity. Any URL is made up of fundamental

parts, each of which represents a different piece of data.

We delete non-malware-related words from the data

received because not all feature extraction phrases can be

used to identify harmful software. The purpose of config-

uring such filtering rules is to produce a clean set of fea-

tures. The primary procedures of data pre-processing are:

• Duplicate features that appear in a row must be

removed from input sequences to avoid data

redundancy.

• Due to the possibility that short segments do not contain

sufficient details to determine the appropriate network

activity, there are omitted from the dataset.

• Since deep learning algorithms become confused when

presented with sequences of varying lengths, standard-

izing sequence length is essential for malware classi-

fication. A fixed sequence length, L, is used in this

method. Sequences with length greater than L retain

their initial length L names, while sequences with

length less than L are combined via zero padding.

Table 1 A chunk of source information from network traffic

Network

traffic

Source information

HTTP GET /getAds.php?pn=com.elm &ver_p=3 &imei=352584066095073

POST/socket.io/?EIO=3 &transport=polling &t=1472474822453-26139 &sid=QzhXKVYFWHT6NaBtAAAe HTTP/1.1

(text/plain)

GET/socket.io/?EIO=3 &transport=polling &t=1472474848518-26142 &sid=QzhXKVYFWHT6NaBtAAAe HTTP/1.1

push.eventmobi.com, api.fanjie.com:8001, sygicfcd.cloudapp.net

TCP 48406 > 8001[SYN] Seq=0 Win=65535 Len=0 MSS=1460 SACK_PERM=1 TSval=6373438 TSecr=0 WS=64

41455 > 8001 [ACK] Seq=1 Ack=2 Win=1386 Len=0 TSval=6368051 TSecr=2070961621

8001 > 48406 [PSH, ACK] Seq=1 Ack=321 Win=15616 Len=237 TSval=2071016625 TSecr=6373505 [TCP segment of a

reassembled PDU]

[TCP Retransmission] 37497[8001 [FIN, ACK] Seq=1 Ack=1 Win=1386 Len=0 TSval=6379665 TSecr=2070841606

Wireless Networks (2024) 30:6177–6198 6181

123

http://www.yahoo.com
http://www.yahoo.com
http://www.yahoo.com

3.2 Fine-tune embedding

Vectors are fed into the neural network. Therefore, we

describe network traffic as vectors with a fixed size (L). We

may utilize a one-shot vector. But its size is limited by the

number of unique features in our dataset. As a result, such a

strategy is unsuitable for large-scale training. Thus, we

need a condensed vector that also has a meaningful value.

To meet these needs, we chose the word embedding

approach, specifically word2vec [29]. Our major aim is to

generate a dense vector for each network feature that tracks

its contexts throughout a huge dataset of Android apps.

Additionally, we can employ geometric approaches on the

network vectors to determine the semantic relationship

between their functionality, i.e., attackers frequently use

the same URL or TCP session for the same target. Figure 2

shows the visualization of embedding words using

word2vec and TensorFlow. In our case, we train these

vectors using word2vec from a dataset of benign and

malicious apps. The embedding word model output is a

matrix KxA, where K is the embedding vector size and A is

the number of unique network features. Our word embed-

ding is tuned concurrently with the neural network for a

certain task, i.e., detection. The embedded word vector can

be learned independently of the malware classification and

detection task [30, 31]. The embedding values are trainable

parameters rather than manually specified. These are

commonly 8-dimensional for small datasets and 1024-di-

mensional for large datasets. We set 300-dimensional for

the combined features of HTTP and TCP. For finer word

associations, higher dimensional embeddings require more

data to learn. The embeddings are fine-tuned as random,

static, and dynamic for extensive network analysis. We

used word2vec to fine-tune the features during static and

dynamic data analysis for better classification results.

(a) Random: The model trains with a network embed-

ding layer that randomly initializes feature vectors.

Backpropagation is used to gradually adjust them

during a training session. Once trained, learned net-

work embeddings can effectively contain feature

similarities for network data analysis. In this

approach, the weights are allocated at random to each

feature, which may carry erroneous or chaotic data

for the built neural network.

(b) Static: The model uses the 300-dimensional word2-

vec pre-trained word embedding model. Throughout

the training procedure, the vectors are maintained in

a static position. By applying that function, all of the

features are integrated into a single vector. Conse-

quently, according to this mapping function, the same

feature cannot have multiple interpretations.

(c) Dynamic: It also uses a pre-trained word2vec model

with 300-dimensional vectors. The vectors may stay

dynamic throughout the training operation. This

approach distributes comparable word types across

many vectors. As a result, this mapping function is

versatile enough to allow for many interpretations of

the same feature across time. This strategy is superior

because it allows us to extract multiple meanings for

the same word, which neural networks can easily

comprehend.

Fig. 2 Semantic visualization of embedding words (http, ads) using word2vec

6182 Wireless Networks (2024) 30:6177–6198

123

3.3 Features extraction

For deep feature extraction, the embedded features are fed

into the CNN network as input vectors. This strategy uti-

lized a 1-D CNN network that included dropout layers,

fully connected layers, pooling layers, and convolutional

layers. There are several studies [32, 33] that proposed the

use of the CNN model to classify Android malware. The

convolution layer receives the relevant data via the input

layer and convolutes it using the kernel of the convolution

layer as shown in Eq. 1.

xlj ¼ f
X

ðxðl�1Þ
i :xl

ij

� �
ð1Þ

where xlj is the outcome of j channel with respect to layer

l. xðl� 1Þi is the input of the i channel for the recent layer

l. xl
ij is the computed weighted matrix of the same layer

and blj is the related bias terms for the given function f.

Semantic features are iteratively spun through the convo-

lution-based filter to extract the optimal features. A feature

map is a new set of features that are generated by each

filter. Hyperparameter optimizations are used to find the

best number of filters. Layers of convolution and pooling

are linked together. In order to prevent overfitting, the

pooling layer filters data and reduces the number of

parameters used to compute the network as shown in Eq. 2.

xlj ¼ f bljdown xl�1
j :Ml

� �
þ blj

� �
ð2Þ

where blj is the weight matrix of j, down() represents the

pooling function, and Ml represents the size of the pool

window. The max-pooling layer narrows the focus of the

feature space while decreasing the required number of

computations. This layer also creates a feature map from

the most salient features in the previous feature set. The

proposed CNN network makes use of the softmax function

in conjunction with dropout layers to combat the overfitting

problem. Equation 3 shows the mathematical form of the

probability distribution computed by softmax for classes k.

O ¼

pðy ¼ 1 j x : x1b1Þ
pðy ¼ 1 j x : x2b2Þ

. . .

pðy ¼ K j x : xkbkÞ

2
6664

3
7775 ¼ 1

Pk
j expðxjxþ bjÞ

expðx1xþ b1Þ
expðx2xþ b2Þ

. . .

expðxkxþ bkÞ

2
6664

3
7775

ð3Þ

Equation 4 is used to represent the outcome of the one-

dimensional CNN network.

Wireless Networks (2024) 30:6177–6198 6183

123

o1k ¼ f c1k þ
XNðl�1Þ

ði¼1Þ
Con1D X

ðl�1Þ
ik ; t

ðl�1Þ
i

� �
0
@

1
A ð4Þ

where c1k is the parameter bias of the kth neuron in the first

layer, t
ðl�1Þ
i is the outcome of the ith neuron in layer l� 1,

X
ðl�1Þ
ik is the kernel strength from the ith neuron in layer l-1

to the kth neurons in layer l, and ’’f()’’ is the activation

function.

3.4 Gradient computation

Chung et al. [34] proposed the GRU neural network. GRU

is an excellent solution to the gradient vanishing issue that

happens during the training phase of recurrent neural net-

works (RNNs). In comparison to LSTM, GRU is straight-

forward. GRU is composed of only two gates, i.e., the

update gate, and the reset gate. It reduces the network’s

parameters and hence speeds up model training. The update

gate (z) stipulates that pertinent information is preserved

until the next state, while the reset gate (r) describes how

the prior and new knowledge is united. When series data is

used, GRU is capable of effectively learning long-term

dependencies, which are determined in Eqs. 5–8.

zt ¼ rðWz � ½xðtÞ; hðt � 1Þ�Þ ð5Þ

rt ¼ rðWr � ½xðtÞ; hðt � 1Þ� ð6Þ

ĥðtÞ ¼ tanhðWh � ½xðtÞ; ðrt � hðt � 1ÞÞ� ð7Þ

ht ¼ ð1� ztÞ � hðt � 1Þ þ zt � ĥðtÞ ð8Þ

x(t) shows the input data, rðÞ, and tanh() are activation

functions. The weighted matrices for the update, reset, and

output gates are described by Wz,Wr, and Wh, respectively.

The hðt � 1Þ shows the output data of the recent state.

BiGRU is made up of two standards GRUs [35], each of

which analyses the embedded vector in one direction (forth

and time-reversed), and after, it integrates the corre-

sponding outputs. As a result, BiGRU can catch feature

representations that the traditional GRU may skip, resulting

in better performance. Figure 3 shows the architecture of

the Bi-GRU neural network.

3.5 Multi-head ensemble of CNN-BiGRU

A multi-head CNN-BiGRU ensemble model is proposed

for malware classification using network embedding fea-

tures as shown in Fig. 4. The ensemble is a term that refers

to the aggregation of different predictions made by a model

from multiple source datasets to obtain more accurate

predictions. To train quickly, embedding vectors are

employed as input to the specified ensemble model. Good

models that rely on independent training of different

embedding features, perform well, which may be because

they acquire effective feature knowledge from their input

data. That is, they anticipate viewing the word2vec

embedding vectors from various angles to get real knowl-

edge. To produce a more accurate outcome, the prediction

outputs from both models can be merged, and the most

straightforward integration approach is the weighted aver-

age of each prediction result. This not only permits the

acquisition of deeper feature learning from various datasets

but also permits the dominance of the finest dataset. The

ensemble model is divided into three distinct steps.

• CNN-BiGRU takes the training set from each malware

dataset in turn and uses it to incrementally learn the

feature data within the dataset. The trained models are

preserved for use in subsequent calls.

• When a trained model is fed the validation set for a

dataset, it generates a probability distribution of

predicted labels using a softmax layer. The accumulated

probability and sample label estimation are obtained by

assigning weights to each output. When the probability

distributions are weighted, the ensemble model reliably

Fig. 3 Architecture of Bi-GRU neural network

6184 Wireless Networks (2024) 30:6177–6198

123

predicts labels (0 for malicious, 1 for benign). Likewise,

the seperate models may increase the risk of misclas-

sification, whereas the ensemble model significantly

enhances the performance.

• The trained model is fed the test set for each dataset

separately. Ultimately, the predictions from all of the

models are combined to form the final classification.

The complete process is given in Algorithm 3.

4 Experimental results

4.1 Dataset collection

The proposed method is thoroughly examined using two

datasets obtained from the Canadian Institute for Cyber-

security2 [36] which is gathered semi-automatically by

installing Android apps on authorized mobiles. The dataset

is generated using 1900 apps and is separated into three

classes: adware, general malware, and benign. The adware

contains 250 malicious apps, including Airpush, Dowgin,

kemoge, mobidash, and shuanet. The General Malware

consists of 150 malicious apps, including AVpass, fakeAV,

fakeflash, GGtracker, and penetho. A total of 1500 apps are

included in the Benign. Table 2 contains a detailed

description of the dataset. The second dataset CICMal-

Droid 2020 [37, 38] collected over 17,341 Android samples

from different sources, including the VirusTotal service,

the Contagio security blog, AMD, and MalDozer. From

December 2017 to December 2018, the samples were

taken. In addition to benign, this dataset includes malicious

examples of Adware, Banking, Riskware, and SMS. There

are 1253 instances of adware, 2100 instances of banking

malware, 2546 instances of riskware, 3904 instances of

benign software, and 1795 instances of benign software.

Tables 2 and 3 provide a comprehensive breakdown of

each app.

4.2 Performance indicators

To reduce bias, the training and testing data are created

using k-fold cross-validation. We set k to 10 to generate

random samples from both the training and test sets. We

2 https://www.unb.ca/cic/datasets/index.html. The first dataset, the

Canadian Institute of Cybersecurity Android Adware and General

Malware (CICAAGM2017)

Wireless Networks (2024) 30:6177–6198 6185

123

https://www.unb.ca/cic/datasets/index.html

then use these random samples to generate our final

training and test sets. This cycle is repeated, with the model

being trained on the training set and compared to the test

set. This data partition approach can help to reduce over-

fitting. The desired output is achieved by employing a

mechanism that terminates the process prematurely once a

predetermined threshold is reached. It is possible to shorten

the process by stopping the model before the specified

number of epochs have passed such as early stopping. We

used four kinds of performance indicators such as Preci-

sion, Recall, F1-score, and Accuracy. The abbreviations

used are False Positive (FP), True Positive (TP), False

Negative (FN), and True Negative (TN). A TP occurs when

the model correctly predicts the benign class. A TN is

when the model predicts the malware class correctly. When

a model wrongly concludes that a hypothesis is correct

when it is not, this is an example of FP. An FN occurs

when something is incorrectly thrown out. An accuracy

metric is used to evaluate general classification perfor-

mance. The performance indicators are shown in Eqs. 9–

12.

Recall ¼ FP

ðFPþ TNÞ � 100 ð9Þ

Precision ¼ TP

ðTPþ FPÞ � 100 ð10Þ

Accuracy ¼ ðTPþ TNÞ
ðTPþ TN þ FPþ FNÞ � 100 ð11Þ

F1� score ¼ð2 � Precision � RecallÞ
ðPrecisionþ RecallÞ � 100 ð12Þ

4.3 Results analysis and performance
comparisons

We use static, dynamic, and random embeddings to show

that our proposed method works. For extensive compar-

isons, the proposed approach is tested with five different

activation functions such as relu, tanh, elu, para relu, and

leaky relu. Every time we used an activation function for

one of the five kernels, we got the performance output for

that function. The performance comparisons of five acti-

vation functions using random embeddings are shown in

Table 4. Accuracy is denoted by the word acc. During each

fold of 10-fold cross-validation, accuracy is extracted

which is in the range of 1 to 10. We investigate two

hyperparameters by extending the kernel sizes from 1 to 5

using 100 filters and analyzing the model’s effects. The last

Fig. 4 Multi headed-based ensemble of CNN-BiGRU neural network

6186 Wireless Networks (2024) 30:6177–6198

123

column shows how well each of the 10 folds worked

together. It can be shown that tanh has the best classifi-

cation accuracy, i.e., 97.1%, with a kernel size of 1 and relu

has the worst, i.e., 87.1, with a kernel size of 2. The second

and third highest performances, i.e., 94.6%, 94.4%, are

para_relu, and relu with kernel sizes 4, and 4, respectively.

Figure 5 shows the overall average accuracy compar-

isons of five activations functions using fine-tune embed-

dings of random, static, and dynamic. Word2vec has been

used for a static and dynamic approach. For both datasets,

we conducted experiments for malware classification and

detection. It can be observed that dynamic word embed-

dings provide the best classification results for both data-

sets, whereas random is the worst. For instance, random

embedding has the maximum classification accuracy of

96.71% for the relu activation function using the CIC-

MalDroid dataset, whereas dynamic embedding has the

highest classification accuracy of 99.95% for the same

dataset and activation function. Similarly, the random

strategy has a maximum detection rate of 94.61% for

CICMalDroid and tanh activation function, whereas

dynamic has a detection rate of 99.89% for the same

dataset and elu activation function. The static performs in

between random and dynamic embeddings. For instance,

static embedding has the maximum 99.78% classification

rate for CIC-AAGM2017 with relu activation function

while 99.83% detection rate for the CICMalDroid dataset

with elu activation function. Overall, dynamic embedding

outperforms random and static embedding because it mines

embedding properties that change over time. As a result, it

is more versatile to compute a range of semantically sim-

ilar features. The accuracy and loss curves for training and

testing data are obtained to examine the running behavior

against each epoch. Figure 6 shows the accuracy and loss

curves for random embedding with the most efficient

activation function utilizing 1-fold cross-validation. Parts

(a, b, c, and d) show the training and testing loss curves for

malware classification using the CIC-AAGM2017 and

CICMalDroid datasets. Tanh and relu are the most efficient

activation functions for both datasets. The blue and red

colors represent the training and testing data, respectively.

We made use of 100 epochs. Part (a) begins with the

training accuracy at 30% and the test at 40%. When both

curves reach 80% at the 15th epoch, they drop and then rise

to 97%. Following then, both curves become more or less

constant. Both curves behave between 30% and 97.2%. In

part (b), the green and yellow colors represent the training

and testing loss. Initially, both training and testing loss are

greater than 100%, but they eventually drop to 4% after

some epochs. In the 90th epoch, there is a slight rise in

Table 2 Android adware and general malware dataset (CIC-AAGM2017)

Apps No. of Apps Families Description

Adware 250 Airpush It spreads malicious advertisements to compromise systems

Dowgin As a data-gathering advertising platform

Kemoge It hijacks the Android device

Mobidash Built to spread commercials and provide unauthorized access

Shuanet It has the ability to take control of the device

General Malware 150 AVpass A utility program that masquerades as a clock

FakeAV Trickery for downloading unlocked software via e-mail

FakeFlash This fake Flash player leads to a suspicious domain

Ggtracker Utilized to acquire data via SMS fraud

Penetho Hacking tool that pretends to recover WiFi credentials

Benign 1500 Benign Clean apps (Not malicious)

Table 3 CICMalDroid 2020 dataset

Apps Families No. of Apps Description

Malware Adware 1,253 Malicious software may contain advertisements that are not immediately obvious

Banking 2100 Direct access is made to the user’s online account

Riskware 2546 It is possible to cause harm through the misuse of any legal software

SMS 3904 It uses text messages as a means of attack

Benign Benign 1795 Clean apps (Not malicious)

Wireless Networks (2024) 30:6177–6198 6187

123

training loss, but both curves remain relatively steady.

Similarly, the training and testing loss accuracy curves

behave in the 10% to 96.5%. On the 80th epoch, there is a

slight drop in the test curve, but after that, both curves

behave more or less consistently. The model accuracy and

loss curves for malware detection utilizing CICMalDroid

are shown in parts (e, f). Tanh is the most efficient acti-

vation function, as can be observed. The training and

testing accuracy curves behave steadily between 20% and

94.2%.

Figure 7 illustrates the model training and loss curves

for malware detection and classification using static

embedding. Using both datasets, the result shows the most

efficient activation function. Using the CIC-AAGM2017

and CICMalDroid datasets, the relu activation function is

the most efficient for malware classification. However,

utilizing the CICMalDroid dataset, the elu activation

function is the most effective for malware detection. In part

(a), the training and testing curves for the model accuracy

behave between 10% and 99.80 for the malware classifi-

cation using CIC-AAGM2017. Similarly, the training and

test accuracy curves behave between 5% and 99.85% for

malware classification using the CICMalDroid dataset.

Parts (e, f) show the model accuracy and model for mal-

ware detection using the CICMalDroid dataset. The train-

ing and testing curves for model accuracy behave between

18% and 99.83%. Figure 8 shows the model accuracy and

model loss curves for both datasets using dynamic

embedding. The relu is the most efficient activation func-

tion for malware classification while the elu is the most

activation function for malware detection using dynamic

embedding. The training curve starts from 85% while the

test starts from 50%. They both gradually increase up to

99.9% in the 40th epoch. There is a drop-in training

accuracy of up to 70% and then again increases up to

maximum. Again, there is a slight drop up to 80% in test

accuracy but after that, both curves behave more or less

constantly. Collectively, both curves behave between 50%

and 99.88%. Similarly, part (c) shows the model accuracy

for training and testing curves. These curves behave

between 65% and 99.95% for malware classification. Parts

(e, f) show the model accuracy and loss curves for malware

detection using the CICMalDroid dataset. The training and

testing accuracy curves between 50% and 99.90%. It can

be seen that dynamic embedding outperforms as compared

to the random and static embedding approaches. Similarly,

Table 4 Random embedding:

performance comparisons of

activation functions using

10-fold

Activation Filters acc1 acc2 acc3 acc4 acc5 acc6 acc7 acc8 acc9 acc10 Avg

tanh 1 98.8 98.8 100 100 100 100 87.8 100 100 86.6 97.2

para_relu 4 100 98.8 86.6 84.1 100 100 85.4 91.5 100 100 94.6

relu 4 100 88 100 86.6 98.8 81.7 100 100 100 89 94.4

tanh 3 100 97.6 100 87.8 100 100 85.4 82.9 91.5 82.9 92.8

leaky_relu 2 100 86.7 84.1 87.8 100 82.9 91.5 100 98.8 95.1 92.7

para_relu 5 84.3 100 86.6 100 81.7 100 89 100 100 84.1 92.6

elu 5 89 100 89.8 99.8 95.8 83.9 82.5 88.6 95.2 100 92.5

elu 2 88 100 87.8 98.8 98.8 82.9 80.5 86.6 100 100 92.3

leaky_relu 4 88 100 84.1 100 87.8 89 84.1 87.8 100 100 92.1

relu 5 97.6 100 89 100 79.3 82.9 100 91.5 100 80.5 92.1

elu 1 100 84.3 86.6 87.8 100 85.4 100 100 91.5 82.9 91.8

elu 4 84.3 88 85.4 84.1 100 100 100 100 90.2 85.4 91.7

elu 3 100 88 86.6 100 84.1 87.8 81.7 100 100 86.6 91.5

tanh 2 100 100 98.8 86.6 76.8 85.4 84.1 100 98.8 82.9 91.3

leaky_relu 1 78.3 85.5 100 92.7 89 100 80.5 98.8 86.6 100 91.1

relu 3 100 100 82.9 85.4 100 86.6 84.1 100 84.1 86.6 91

leaky_relu 5 92.8 85.5 100 80.5 92.7 85.4 98.8 89 82.9 100 90.8

leaky_relu 3 88 100 100 89 100 85.4 86.6 81.7 90.2 86.6 90.7

para_relu 1 100 100 85.4 81.7 86.6 100 79.3 84.1 98.8 87.8 90.4

relu 1 89.2 89.2 80.5 100 87.8 100 100 86.6 84.1 81.7 89.9

para_relu 2 90.4 100 92.7 84.1 80.5 84.1 81.7 100 85.4 100 89.9

tanh 5 100 85.5 89 80.5 81.7 87.8 100 85.4 84.1 100 89.4

tanh 4 78.3 84.3 85.4 100 86.6 87.8 100 92.7 85.4 90.2 89.1

para_relu 3 79.5 100 85.4 87.8 86.6 90.2 87.8 84.1 84.1 87.8 87.3

relu 2 81.9 100 86.6 89 86.6 81.7 86.6 82.9 87.8 87.8 87.1

6188 Wireless Networks (2024) 30:6177–6198

123

the random performs the worst as compared to the other

two approaches.

The experiments are conducted to demonstrate perfor-

mance indicators for malware classification and detection

using both datasets. We used five performance indicators,

such as Precision, Recall, F1-score, and Accuracy for three

different types of embeddings: random, static, and

dynamic. Experiments are carried out for five activation

functions, each with a distinct set of hyperparameters for

the kernel and filters, and each with 10-fold cross-

validation. Table 5 depicts the classification performance

of the top three activation functions for random embedding.

For the CIC-AAGM2017 dataset, Precision, Recall, F1-

score, and Accuracy for the malware classification are

97.03%, 97.14%, 97.08%, and 97.19%, respectively, for

the tanh activation function. The lowest classification

performance for the same dataset is 94.2%, 93.92%,

94.05%, and 94.40%, respectively. The top three activation

functions for malware classification using the same dataset

are tanh, para relu, and relu. The performance measures

Fig. 5 Average accuracy comparisons with different activations functions using fine-tune embedding using 10-fold

Wireless Networks (2024) 30:6177–6198 6189

123

Fig. 6 Random embedding: epoch curves for top activation function using 1-fold

Fig. 7 Static embedding: epoch curves for top activation function using 1-fold

6190 Wireless Networks (2024) 30:6177–6198

123

for malware classification and detection for the CICMal-

Droid dataset are 96.68%, 96.62%, 96.64%, 97.71%, and

91.56%, 91.38%, 91.46%, and 91.6%, respectively. For the

CICMalDroid dataset, the top three activation functions for

malware classification and detection are (relu, relu, lea-

ky_relu), (tanh, tanh, relu). Table 6 shows the performance

indicators for static embedding with the top 3 activation

function functions. For the CIC-AAGM2017 dataset, Pre-

cision, Recall, F1-score, and Accuracy are 99.64%,

99.44%, 99.53%, and 99.78%, respectively using the relu

activation function. For malware detection using these

indicators 99.78%, 99.7%, 99.74%, and 99.83%, respec-

tively using the CICMalDroid dataset. The top activation

functions for malware classification and detection for both

datasets are (relu, para_relu, elu), (relu, elu, elu), (elu,

tanh, tanh), respectively. Table 7 shows the same perfor-

mance indicators for the dynamic embedding using both

datasets and 10-fold cross-validation. It can be seen that;

the dynamic embedding performs better with all five per-

formance indicators as compared to the random and static

approach. Thus, it is proved that the fine-tuned embedding

with a dynamic approach provides the highest performance

for both malware classification and detection.

The proposed method is compared to other published

research in Table 8. When classifying Android malware,

these studies focused primarily on using data collected

from network traffic. Aresu et al. [18] demonstrate how to

categorize Android malware by assessing HTTP packets.

To achieve this, it evaluates HTTP incoming traffic to

cluster malicious files. Additionally, signatures for detect-

ing new clustered malicious files can be extracted using

this method with a detection rate of 98.66%. A Droid

Classifier was introduced by Li et al. [20]. This classifier

instantly constructs various models based on a collection of

compiled malicious apps. A set of common identifiers

extracted from network traffic is used to construct each

model. To accurately portray a wide variety of malware

characteristics, a system with automatic threshold config-

urations was developed, and it achieved a 94.66% success

rate. The concept of classifying malicious programs based

on their URLs was presented by Shanshan et al. [25].

Multi-view deep learning models provide a broader and

deeper perspective for malware analysis. Additionally, it

creates and disseminates soft attention-weighting compo-

nents for use with particular data. URL-based malware

classification has a 95.74% success rate. Shyong et al. [39]

categorize Android apps by combining static permission

with changing network tracking. Hazardous network flows

are used to acquire features in the dynamic evaluation step,

and Random Forest is employed to recognize malicious

files. Malware detection rates on Android average 98.86%.

A method for identifying malicious Android apps through

their URLs was introduced by Shanshan et al. [28]. Mal-

ware detection models that prioritize feature depth are built

using multi-view neural networks. The feature weights are

distributed so that they can be used with specific inputs.

Fig. 8 Dynamic embedding: epoch curves for top activation function using 1-fold

Wireless Networks (2024) 30:6177–6198 6191

123

Ficco et al. [40] combine API calls and ensemble

detectors to efficiently incorporate generic and specialized

features. It works to improve performance for unknown

malware families with an accuracy of 98% throughout the

analysis process and raises the volatility of the detection

technique. Ullah et al. [41] classified Android malware

using a hybrid approach combining Control Flow Graphs

(CFGs) and picture attributes. API Call Graphs (ACGs) are

extracted from CFGs to examine the dynamic behavior of

harmful operations and provide 99.27% accuracy. Ullah

et al. [42] proposed an Intrusion Detection System for

Imbalanced Network Traffic (IDS-INT) that employs a

combination of transfer learning CNN-LSTM. IDS-INT

analyzes feature associations in both network feature rep-

resentation and imbalanced data to obtain 99.21% accu-

racy. The proposed method is highly accurate, at 98%.

With a detection rate of 99.75%, our method easily wins

out over the competition. Table 9 shows the comparison of

Table 5 Random embedding:

Performance indicators for top 3

activations function using

10-fold

Classification Activation Filters Precision (%) Recall (%) F1-Score (%) Accuracy (%)

CIC-AAGM2017

Tanh 1 97.03 97.14 97.08 97.19

Para_relu 4 94.27 93.88 94.07 94.63

Relu 4 94.2 93.92 94.05 94.40

CICMalDroid

Classification Relu 5 96.68 96.62 96.64 96.71

Relu 4 93.84 93.72 93.77 94.04

Leaky_relu 1 93.82 93.7 93.75 94.02

Detection Tanh 1 94.09 93.99 94.03 94.16

Tanh 3 91.68 91.52 91.57 91.71

Relu 4 91.56 91.38 91.46 91.6

Table 6 Static embedding:

Performance indicators for top 3

activation functions using

10-fold

Classification Activation Filters Precision (%) Recall (%) F1-Score (%) Accuracy (%)

CIC-AAGM2017

Relu 5 99.64 99.44 99.53 99.78

Para_relu 2 99.45 99.18 99.31 99.69

Elu 4 99.24 99.08 99.15 99.69

CICMalDroid

Classification Relu 1 99.82 99.78 99.8

Elu 3 99.76 99.72 99.74 99.77

Elu 4 99.72 99.68 99.7 99.74

Detection Elu 3 99.78 99.7 99.74 99.83

Tanh 3 99.75 99.65 99.69 99.82

Tanh 5 99.74 99.62 99.67 99.82

Table 7 Dynamic embedding:

Performance indicators for top 3

activation functions using

10-fold

Classification Activation Filters Precision (%) Recall (%) F1-Score (%) Accuracy (%)

CIC-AAGM2017

Relu 1 99.84 99.78 99.81 99.88

Tanh 3 99.84 99.76 99.8 99.88

Tanh 2 99.76 99.66 99.7 99.85

CICMalDroid

Classification Relu 1 99.92 99.92 99.92 99.95

Leaky_relu 4 99.9 99.88 99.89 99.94

Leaky_relu 2 99.9 99.84 99.87 99.94

Detection Elu 5 99.82 99.81 99.81 99.89

Elu 3 99.78 99.72 99.74 99.85

Leaky_relu 2 99.76 99.72 99.74 99.85

6192 Wireless Networks (2024) 30:6177–6198

123

the proposed approach with state-of-the-art methods. It can

be seen that the proposed approach provides the best

classification results. Algorithm execution time and storage

space depend on computational complexity. Table 10

shows the computational complexities for each algorithm.

The costly terms of the proposed scheme are defined in

Algorithms 1, 2, and 3 respectively.

5 Performance validation with explainable
AI and t-SNE

We derived a subset of the most crucial features from the

embedded matrix in order to better understand and verify

the proposed method. A visual representation of the sig-

nificance of the features among the 25 features is shown in

Fig. 9. It is clear that the ‘‘F17’’ feature is the most effi-

cient, contributing the most to the detection of malware

classes. In contrast, the ‘‘F8’’ function is the least efficient

and may deliver the worst results for the proposed method.

In terms of efficiency, the ‘‘F10’’ function is the next best

feature. Consequently, we can easily rank the features from

most significant to least.

We used the Local Interpretable Model-agnostic

Explanation (LIME) and SHAPSHapley Additive exPla-

nations (SHAP) libraries to explain how each feature

affected model output [43]. Figure 10 depicts the influence

of each attribute on the model output, both individually and

combined. Parts (a, and b) represent the combined and

individual effects, respectively. In part (a), the color ranges

show the contribution of each feature. For instance, the red

color implies a significant contribution, but the blue color

denotes a low contribution. Part (b) shows that the red color

shows the contribution of each feature towards the malware

class, while the green color shows the contribution towards

the benign class. It can be seen that the combined effect of

the ‘‘F17’’ feature is significant, and to validate this, the

same feature adds significantly to the malware class in part

(b). The cumulative effect of feature ‘‘F25’’ is the lowest,

and to validate this, the same feature contributes the least to

the malware class. The color of the feature ‘‘F16’’ is red in

part (b), which indicates that this feature has the highest

impact and contribution. To check this, the same feature

has a better contribution in the benign class. We can now

easily explain the impact of each feature for a given cat-

egory, such as malicious or benign [44]. This study

demonstrates how each feature influences the output by

assessing its efficacy. The objective of the t-distributed

Stochastic Neighbor Embedding (t-SNE) method of visual

representation is to determine whether the features retain

extensive or limited knowledge. The t-SNE technique is

also meant to assess how well the proposed method works.

High-dimensional data can be visualized using the t-SNE

method, which was proposed by Maaten et al. [45]. The

ratio of local to global scores for semantic and syntactic

features is depicted in Fig. 11. In the first experiment, we

try to determine the threshold of complexity beyond which

it becomes impossible to distinguish between benign and

Table 8 Comparisons with

previously published works
Work Year Methods Accuracy (%)

Aresu et al. [18] 2015 Signature-based clustering 96.66

Li et al. [20] 2016 Droid classifier 94.66

Shanshan et al. [25] 2018 Skip-gram with neural network 95.74

Shanshan et al. [17] 2019 C4.5 decision tree 97.89

Shyong et al. [39] 2020 Random forest 98.86

Shanshan et al. [28] 2020 Multi-view neural network 98.81

Ficco et al. [40] 2021 API-calls with ensemble 98.00

Ullah et al. [41] 2022 CFG with stack ensemble 99.27

Ullah et al. [42] 2023 transfer learning with CNN-LSTM 99.21

NMal-Droid – Fine-tune embedding with CNN-BiGRU 99.75

Table 9 Comparisons with

state-of-the-art methods
Methods Precision (%) Recall (%) F1-Score (%) Accuracy (%)

Random Forest 94.21 93.84 93.91 94.08

CNN-1D 95.32 95.48 94.66 95.58

LSTM 95.84 94.92 96.14 96.11

RNN 96.82 96.94 96.40 96.89

NMal-Droid 99.81 99.73 99.70 99.75

Wireless Networks (2024) 30:6177–6198 6193

123

malware. The second experiment determined that the

malware clusters with the highest perplexity scores are the

most effective ones for Android. Parts (a) and (c) have the

lowest perplexity values, whereas parts (b) and (d) have the

highest. As a method for classifying samples, t-SNE relies

on repeated calculations. To illustrate the various classes of

malware and benign files, we ran 500 iterations for each

perplexity factor. Classification outcomes are drastically

affected by the dataset’s density. In most cases, higher

densities result in better accuracy since more qualitative

data is used during the training process. When using the

optimal perplexity settings, the visual clusters produced by

t-SNE are more clearly divided. An appropriate perplexity

value can be used to partition a dataset, and then useful

hyperparameters can be used to classify the partitions. This

process proved the method’s efficacy by extracting con-

ceptual aspects and classifying them as malware or benign.

6 Conclusion

Malware activities presently cause significant harm to the

integrity of Android apps. These hazards have the potential

to steal sensitive data and cause havoc in the commerce,

social system, and financial industry. Because of their

continual network access, Android apps are easily attacked

by network activity. This study presents the NMal-Droid

malware detection approach, which employs fine-tuned

embedding and an ensemble neural network. The packet

parsing technique is used to filter network traffic for

combined HTTP and TCP flow events. A fine-tune

embedding technique is developed that investigates feature

embedding using a pre-trained word2vec model. The

embedded features are extracted using three different ways

such as random, static, and dynamic. It’s a tool for learning

and extracting feature-matrix matrices with similar mean-

ings. The CNN model is designed to extract the deep

features and then Bi-GRU is used to compute the gradient

information for each feature. To take the benefits from both

models, an ensemble of multi-head CNN-BiGRU is

developed for accurate malware classification and detec-

tion. For a more detailed analysis, the proposed method is

evaluated on five separate activation functions with 100

filters and a range of 1-5 kernel sizes. An explainable AI-

based experiment is conducted to evaluate and validate the

proposed method. According to the results, the proposed

Table 10 Computational complexity analysis

Complexity terms Algorithm 1 Algorithm 2 Algorithm 3

P, F, TF jPj njf j; njtf j njf j; njtf j
P

0
; Tr; Te njPj; jnj jTrj; jTej jTrj; jTej

PCAP;T
0
r

njPj - jTrj þ jTej

HTTP;TCP;T
0

e
njPj - jTrj þ jTej

Fig. 9 Important features

extraction

6194 Wireless Networks (2024) 30:6177–6198

123

strategy beats current methods with a precision of 99.81%,

recall of 99.73%, f1-score of 99.7%, and accuracy of

99.75%.

In the future, pre-trained models such as GloVe, BERT,

and FastText can be used to improve the fine-tuned

embedding. Experiment with the two hyperparameters by

varying the kernel size from 1 to 10 and adding or

removing filters to see how it affects model performance.

Author Contributions FU proposed the study, simulated it, and wrote

the manuscript. SU helped in writing algorithms and formatting. YZ

reviewed. and made writing suggestions. GS and JC-WL reviewed

Fig. 10 Combined and individual effects of features on model output

Fig. 11 t-SNE visualization for fused features using minimum (42, and 68) and optimal (48, and 95) perplexity values

Wireless Networks (2024) 30:6177–6198 6195

123

and analyzed the proposed research. All authors have read and agreed

to the published version of the manuscript

Funding Funding was provided by Natural Sciences and Engineering

Research Council of Canada (Grant no. RGPIN-2020-05363).

Data availability The data that support the findings of this study are

openly available in Canadian Institute for Cybersecurity-CIC-

AAGM2017 and CICMalDroid2020 at https://www.unb.ca/cic/data

sets/android-adware.html, and https://www.unb.ca/cic/datasets/mal

droid-2020.html, respectively.

Declarations

Conflict of interest The authors declare no conflict of interest.

Ethical approval This article does not contain any studies with human

participants performed by any of the authors.

References

1. Arshad, S., Shah, M. A., Khan, A., & Ahmed, M. (2016). Android

malware detection & protection: A survey. International Journal
of Advanced Computer Science and Applications, 7(2), 463–475.

2. Felt, A.P., Finifter, M., Chin, E., Hanna, S., & Wagner, D. (2011).

A survey of mobile malware in the wild. In: Proceedings of the
1st ACM workshop on Security and privacy in smartphones and
mobile devices.

3. Berman, D. S., Buczak, A. L., Chavis, J. S., & Corbett, C. L.

(2019). A survey of deep learning methods for cyber security.

Information, 10(4), 122.
4. Faruki, P., Bharmal, A., Laxmi, V., Ganmoor, V., Gaur, M. S.,

Conti, M., & Rajarajan, M. (2014). Android security: A survey of

issues, malware penetration, and defenses. IEEE Communications
Surveys & Tutorials, 17(2), 998–1022.

5. Zhu, H.-J., You, Z. H., Zhu, Z. X., Shi, W. L., Chen, X., &

Cheng, L. (2018). DroidDet: Effective and robust detection of

android malware using static analysis along with rotation forest

model. Neurocomputing, 272, 638–646.
6. Qiu, J., Zhang, J., Luo, W., Pan, L., Nepal, S., & Xiang, Y.

(2020). A survey of android malware detection with deep neural

models. ACM Computing Surveys (CSUR), 53(6), 1–36.
7. Egele, M., Scholte, T., Kirda, E., & Kruegel, C. (2008). A survey

on automated dynamic malware-analysis techniques and tools.

ACM Computing Surveys (CSUR), 44(2), 1–42.
8. Zhou, Y. & Jiang, X. (2012). Dissecting android malware:

Characterization and evolution. In: 2012 IEEE symposium on

security and privacy. IEEE.

9. Yang, L., Han, Z., Huang, Z., & Ma, J. (2018). A remotely keyed

file encryption scheme under mobile cloud computing. Journal of
Network and Computer Applications, 106, 90–99.

10. Jiang, J., Yin, Q., Shi, Z., & Li, M. (2018). Comprehensive

behavior profiling model for malware classification. In: 2018

IEEE Symposium on Computers and Communications (ISCC).

IEEE.

11. Chen, Z., Peng, L., Gao, C., Yang, B., Chen, Y., & Li, J. (2017).

Flexible neural trees based early stage identification for IP traffic.

Soft Computing, 21(8), 2035–2046.
12. Talha, K. A., Alper, D. I., & Aydin, C. (2015). APK Auditor:

Permission-based Android malware detection system. Digital
Investigation, 13, 1–14.

13. Wang, W., Wang, X., Feng, D., Liu, J., Han, Z., & Zhang, X.

(2014). Exploring permission-induced risk in android

applications for malicious application detection. IEEE Transac-
tions on Information Forensics and Security, 9(11), 1869–1882.

14. Ullah, F., Srivastava, G., & Ullah, S. J. J. O. C. C. (2022). A
malware detection system using a hybrid approach of multi-heads
attention-based control flow traces and image visualization.,
11(1), 1–21.

15. Sanz, B., Santos, I., Laorden, C., Ugarte-Pedrero, X., Bringas, P.

G., & Alvarez, G. (2013). Puma: Permission usage to detect

malware in android. International Joint Conference CISIS’12-
ICEUTE 12-SOCO 12 Special Sessions. Springer.

16. de la Puerta, J.G., Sanz, B., Santos Grueiro, I., & Bringas, P. G.

(2015). The evolution of permission as feature for Android

malware detection. In: Computational Intelligence in Security for

Information Systems Conference. Springer.

17. Liu, X. & Liu, J. (2014). A two-layered permission-based android

malware detection scheme. In: 2014 2nd IEEE International

Conference on Mobile Cloud Computing, Services, and Engi-

neering. IEEE.

18. Wang, S., Chen, Z., Yan, Q., Yang, B., Peng, L., & Jia, Z. (2019).

A mobile malware detection method using behavior features in

network traffic. Journal of Network and Computer Applications,
133, 15–25.

19. Aresu, M., Ariu, D., Ahmadi, M., Maiorca, D., & Giacinto, G.

(2015). Clustering android malware families by http traffic. In:

2015 10th International Conference on Malicious and Unwanted

Software (MALWARE). IEEE.

20. Wang, S., Yan, Q., Chen, Z., Yang, B., Zhao, C., & Conti, M.

(2017). Detecting android malware leveraging text semantics of

network flows. IEEE Transactions on Information Forensics and
Security, 13(5), 1096–1109.

21. Li, Z., Sun, L., Yan, Q., Srisa-an, W., & Chen, Z. (2016).

Droidclassifier: Efficient adaptive mining of application-layer

header for classifying android malware. in International Confer-

ence on Security and Privacy in Communication Systems.

Springer.

22. Wang, S., Chen, Z., Zhang, L., Yan, Q., Yang, B., Peng, L., & Jia,

Z. (2016). Trafficav: An effective and explainable detection of

mobile malware behavior using network traffic. In: 2016 IEEE/

ACM 24th International Symposium on Quality of Service

(IWQoS). IEEE.

23. Vierthaler, J., Kruszelnicki, R. & Schutte, J. (2018). Webeye-

automated collection of malicious http traffic. arXiv preprint

arXiv:1802.06012.

24. Naeem, H., Ullah, F., Naeem, M. R., Khalid, S., Vasan, D.,

Jabbar, S., & Saeed, S. (2020). Malware detection in industrial

Internet of Things based on hybrid image visualization and deep

learning model. Ad Hoc Networks, 105, 102154.
25. Xu, P., Eckert, C., & Zarras, A. (2021). Falcon: Malware

detection and categorization with network traffic images. In:

International Conference on Artificial Neural Networks. Springer.

26. Wang, S., Chen, Z., Yan, Q., Ji, K., Wang, L., Yang, B., & Conti,

M. (2018). Deep and broad learning based detection of android

malware via network traffic. In: 2018 IEEE/ACM 26th Interna-

tional Symposium on Quality of Service (IWQoS). IEEE.

27. Chen, Z., Yu, B., Zhang, Y., Zhang, J., & Xu, J. (2016). Auto-

matic mobile application traffic identification by convolutional

neural networks. In: 2016 IEEE Trustcom/BigDataSE/ISPA.

IEEE.

28. David, O. E. & Netanyahu, N. S. (2015). Deepsign: Deep

learning for automatic malware signature generation and classi-

fication. In: 2015 International Joint Conference on Neural Net-

works (IJCNN). IEEE.

29. Wang, S., Chen, Z., Yan, Q., Ji, K., Peng, L., Yang, B., & Conti,

M. (2020). Deep and broad URL feature mining for android

malware detection. Information Sciences, 513, 600–613.

6196 Wireless Networks (2024) 30:6177–6198

123

https://www.unb.ca/cic/datasets/android-adware.html
https://www.unb.ca/cic/datasets/android-adware.html
https://www.unb.ca/cic/datasets/maldroid-2020.html,%20respectively
https://www.unb.ca/cic/datasets/maldroid-2020.html,%20respectively
http://arxiv.org/abs/1802.06012

30. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J.

(2013). Distributed representations of words and phrases and their

compositionality. Advances in neural information processing
systems, 26.

31. Karbab, E. B., Debbabi, M., Derhab, A., & Mouheb, D. (2018).

MalDozer: Automatic framework for android malware detection

using deep learning. Digital Investigation, 24, S48–S59.
32. Qiao, Y., Zhang, W., Du, X., & Guizani, M. (2021). Malware

classification based on multilayer perception and word2Vec for

IoT security. ACM Transactions on Internet Technology (TOIT),
22(1), 1–22.

33. Lee, W. Y., Saxe, J., & Harang, R. (2019). SeqDroid: Obfuscated

Android malware detection using stacked convolutional and

recurrent neural networks, In: Deep learning applications for

cyber security. Springer. pp. 197–210.

34. Vasan, D., Alazab, M., Wassan, S., Safaei, B., & Zheng, Q.

(2020). Image-based malware classification using ensemble of

CNN architectures (IMCEC). Computers & Security, 92, 101748.
35. Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical

evaluation of gated recurrent neural networks on sequence

modeling. arXiv preprint arXiv:1412.3555

36. Bai, H., Liu, G., Liu, W., Quan, Y., & Huang, S. (2021). N-gram,

semantic-based neural network for mobile malware network

traffic detection. Security and Communication Networks, 2021.
37. Lashkari, A.H., Kadir, A. F. A., Gonzalez, H., Mbah, K. F., &

Ghorbani, A. A. (2017). Towards a network-based framework for

android malware detection and characterization. In: 2017 15th

Annual conference on privacy, security and trust (PST). IEEE.

38. Mahdavifar, S., Kadir, A. F. A., Fatemi, R., Alhadidi, D., &

Ghorbani, A. A. (2020). Dynamic Android Malware Category

Classification using Semi-Supervised Deep Learning. In: 2020

IEEE Intl Conf on Dependable, Autonomic and Secure Com-

puting, Intl Conf on Pervasive Intelligence and Computing, Intl

Conf on Cloud and Big Data Computing, Intl Conf on Cyber

Science and Technology Congress (DASC/PiCom/CBDCom/

CyberSciTech). IEEE.

39. Shyong, Y.-C., Jeng, T.-H., & Chen, Y.-M. (2020). Combining

static permissions and dynamic packet analysis to improve

android malware detection. In: 2020 2nd International Confer-

ence on Computer Communication and the Internet (ICCCI).

IEEE.

40. Ficco, M. (2021). Malware analysis by combining multiple

detectors and observation windows. IEEE Transactions on
Computers, 71(6), 1276–1290.

41. Ullah, F., Srivastava, G., & Ullah, S. (2022). A malware detection

system using a hybrid approach of multi-heads attention-based

control flow traces and image visualization. Journal of Cloud
Computing, 11(1), 1–21.

42. Ullah, F., Ullah, S., Srivastava, G., & Lin, J. C. W. (2023). IDS-

INT: Intrusion detection system using transformer-based transfer

learning for imbalanced network traffic. Digital Communications
and Networks.

43. Mathews, S.M. (2019). Explainable artificial intelligence appli-

cations in NLP, biomedical, and malware classification: A liter-

ature review. In: Intelligent computing-proceedings of the

computing conference. Springer.

44. Ullah, F., Alsirhani, A., Alshahrani, M. M., Alomari, A., Naeem,

H., & Shah, S. A. (2022). Explainable malware detection system

using transformers-based transfer learning and multi-model

visual representation. Sensors, 22(18), 6766.
45. Van der Maaten, L., & Hinton, G. (2008). Visualizing data using

t-SNE. Journal of machine learning research, 9(11).

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

Farhan Ullah is an Associate

Professor at the School of Soft-

ware, Northwestern Polytechni-

cal University (NPU), Xi’an

Shaanxi, P.R. China. He

received Ph.D. Computer Sci-

ence degree in 2020 from Col-

lege of Computer Science,

Sichuan University Chengdu,

P.R. China. He was awarded a

full-time Chinese Government

Scholarship (CGS) for his Ph.D.

He performed as a Co-PI of the

science and technology project

of Taicang (2020), Jiangsu,

China. He served as a Special Issue Lead Guest Editor for Security

and Communication Networks Journal. He also served as a Guest

Editor (GE) for a special issue of Future Internet Journal, MDPI. He

received research landmark achievement award from School of

Software, NPU, Xian, China. He also received Research Productivity

Award (RPA) from COMSATS Institute of Information Technology

(CIIT), Sahiwal, Pakistan in 2016. His research work is published in

various renowned journals of IEEE, Springer, Elsevier, Wiley, MDPI,

and Hindawi.

Shamsher Ullah postdoctoral

fellow at the College of Com-

puter Science and Software

Engineering, Shenzhen Univer-

sity, Shenzhen, China. Dr.

Shamsher received Postdoctrate

certificate from the School of

Software, Northwestern

Polytechnical University

(NPU), Taicang Campus,

Jiangsu, P.R. China. Dr.

Shamsher received his Ph.D.

degree from the School of

Computer Science and Tech-

nology at the University of

Science and Technology of China (USTC), Hefei, Anhui, P.R. China.

He received Master Degree at the Department of Information Tech-

nology, Hazara University Mansehra, KPK, Pakistan in 2015. His

research work is published in reputed journals and conferences. His

research interest includes Cryptography, Information Security, Pri-

vacy, Data Trading, and E-commerce.

Wireless Networks (2024) 30:6177–6198 6197

123

http://arxiv.org/abs/1412.3555

Gautam Srivastava was awarded

his B.Sc. degree from Briar

Cliff University in U.S.A.in the

year 2004, followed by his

M.Sc. and Ph.D. degrees from

the University of Victoria in

Victoria, British Columbia,

Canada in the years 2006 and

2012, respectively. He was

promoted to the rank of Profes-

sor in January 2023 at Brandon

University, Canada. In his aca-

demic career, he has published a

total of 400 papers in high

impact conferences in many

countries and in high-status journals (SCI, SCIE) and has also

delivered invited guest lectures on Big Data, Cloud Computing,

Internet of Things, and Cryptography. He is an Editor of several

international scientific research journals. His research program is

funded federally by the Natural Sciences and Engineering Research

Council of Canada (NSERC) and MITACS.

Jerry Chun-Wei Lin received his

Ph.D. from the Department of

Computer Science and Infor-

mation Engineering, National

Cheng Kung University, Tai-

nan, Taiwan in 2010. He is

currently a full Professor with

the Department of Computer

Science, Electrical Engineering

and Mathematical Sciences,

Western Norway University of

Applied Sciences, Bergen, Nor-

way. He has published more

than 300 research articles in

refereed journals (IEEE TKDE,

IEEE TCYB, ACM TKDD, ACM TDS) and international conferences

(IEEE ICDE, IEEE ICDM, PKDD, PAKDD). His research interests

include data mining, soft computing, artificial intelligence and

machine learning, and privacy-preserving and security technologies.

He is also the project co-leader of the well-known SPMF: An Open-

Source Data Mining Library, which is a toolkit offering multiple types

of data mining algorithms. He also serves as the Editor-in-Chief of the

International Journal of Data Science and Pattern Recognition. He is

the IET Fellow, senior member for both IEEE and ACM.

Yue Zhao received the B.S.

degree in computer science and

technology and the M.S. degree

in computer application from

the School of Computer Science

and Technology, Jilin Univer-

sity, Jilin, China, in 2006 and

2009, respectively, the Ph.D.

degree in computer science

from the University of Arkan-

sas—Little Rock, Arkansas,

USA, in 2015. He is currently

an Associate Professor with the

School of Software, Northwest-

ern Polytechnical University,

Xi’an, China. His research interests include big data analytics, arti-

ficial intelligence, machine learning, bioinformatics.

Authors and Affiliations

Farhan Ullah1 • Shamsher Ullah2 • Gautam Srivastava3,5,6 • Jerry Chun-Wei Lin4 • Yue Zhao1

& Gautam Srivastava

srivastavag@brandonu.ca

Farhan Ullah

farhan@nwpu.edu.cn

Shamsher Ullah

shamsher.ullah@skt.umt.edu.pk

Jerry Chun-Wei Lin

jerrylin@ieee.org

Yue Zhao

yxzhao01@nwpu.edu.cn

1 School of Software, Northwestern Polytechnical University,

Xi’an 710072, Shanxi, People’s Republic of China

2 School of Computer Science and Software Engineering,

Shenzhen University, Shenzhen 518000, People’s Republic

of China

3 Department of Mathematics and Computer Science, Brandon

University, Brandon, MB R7A 6A9, Canada

4 Department of Computer Science, Electrical Engineering and

Mathematical Sciences, Western Norway University of

Applied Sciences, 5063 Bergen, Norway

5 Research Centre for Interneural Computing, China Medical

University, Taichung 40402, Taiwan

6 Department of Computer Science and Math, Lebanese

American University, 1102, Beirut, Lebanon

6198 Wireless Networks (2024) 30:6177–6198

123

http://orcid.org/0000-0001-9851-4103

	NMal-Droid: network-based android malware detection system using transfer learning and CNN-BiGRU ensemble
	Abstract
	Introduction
	Related work
	Proposed scheme: NMal-Droid
	Preparing network traffic
	Fine-tune embedding
	Features extraction
	Gradient computation
	Multi-head ensemble of CNN-BiGRU

	Experimental results
	Dataset collection
	Performance indicators
	Results analysis and performance comparisons

	Performance validation with explainable AI and t-SNE
	Conclusion
	Author Contributions
	Data availability
	References

