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Abstract
Current cutting-edge solutions to the spectrum shortage problem are unable to meet the growing demand for a limited

spectrum. A key dimension beyond state-of-the-art solutions is to exploit the free spectrum more effectively. Although

various schemes have been proposed for trading spectrum, few studies have focused on optimal admission of spectrum

requests for maximizing service providers’ (SP’s) profit. Thus, this timely study presents a novel intelligent admission

scheme for spectrum requests from the perspective of a non-cooperative game, in which the information of all participants

(customers and providers) is incomplete to others, and each player wishes to maximize its benefit. The proposed control

admission policy may evict clients in-service to release spectrum for serving certain, e.g., wealthy clients. Evicted clients

are compensated using a dynamic strategy that adopts greedy game theory to capture the conflict of interest between SP and

evicted users. Simulation experiment results validate and demonstrate the feasibility and efficiency of the proposed

scheme, compared to a benchmark reinforcement learning approach and another widely used scheme for admission and

eviction control of cognitive radio users.

Keywords Admission � Spectrum trading � Eviction control � Dynamic spectrum allocation � Spectrum scarcity

1 Introduction

Dynamic spectrum allocation has been introduced to the

spectrum market and has substantially increased SP’s profit

[1–6]. Implementation of advanced spectrum trading

techniques has been thriving worldwide. Networks are

characterized by a limited frequency spectrum, perfor-

mance requirements, and high demand for service. In the

spectrum market, an SP hires a spectrum for clients in the

form of services. In this work, the key objective of an SP is

maximizing its profit by evicting in-service users who

generate the lowest profit. Each client can access the

spectrum, so there is no client in a queue with a higher bid,

in which a usage fee is paid under the SP’s pricing

guidelines. Based on their needs, clients choose their pre-

ferred bids. Making the most money is SPs’ main goal. As

a result, it’s crucial to examine the economic issues that

result from clients and SPs having competing goals. [7, 8].

To maximize its profit, an SP should consider serving

the richest clients with a sufficient amount of spectrum, and

the SP’s trading policy admits spectrum requests based on

generated profit. In this work, we propose a new game
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theory-based spectrum trading model where clients are

allowed to access the spectrum only when the profit gen-

erated by serving them is higher than the profit of serving

clients in waiting queues. The richest clients are given

priority over other clients. Therefore, the clients must

release a channel to which each new richest client joins the

waiting queue, and the spectrum state changes from ‘‘oc-

cupied’’ to ‘‘free’’ for serving the richest newcomer. When

a client no longer transmits on the channels, these channels

can be used again by other clients. One purpose of this

work is to extract an optimal control policy that maximizes

a real-valued function of profit by optimizing the client’s

admission and eviction. Although the optimal user admis-

sion control problem has been tackled in many studies,

these often neglect time-varying spectrum bid prices.

Uncertain bid prices necessitate joint control of client

admission and eviction to maximize the SP profit. How-

ever, in case the available spectrum is inadequate to serve a

new richest client, the SP should determine which clients

in-service to be evicted. The evicted users must receive

some sort of compensation, which may vary depending on

the spectrum needs of individual users and consequently

have an impact on the SP’s profitability.

Because the utility of an SP aims to minimize com-

pensation for evicted clients and maximize SP’s profit

while users seek to maximize compensation amount, we

consider the game between SP and clients using a novel

multi-stage game model. In this model, the utility SP sets

the amount of compensation, while the clients respond to

the compensation by adjusting the spectrum they use (i.e.,

release the spectrum). The proposed utility functions con-

sider the cost of eviction of clients and the satisfaction

level of clients.

The contribution of this work is thus twofold:

• Firstly, it proposes a new game theory-based spectrum

trading model, namely, a preemption game for profit

maximization. In our model, an SP temporarily leases

its free channels to clients and charges them for their

opportunistic usage of the spectrum accordingly. To

maximize its profit, SP negotiates with clients who paid

the lowest spectrum price to release their spectrum in

exchange for financial compensation. The objective is

to utilize the released spectrum for serving new, more

financially capable clients to maximize the SP’s profit.

• Secondly, a novel game theory-based policy for select-

ing a set of clients in-service that generates the

maximum profit has been introduced. The proposed

policy decides whether a newly arriving client should

be served or added to a queue to achieve better profit.

The policy seeks to sequentially select a sequence of

clients to optimize the profit function from a waiting set

of clients. The profit function to be optimized is not

static but varies over time based on the offered

spectrum prices by clients. In such cases, the perfor-

mance of traditional policy for spectrum trading may

deteriorate. This is because most of these algorithms

continue to treat stale data of the spectrum market as

being equally important as fresh data. Hence, proposing

new algorithms for spectrum trading and theory to

handle time variations in spectrum bids is crucial for

profit maximization for SPs. SPs face a unique

challenge with time-varying profit function due to

offered prices for spectrum—that necessitates a trading

policy that considers client’s in-service and clients’ in-

waiting. The policy applies joint control of clients’

admission and eviction. For-profit maximization, the

spectrum that was hired to clients (called in-service

clients) with lower profit should be relocated to the best

offers. Upon the arrival of a profitable spectrum request,

the SP should select the appropriate client to be evicted

if the new request generates more profit. However, the

evicted clients will be compensated with some form of

reimbursement, where the agreements are reached in

bargaining games that reveal the preferences of the

clients and SP.

The remaining section of this paper is organized as

follows. The associated work is shown in Sect. 2. Then, the

system model and assumptions are described in Sect. 3.

After that, Sect. 4 introduces our new game theory-based,

the profit-driven business model for optimal admission of

spectrum requests. Then, In Sect. 5, we evaluate the per-

formance of the proposed model and evaluate the adoption

capabilities of the proposed model for profit maximization

in the spectrum market. Finally, the conclusion and

remarks of this paper are presented in Sect. 6.

2 Related work

A vast amount of literature places great emphasis on uti-

lizing spectrum trading in networks. In this literature, we

will focus on the results of maximizing SP profit in the

spectrum market. In [8], stochastic optimization techniques

were used to handle the problem of channel availability

uncertainty and to determine the appropriate collection of

channels for each spectrum request at the lowest cost. Two

distinct limitations on spectrum demand have been pro-

posed. The throughput must surpass a particular percentage

of the requested one. To address the demand deficit, the

potential for channel subleasing among the SUs was also

looked at. In [10], a new spectrum demand model was

proposed to maximize SP’s profit. Uncertainty for spec-

trum demand was considered in this model. To maximize

its profit, SP chooses a more cost-effective spectrum and
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meets its clients’ needs. The prospect theory was used in

[10] to analyze SP’s optimal decision problem in a sec-

ondary spectrum market. The trade-off between an opera-

tor’s expectation of profit and risk preference was

investigated. Authors in [1] proposed a new algorithm for

spectrum renting. The suggested algorithm does not depend

on knowing market factors and has a finite competitive

ratio and low time complexity. The proposed algorithm,

which maintains a spectrum without knowledge of the

characteristics of the related random processes, was

designed by authors using resources from ski-rental liter-

ature. In [12], relaxation algorithms were used to model

spectrum auctions as a valid spectrum trading policy. The

proposed method’s main concern was maximizing the

profit of the SPs while taking into account interference and

market constraints.

In [13], The authors developed a game theoretical

analysis of the interaction between the SP and clients

before putting forth new algorithms for data pricing and

channel allocation. The results showed that SP loses rev-

enue when clients reject the SP’s offer to underweight the

service guarantee. As a result, a new pricing method was

suggested to strengthen the system’s capacity for making

decisions and enhance spectrum management in the spec-

trum market. A new service provider was suggested in [14]

to make it easier for customers to access spectrum and

harvest an erratic spectrum supply. Using a three-dimen-

sional (3D) conflict graph, the authors described the con-

flicts and competitions mathematically among candidates

for the spectrum. Under several cross-layer constraints, the

SP’s revenue maximization problem was stated as the

optimal spectrum trading problem. To search for workable

answers, fresh heuristic methods were also suggested.

To maximize SP’s profit, high-resolution pricing models

were developed in [15] to facilitate price adaptation to the

spectrum market state dynamically. SP’s profit was quan-

tified by using the queuing theory. A wider variety of

different traffic arrival and service rate distributions were

modeled using the Markov model. In [16], authors pro-

posed two optimization models using stochastic optimiza-

tion algorithms for achieving either the target Grade of

Service (GoS) of clients where the budget of SP is unre-

stricted or maximizing SP’s profit but with a restricted

budget. Spectrum resources were assumed to be available

for SP, and it can borrow spectrum under a merchant mode.

Two fundamental types of spectrum rental agreements

were put out by the authors in [17]: short-term oppor-

tunistic-access agreements and long-term guaranteed

bandwidth agreements. Through these agreements, SP can

achieve the needed flexibility and trade-offs in terms of

service quality, effective spectrum use, and pricing.

Moreover, the authors proposed a new algorithm to help SP

for adapting the spectrum contract portfolio dynamically

subject to satisfy customer spectrum demands, to increase

SP’s profit in the spectrum market. The problem of spec-

trum trading was presented as a stochastic dynamic pro-

gramming problem, with decision-making taking into

consideration the market prices for the contracts and the

demand for spectrum.

The main goal of the Size-Negotiable Auction Mecha-

nism (SNAM) tool proposed in [18] is to enable clients to

adopt a spectrum bidder’s coverage to provide room for

further negotiation while auctioning. The SNAM’s bidder

offers its bid to access spectrum per unit space and a group

of coverage spans. The auctioneer manages the interference

regions to prevent interference between bidders to increase

the overall coverage region.

In [19], the service provider negotiates with the spec-

trum owner to pay less to access certain content. The ser-

vice provider catches content to enable mobile subscribers/

users to access this content. The interaction among spec-

trum owners, service providers, and clients was modeled

using game theory. A sub-gradient-based iterative algo-

rithm was proposed to guarantee convergence to the

Stackelberg equilibrium.

In [20], the authors suggested a new spectrum trading

scheme. The suggested scheme’s main concern was serving

the most significant number of clients with the lowest

overall spectrum cost while considering the time-varying

achievable transmit rate and level of channel usage across

different SPs. The problem was designed as an optimiza-

tion problem to increase the total client number while

increasing the SP’s profit. To solve an optimization prob-

lem, one must initially conceptualize it, describe it, and

then develop an equation for it to identify the least or

highest value of the issue the derivatives or exit points to

provide a solution. Authors in [1] proposed a new practical

auction mechanism to solve the problem of spectrum

redistribution for networks. The scheme achieved high

spectrum utilization by exploiting channels’ spatial re-us-

ability. In [2021 a new cycle auction mechanism was

proposed to trade the users with the lowest energy effi-

ciency among the base stations for heterogeneous

networks.

A multi-priority non-cooperative power-control game

was suggested by the authors in [22]. The proposed game’s

primary objective is to allow several small cell base sta-

tions to utilize available spectrum resources simultaneously

without impairing the quality of service provided to the

spectrum owner (QoS). Spectrum price was used as a

control parameter in the proposed game to prioritize

spectrum owners over clients for accessing the spectrum. In

[23], The authors examined various potential strategies for

multi-operator spectrum sharing based on 5G terrestrial

networks’ dynamic spectrum access. They identified the

spectrum trading method to be practically the most
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appropriate candidate for efficient spectrum usage. A

hybrid cooperative, competitive game was adopted for

spectrum renting. Authors proposed a new admission and

eviction control of cognitive radio users (AECCR) in [24].

For this scheme, clients can access the free spectrum only

when their legacy users are temporarily unoccupied and

pay usage to the SP, the SP evicts clients upon the return of

the legacy users. An ideal control strategy for evicting

clients was derived using a semi-Markov decision process.

The main concern of the proposed scheme in [25] was

providing data transmissions with QoS requirements. In

[26], SP leases the licensed channels temporarily from the

spectrum owner through spectrum auction and rents to the

client. Clients use rented spectrum opportunistically when

the primary users are not using the channels. By enhancing

admission and eviction controls for the dynamic spectrum

market, the SP aims to boost profits. [27, 28], the authors

proposed new reinforcement learning (RL) scheme for

profit maximization in spectrum trading where a trading

policy was extracted using an unsupervised learning para-

digm. The extracted policy enables spectrum owners to

increase profit by adjusting spectrum range in response to

changes in spectrum market status and conditions. In

[29, 30], While the primary receiver is used to decode

information from both the primary transmitter and the

backscatter device, the primary transmitter is designed to

aid in both the primary and backscatter device broadcasts.

The authors suggest a new method for getting temporary

spectrum by keeping an eye out for ‘‘spectrum holes’’ in

licensed bands and dynamically leasing from the SP [31].

This allows an SP to adapt its investment strategy and fee

structure to the needs of its customers. When considering

the cost and uncertainty trade-offs, the scheme extracts the

optimum sensing and leasing spectrum amounts. The

authors in [32] investigated how time-division multiple

access (TDMA] is implemented in Wi-Fi and LTE-U net-

works. The networks’ access protocol was designed using

the fairness criterion so that everyone has an equal

opportunity. The Nash bargaining method was used to

decide which of several fair protocols was the fairest.

The above works discuss the profit maximization prob-

lem in the spectrum market. The main challenge of spec-

trum trading is the uncertainty of new arrival bids of the

spectrum, as the SP does not know the customers’ bids

beforehand. The majority of earlier studies have simply

optimized the admission of current requests, ignoring the

admission of future deserving spectrum requests that can

further boost the SP’s profit. When facing the uncertainty

of bids, most prior studies of spectrum trading compute the

profit of SP based on the current system state. To maximize

its anticipated profit, an SP optimizes the choices made in

the suggested trading schemes. These models, however,

fall short of accurately representing the very complex

decision-making process found in actual spectrum markets.

The suggested approach gives SP the ability to assess a

choice based on anticipated gains or losses compared to the

existing profit. Previous studies assumed the channels are

always available in the spectrum market. Such ignorance of

the limited spectrum of resources made them inapplicable

to real-world problems.

3 System model

In the spectrum market, N clients (bidders) who compete

for a total spectrum size of W are considered. All clients

submit their requests simultaneously in a sealed bid man-

ner. Each client knows its bidding quantity and price but

does not know about other spectrum requests. Each client

only rents spectrum from an SP. It is assumed that requests

for spectrum arrive as a Poisson stream with an arrival rate

of (i.e., number of requests per unit of time). It is believed

that each request’s service time will be dispersed expo-

nentially. Poisson arrival processes are described as having

exponential interarrival times. The quantity of arrivals per

unit of time has a Poisson distribution in such a process.

Request’s inter-arrival times are independent and uni-

formly distributed with exponential random variables.

These assumptions have been chosen to reflect some of the

reality of wireless applications, such as mobile call traffic.

The exponential distribution frequently addresses the

duration before a particular event. According to the expo-

nential distribution, smaller values happen more frequently

than large ones. Probability distributions with uniform

distributions have outcomes that are all similarly pre-

dictable. Results are discrete and have the same probability

in a discrete uniform distribution. Results are continuous

and infinite in a continuous uniform distribution. Data that

are closer to the mean are more common in a normal dis-

tribution. Figure 1 presents an overview of the system. As

Fig. 1 System overview
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depicted in this Figure, all clients submit their requests

simultaneously in a sealed bid manner.

Let Ci denote the unit marginal cost of renting the

spectrum for ith request, Pi denotes the unit rents price of

the spectrum (i.e. a channel) for ith request, ti represents

the rental period of spectrum for ith request, and di indi-

cates the demand (number of channels) for ith request in a

constant price scenario, �P is new spectrum price. The

marginal cost is the slope of the total cost, or the rate at

which it increases with production, and is expressed in

dollars per unit while the total cost is expressed in dollars.

The average cost, which is the overall cost divided by the

number of units produced, is distinct from the marginal

cost. A product’s or service’s utility is the functionality it

provides to solve a certain requirement. The utility may

explain ‘‘what the service performs’’ or determine if it is

‘‘fit for purpose’’. A service must either support the cus-

tomer’s performance or liberate the user from limitations to

be beneficial. The utility function of the SP is computed as:

U ¼
XQ

i¼0

Piditi � Ciditið Þ � vð �PÞ � R ð1Þ

where v �P
� �

is the cost of varying users’ demand in

response to time-varying prices, Q represents the number

of requests fulfilled, and R is the amount of reimbursement

for the evicted client in-service. The cost of raising spec-

trum price v �P
� �

can be expressed as:

v �P
� �

¼
XE

i¼0

Piditi � Ciditið Þ ð2Þ

where E is the number of clients who switch to another

service provider due to rising service prices. The cost of

serving ith request includes the amount of money the client

pays for renting spectrum and its service satisfaction and it

is computed as follows:

Cs ¼ Piditi þ S Wð Þ ð3Þ

where S Wð Þ is the clients’ satisfaction function with ser-

vice. This function quantifies clients’ satisfaction with the

service level caused by the shortage of available spectrum.

If the size of the free spectrum (W) is smaller than demand

(d), the client is not satisfied, and the value of the function

will be positive. Clients’ satisfaction increases faster as the

spectrum shortage decreases. On the other hand, if the

available spectrum size is greater than the demand for

service, the clients will be satisfied, and the function value

will be negative. In our work, we select S Wð Þ as follows:

S Wð Þ ¼ qB Wð Þ ð4Þ

where B Wð Þ is the blocking probability [33], and q is the

weight of the client satisfaction, which models the nature

and client behavior. The utility function for the ith client is

the negative of its cost, which can be expressed as follows:

Ui ¼ �Cs ¼ �Piditi � S Wð Þ þ R ð5Þ

The system state is defined as:

Zt ¼ W ;Dv;Pvð Þ ¼
W
Dv ¼ d1; d2; . . .; dNð Þ
Pv ¼ p1; p2; . . .; pNð Þ

8
<

: ð6Þ

SP should take action when the system state changes.

System state changes upon customers’ arrival or departure.

For a state Zt, the action space can be represented as

follows:

AðZtÞ¼

0; reject newrequest
1; addnewrequest toqueue
2; serverequest if W[d
3; serverequest if �d\d
4; servenewrequest byevictingclients in�service

8
>>>><

>>>>:

ð7Þ

SP may evict some clients to serve a new higher price

request to maximize the profit. Moreover, SP may motivate

the client to reduce the order size of the spectrum to utilize

a small size spectrum. Table 1 summarizes the primary

notations used throughout the problem description for

clarity.

4 Game theory based profit optimization

To maximize SP’s profit, a new scheduling scheme for

serving clients based on the reported profit is proposed.

Game theory is utilized in this scheme for spectrum

allocation.

4.1 Game theory for profit maximization

Game theory is an area of applied mathematics that pro-

vides methods for studying situations in which parties,

known as players, make interdependent decisions. A

greedy algorithm is an algorithmic strategy that selects the

best option at each simple step to eventually lead to a

globally optimal solution. This dependency forces each

player to take the other player’s potential actions, or tac-

tics, into consideration while constructing strategy. This

indicates that the algorithm selects the best answer avail-

able at the time without considering the effects. SP

attempts to evict some users’ in-service to serve wealthy

clients. This behavior of SP is modeled using game theory,

where SP offers compensation for evicted users to motivate

them to release all channels or parts of the spectrum. A

game can be described by a set of players, which are the

evicted users and SP. In this game, each player i has the
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Table 1 List of relevant

notations
AðZtÞ Action space

AG Set of players in the game

B Wð Þ Blocking probability

Cb Bargaining cost

Ce Cost of eviction a client

Cs Cost of renting spectrum

C The unit marginal cost of renting spectrum

di
min Minimum spectrum for ith client

di Rented spectrum for ith client

d0 The user demand of spectrum in a constant

Ep Expected profit for serving a new client i

F(y) Probability of offering price y

F (vs) Probability of choosing bid less than truth spectrum valuation

h �yð Þ The expected increment in utility from bargaining one more client

K Total number of channels

L Number of players in the game

Ls The lowest price

di # of clients in the system

�N # of clients that SP does not bargain

p0 Constant renting price

pmin Minimum spectrum price

- p�i
s Channels prices vector except for ith channel

pis Evaluation value of spectrum price

P The unit rent price of spectrum

PU Primary User

P (K, Ns) Probability all Channels have spectrum Ns

R Amount of reimbursement for the evicted client

S (W) Clients’ satisfaction function with service

S (i,j) Received signal strength at i from jth node

te Eviction time

T Time horizon

u l Minimum performance metrics for players to accept the bargain

U Set of performance metrics

U c The utility function for a client

U(pis) Utility function for ith channel

v (P
´
) Cost of varying users’ demand in response to time-varying price

vs Spectrum valuation

W Spectrum size (number of channels)

Y State of players’ strategies

Ń Total number of clients in-service

Zt System state

l Service time for each request

K Request arrival rate

2i Realization of a random parameter

q Weight of the client satisfaction

D Standardized reimbursement of ith client
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utility function ui. The utility for each player for chosen

strategy quantifies a player’s satisfaction with its decision

(i.e., releasing spectrum). The game theory places a sig-

nificant emphasis on utilities. They enable the use of real-

valued functions in game theoretic analysis by representing

the preferences that players have for various outcomes in

terms of real numbers. The same formula that use to

determine expected value is also used to calculate expected

utility rather than adding probability and economic

amounts.

Let L be the number of players in the game and assume

Y is a non-empty set of HL representing the state of play-

ers’ strategies. A game in strategic form consists of a group

of players, a set of strategies for each player, and an out-

come for each vector of strategies. Generally, the outcome

is determined by the vector of utilities that the players get

from the result. The strategy of each client is a decision on

releasing spectrum. The set U denotes the set of perfor-

mance metrics, and it can be defined as follows:

U ¼ u 2 HL : 9y 2 Y
� �

ð8Þ

Let ul be the minimum performance metrics for players

to accept bargain (i.e. minimum requirements) with SP for

releasing its channels.

Definition 1 The utility function ul 2 HL, is said to be

Pareto optimal if 8uj 2 HL, uj � ui, then uj ¼ ui:

From Definition 1, it is clear that there is no solution for

the spectrum hiring problem which improves SP’s satis-

faction without reducing the level of satisfaction for evic-

ted clients. The hiring spectrum is Pareto optimal, where

the number of solutions is infinite. In this work, the game

theory will be applied to find the one-of-a-kind and fair

Pareto optimal solution. Pareto efficiency indicates that

resources are allocated in the most cost-effective way

possible, but it does not imply equality or fairness. When

no economic adjustment can benefit one person without

harming at least one other, such a situation is referred to as

the Pareto optimal condition of the economy. An outcome

of a game is Pareto optimum if no other outcome gives

every player at least as well off and at least one strictly

better off. It follows that no change to a Pareto-optimal

result can be made without harming at least one player.

Cooperative bargaining is the process through which

two individuals agree on how to divide a surplus that they

may generate together. The surplus produced by the two

players may frequently be distributed in a variety of ways,

enabling the players to bargain about how to divide

rewards. Due to the potential for external enforcement of

cooperative conduct, a cooperative game involves compe-

tition between groups of players in game theory. The

cooperative bargaining game theory is summarized below.

Definition 2 The mapping policy G U; uj
� �

HL is said to

be a cooperative game theory if:

1. G U; uj
� �

2 U

2. G U; uj
� �

is Pareto optimal.

3. Independent for any linear transformation function: for

any function T : HL HL, T uj
� �

ui, then G

T Uð Þ; TðujÞ
� �

= T GðU; ujÞ
� �

.

4. G ðU; ujÞ satisfies independence of irrelevant alterna-

tives if for all mapping situations U and �U with �U � U

and G ð �U; ujÞ 2 U we have G ð �U; ujÞ ¼ G U; uj
� �

:

5. G(U; ujÞ is symmetric and it does not distinguish

between the players. If uj ¼ ui then G ðU; ujÞ ¼ G

ðU; uiÞ.

In the eviction game theory (bargaining), each player

reveals their preference over the available spectrum. The

agreement was reached to reveal the preferences of bar-

gainers. The rationality of customers is the underlying

assumption of the revealed preference theory. In other

words, they will have evaluated a variety of options before

selecting the best investment selection for them. As a

result, if a customer selects one choice from the available

options, that option must be the preferred option. Clients’

in-service repetitively submit their prices to the SP, which

selects the clients with minimum prices. A stable state that

is a Nash equilibrium solution is reached after several price

bidding iterations.

The following measures are used to stop clients from

bargaining:

• Be very explicit about the asking price and the rationale

behind it.

• Never suggest that they want their engagement more

than they require your solution.

• Move the conversation away from the price and onto

other points that are negotiable.

Definition 3 (Nash equilibrium). In game theory, Nash

equilibrium is a key idea. According to this, each player

chooses the payoff-maximizing strategy in an equilibrium

given the tactics of the other players. However, it loses its

benefits in games with numerous equilibria and requires

substantial assumptions on the understanding of the

strategies of the other players. The result of a noncooper-

ative game for two or more players in which no player’s

predicted outcome can be modified by altering one’s

strategy is also its solution in game theory. The dominant

strategy equilibrium is a more robust idea in the Nash

equilibrium. If a player’s payoff-maximizing approach is

separate from the other players’ tactics, it is considered to

be a dominating strategy. Strategy-proof mechanisms

exhibit the dominant strategy equilibrium. No
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considerations are made regarding the knowledge that the

agents have access to about one another in a strategy-proof

system, and each bidder determines their own best strategy

without needing the others to operate rationally. Every

player in a negotiating game is put in a position where they

cannot alter their tactics to increase their utility.

Theorem 1 Assume that the utility function f(u i) for each

player in the eviction game is concave, upper bounded, and

defined on Y, which is a convex function and compact

subset of HL. Assume that each player can improve the

utility function by switching up their approach. Then, a

special barging solution (u*) is negotiated. The best

answer, f(u*), can be written as:

u� ¼ max
8i2AG

f u�ð Þ � f uið Þ; u� 2 U ð9Þ

where AG is the set of players in the game. Each player’s

weight wi depends on the number of bargaining units and

the bid of a jth rich client. The weight is normalized by

scaling its values to fall within the range of 0.0–1.0 as

follows:

wi ¼ dj
bj

max bk
8k2AG

ð10Þ

Proposition Each ith player in the eviction game weighs

wi. For this game, a unique solution is existing, and it can

be considered as an optimization problem solution as in the

following equation:

u� ¼ max
8i2AG

wi f u�ð Þ � min
8f uið Þ2Y

f uið Þ
� �

ð11Þ

Proof The set of utility functions Y is a convex and

compact subset of HL. The power function

f u�ð Þ � min
8f uið Þ2Y

f uið Þ
� �wi

is adopted as a utility function

for each player in the eviction game. Thus, the utility

function defined on Y is concave if 0\wi \ 1. The opti-

mization problem in the bargaining game can be expressed

as follows:

u� ¼ max
8i2AG

f u�ð Þ � min
8f uið Þ2Y

f uið Þ
� �wi

ð12Þ

Note that the minimum performance metrics for ith

player ui = 0 if ui ¼ f u�ð Þ � min
8f uið Þ2Y

f uið Þ ¼ 0, so the

optimal solution can be extracted for the bargaining game.

Hence, it is reasonable to map the eviction game into an

N-player multiple bargaining game because of the follow-

ing reasons:

1. Each player requires a minimum number of channels

(di). The initial agreement between SP and a client can

be set as 0 where a request may be rejected.

2. The amount of reimbursement for the evicted client

depends on the bid of rich clients. More amount of

reimbursement is paid to a client with having higher

weight. Therefore, a weight variable could be con-

structed with numerous parameters to represent the

clients’ priority.

3. Clearly, the eviction game has the Pareto optimality

properties and the optimal spectrum allocation should

be a Pareto optimal solution. The Pareto optimality

standard efficiently and more effectively is defined in

terms of individuals as follows: If it is impossible to

transfer resources in a way that benefits one person

without affecting at least one other person, the

allocation is considered efficient. Therefore, efficiency

in consumption, efficiency in production, and effi-

ciency in both consumption and production are

requirements for achieving Pareto optimality.

Definition 4 A bargaining solution ui is Pareto optimal

solution where ui [ U if and only if uj ¼ ui for all uj sat-

isfying uj � ui.

4.2 Optimal profit response to eviction policy

To find SP’s optimal profit response to the eviction policy,

we consider the bids of new clients and the expected profit

of serving clients in-service. Expected profit for serving a

new higher price request i is computed as follows:

Ep ¼ Piditi � Ciditi � Ce ð13Þ

where Ce is the cost of eviction ith the client and it is

calculated as:

Ce ¼ Rþ Piditi � te ð14Þ

where te is the eviction time. SP selects a client in-service

with the lowest reward and starts negotiating with the client

to release its spectrum. The performance of each player

depends on the number of channels allocated to it. Let dmini

denote the minimum spectrum for the ith client and di is the

rented spectrum for the ith client. The optimal allocation

for the spectrum can be obtained by resolving this opti-

mization problem:

max
8i2AG

wi f u�ð Þ � min
8f uið Þ2Y

f uið Þ
� �

ð15Þ

Subject to

0� di �W
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di � dmini

XN

i¼1

di �W

The solution vector for this game is a convex and non-

empty set. For each player, the utility function can be

presented in terms of the spectrum:

f uið Þ ¼ wi ln di � dmin
i

� �
ð16Þ

Utility function should satisfy the following constraints:

of uið Þ
odi

[ 0

o2f uið Þ
o2di

\0

Thus, f uið Þ is a concave function. SP rents spectrum for

clients based on the bids. For SP, there is a population of L

clients who may release a spectrum. SP has the desire to

grasp ith client spectrum described by the fowling

condition:

D Rð Þ ¼ �Rþ wi�i ð17Þ

where I is the actualization of a randomly distributed ran-

dom variable with a continuously differentiable density,

and [a,b] of the extended real line as its support. SP must

incur a bargaining cost cb to find clients who accept to

release the spectrum. Hence, the grasping function of the

spectrum can be expressed as follows:

D Rð Þ ¼ �Rþ wi�i � cb ð18Þ

We consider the equilibria at which ith client accept sR�

which is the minimum amount of reimbursement. Assume

SP holds the best offer with �R, jth client, which differs from

R�. If SP tries with another client, ith client, expecting R�

to release its spectrum, then SP will prefer ith client’s

spectrum if R� þ wi�i exceeds �Rþ wj�j and �i exceeds

�i þ
R�� �Rð Þ
wi

. Thus, the added utility for SP can be presented

as:

�R� R�� �
þ wi �i � �j

� �
¼ wi �i � yð Þ ð19Þ

The expected increment in the utility of searching for

one more client is computed as follows:

wih yð Þ ¼ wi

Z1

y

�� yð Þf �ð Þd� ð20Þ

SP usually tends to search for clients who may accept

less amount reimbursement. On the other hand, SP stops

searching when the utility is not improving anymore. Since

wi [ 0, the expected increment in utility from bargaining

one more client exceeds the bargaining cost if only if y\�y

where �y is computed as follows:

h �yð Þ ¼ cb
wi

ð21Þ

SP should stop bargaining if y\�y.

Theorem 2 Given the number of clients that SP does not

bargain with them and this stopping rule is true for �N ¼ 1;

After N clients are in service, the likelihood that SP will

stop bargaining with more clients decreases as a function

of both the negotiation cost and the client count.

Proof For �N þ 1, if y[ �y and SP does not bargain with

one more client, then either a smaller value of y is revealed

or a larger one is. In any case, SP gets the best spectrum

price (i.e. less amount of reimbursement) corresponding to

y[ �y. Since there is only �y left to bargain and it was

assumed the stopping rule is optimal, SP would then stop

bargaining. Thus, when there are �N þ 1 clients left and y

exceeds �y, SP would not search for more clients in-service

since this will decrease SP’s profit. Thus, the stopping

criteria are valid for �N, it is valid for �N þ 1 by induction.

The reservation value �y determines the probability that SP

goes on bargaining more clients. The larger value of �y, the

more likelihood of considering more clients for bargaining.

�y is a strictly decreasing function of ratio cb
wi

since the

function h �yð Þ is strictly decreasing. The value of �y goes

from b to �1 as cb
wi

goes from zero to �1: Thus, the

probability that SP terminates bargaining more clients after

�N clients in-service is an increasing function of the bar-

gaining cost and a decreasing function of the number of

clients in-service. The value �y cannot exceed the upper

bound, b; of the support of f The value �y equals b if

cb ¼ 0 and if SP bargaining all clients in-service. However,

the value of �y can be less the than the lower bound, a; of the

support of f . Therefore, we have:

wih �yð Þ ¼ wi �i � �yð Þð Þ[wi �i � að Þ ð22Þ

this implies that:

cb [wi �i � að Þ ð23Þ

This means if SP expects all clients to seek the same

amount of reimbursement, the expected incremental of

SP’s profit (i.e. SP’s utility) from bargaining more clients is

less than the search cost. Then, the only motive for

bargaining for more clients would be the possibility of

having the remaining clients seeking for less amount of

reimbursement. The probability of bargaining ith the client

is computed as follows:

Pr ið Þ ¼ 1

�N
ð24Þ
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Given that the ith client accepts an amount of reim-

bursement R�. Then, it is optimal for SP to use the previous

stopping bargaining rule for bargaining with an ith client.

Hence, the probability that SP accepts ith client’s offer is

computed as:

Pr y[ �yð Þ ¼ 1 � F �yþ Dð Þ ð25Þ

where D is the standardized reimbursement of ith client and

it is computed as follows:

D ¼
�R� R�

�N
ð26Þ

where �R denotes the new SP offer for compensating the

client in-service. The probability of bargaining with an ith

client first is 1
�N
, second with probability

F �yð Þ
�N

, third with

probability
F �yð Þ
alban, and so on. SP pays reimbursement for an

ith client if it samples all clients and the ith client yields the

highest profit. The demand of spectrum for SP to serve

wealthy clients is the sum of the series that represents

clients who accept the offer of SP. SP’s demand for

spectrum is calculated as follows:

D �R;R�� �
¼ 1

�N
1 � F �yþ Dð Þ½ � 1 � F �yð Þ �N

1 � F �yð Þ

" #

þ r
�yþD

�1
F �� yð Þnf �ð Þd� ð27Þ

The derivative of SP’s demand concerning �R, evaluated

at �R ¼ R�, is:

oD �R;R�� �

o �R
�R;R�� �

¼ 1

wi
�
f �yð Þ

�N

1�F �yð Þ �N

1�F �yð Þ þ f �yð ÞF �yð Þ �N�1�
Z �y

�1

�N�1
� �

f �ð Þ2F �ð Þ �N�2d�

2
4

3
5

ð28Þ

The last two terms can be written together as
R �y
�1

�f �ð ÞF �ð Þ �N�1d�. Hence, the symmetric equilibrium

amount of reimbursement is:

R� ¼
�D �R;R�� �

f �yð Þ
oD �R;R�ð Þ

o �R

¼ wi

1�F �yð Þ �N

1�F �yð Þ f �yð Þ � �N
R �y
�1 f �ð ÞF �ð Þ �N�1d�

ð29Þ

The first two terms in Eq. 28 in the bracket are negative

and can be written as follows:

� f �yð Þ
�N

1 � F �yð Þ �N

1 � F �yð Þ þ f �yð ÞF �yð Þ �N�1

¼ �
f �yð Þ

�N

X�N�1

k¼0

F �yð Þk�F �yð Þ �N�1
h i

ð30Þ

Thus,
oD �R;R�ð Þ

o �R
�R;R�� �

is negative and from (29), R� is

nonnegative. We assume the function F is logarithmically

concave which is an increasing hazard rate.

Proposition The symmetric equilibrium amount of reim-

bursement R� is an increasing function of the bargaining

cost if cb\wi �i � að Þ and the function F is logarithmically

concave, and a decreasing of the number of clients in-

service �N. Hence,

lim
cb!0

R� ¼ wi

�N �N � 1
� � R1

�1 f �ð Þ2F �ð Þ2d�
ð31Þ

lim
�N!0

R� ¼ wiF �yð Þ
f �yð Þ

ð32Þ

Higher bargaining cost reduces the profit of SP and if

the bargaining cost is nearly zero, the bargaining game

outcome will be close to optimal value if SP knows about

clients’ information and matches corresponding values.

The proposition indicates what happens if their suffi-

cient heterogeneity in weights (wi) assigned to the clients.

The limit in Eq. 31 is the equilibrium amount of reim-

bursement and it can be obtained when the bargaining cost

goes to zero where clients in-service have the same

weights. This does not happen in real life, but rather, for

large cb enough where the threshold value of bargaining

cost increases as the weight of client in-service increases.

This situation never happens if the distribution of the

amount of reimbursement is unbounded below (i.e. the

amount of reimbursement is minus infinity). The proposi-

tion stresses that the amount of reimbursement falls with

the number of clients in service. Furthermore, the amount

of reimbursement is affected by the number of clients in-

service.

5 Performance evaluation

To assess our proposed Greedy Game Theory

scheme (GGT), Profit and network throughput are taken

into account as performance measures to quantify the

performance of the suggested solution. Quantifying the

advantages and effects of the suggested GGT strategy on

SP’s profit is the goal of this investigation. In the simula-

tion experiments, various scenarios are used to observe the

performance metrics. Our proposed GGT scheme is com-

pared against the benchmark RL [26], and AECCR
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schemes [23]. Comparative experiments were performed

using the proposed GGT to analyze the following aspects

of the system performance:

• The effect of optimal admission on SP’s profit by

comparing the reported profit for the three schemes.

• The effect of our proposed scheme on network

throughput.

In a city setting, nodes are dispersed at random over a

(200,200) m2 area. Table 2. presents the simulation

parameters used to evaluate the algorithms and our pro-

posed approach for simulation.

5.1 Impact of spectrum demand on the profit

This section looks into how spectrum demand affects SP’s

bottom line. Figure 2 demonstrates how profit grows as

client demand for spectrum does. This figure shows that

GGT significantly outperforms both the RL scheme and

AECCR scheme, under various network conditions.

Specifically, Fig. 2 reveals that under low-to-high

spectrum demand, the proposed GGT scheme generates

more profit compared to other schemes. This increment is

mainly attributed to the dynamic selection of clients who

pay more, and hence, increase the reported profit signifi-

cantly. Figure 2 also shows that the profit enhancement is

increased with higher spectrum demand. This is expected

because the larger values of spectrum demand increase the

likelihood of finding new and better clients to generate

more profit. The benchmark RL scheme is only interested

in selecting the best offers and completes executing these

requests in-service regardless of the new arrival requests

with more rewards.

To maximize the profit, the GGT scheme prioritizes the

new richest clients by attempting to evict some clients in-

service and compensating them. The licensed frequency

band is reserved for the primary user (PU) use. Priority

Access License is SAS’s term for Licensed Shared Access

(PAL). SAS introduces a third layer for unlicensed

opportunistic spectrum access with General Authorized

Access, replacing LSA’s exclusion of opportunistic access

if persistent protection is not given (GAA). Users of PAL

are protected from GAA tier interference, but not from that

of the incumbents. The main concern of the AECCR

scheme is protecting primary users (PUs) so it enforces

clients to release channels upon the Pu’s return. The SP is

not receiving any reward when SP starts accessing the

spectrum. Clearly, with the increase in PU’s activities, the

reported profit for SP gracefully degrades.

Table 2 Simulation parameters

Parameter Value

# of messages per node Random

# of channels of the SP 20

Control-packet size 120 bits

Interface type per node 802.11 b

MAC layer IEEE 802.11 b

Transmission power 0.1 W

Packet size 512 B

Channel bandwidth 200 kByte

SINR threshold 5 dB

path-loss exponent 4

data packet length 2 kByte

Device properties

Intel i5 Core 2.50 GHz

Process cores 2 9 2.5 GHz

RAM 6 GB

OS Win 10, 64 bit
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Fig. 2 Profit under different values of spectrum demand, where k is

the number of requests per second
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demand
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Our GGT scheme generated the highest profit because it

adapts to the system state in terms of offered spectrum

prices. Adaptation should occur while clients are served to

maximize SP profit. To show the dynamic behavior of the

GGT scheme in selecting wealthy clients, we compare the

average leasing prices for three schemes in Fig. 3. Note

that the GGT scheme had the highest collected average

spectrum price among all remaining schemes. This is

anticipated as this scheme leases spectrum for the richest

clients as much as possible. Furthermore, Fig. 3 reveals

that under high spectrum demand, the proposed GGT

scheme increases spectrum prices by up to 60% compared

to the AECCR scheme. Figure 4 illustrates the throughput

performance under different loads (i.e. spectrum demand)

for the three schemes. The result shows that both GGT and

RL schemes significantly outperform the AECCR scheme,

irrespective of the various network conditions. Specifically,

Fig. 4 reveals that the throughput enhancement is larger

under moderate-to-high spectrum demand than the low

demand of spectrum for both GGT and RL schemes.

However, the performance of AECCR is degraded signif-

icantly due to primary users (PUs) activities. PUs are

served immediately and clients are evicted to release their

spectrum for PUs. The performance of the AECCR

scheme is the worst, due to the limited number of available

channels that are used to serve clients.

Figure 5 shows the acceptance rate for clients’ requests

under different values of spectrum demand for the three

schemes. The acceptance rate decreases for all schemes as

the traffic load becomes higher due to the limited size of

the spectrum. Moreover, Fig. 5 shows that the proposed

method met the demands for most spectrum requests and

outperformed other schemes. This is anticipated as this

scheme vacates some requests and compensates them.

These requests are classified as served since they accessed

the spectrum and received reimbursement. This proves the

efficiency of our proposed scheme and highlights how

important it is to make efficient management and resource-

tuning decisions in the spectrum market.

5.2 Impact of spectrum demand on eviction cost

In this part, we investigate the ability of our proposed

scheme to exploit the status of service demand to select

clients for eviction, an omitted issue in existing studies.

Figure 6 reveals that under different service demands,

moderate and high levels of spectrum demand, the pro-

posed scheme selects clients who accept the lowest amount

of reimbursement resulting in reducing the cost of eviction

significantly. Furthermore, Fig. 6 indicates that as the
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Fig. 4 Throughput performance under different values of spectrum

demand
Fig. 5 Requests acceptance rate under different values of spectrum

demand, where k is the number of requests per second

Fig. 6 Eviction cost under different values of spectrum demand,

where k is the number of requests per second
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spectrum demand increases the likelihood of finding clients

with the lowest eviction cost increases. We investigate the

impact of bargaining costs on the amount of

reimbursement.

Figure 7 demonstrates that the amount of reimburse-

ment is smaller at larger bargaining costs due to the

increasing number of clients that the SP negotiates with.

The more clients the SP needs to negotiate with, the more

options the SP has to offer. In other words, the greater the

options for SP to reduce the amount of reimbursement, the

better chances of closing the deal with clients. We report in

Fig. 8 the amount of reimbursement under different clients’

satisfaction levels. It is worth noting that reimbursement

decreases at lower satisfaction levels. This is because as the

satisfaction levels decrease, the QoS requirement becomes

stricter so that more in-service clients may reject the

release spectrum with a lower amount of reimbursement.

Thus, the SP increases the amount of reimbursement to

motivate them for vacating channels. By contrast, as the

satisfaction level increases, the QoS requirement becomes

less strict so that more clients accept a lower amount of

reimbursement.

Finally, we report in Fig. 9 the amount of reimburse-

ment under different values of clients’ budgets. Note that if

an SP does not offer a suitable amount of reimbursement,

clients may not release the spectrum. The results show that

owning more cash, makes clients stop their cravings for

reimbursement. Hence, the SP should increase the amount

of reimbursement to motivate wealthy clients to release the

spectrum (as shown in Fig. 9).

6 Conclusion

A Novel GGT-based profit-driven online spectrum busi-

ness model is proposed for the dynamic spectrum market in

this work. Profit and network throughput are considered

performance measures to quantify the performance of the

suggested solution in our proposed Greedy Game Theory

scheme (GGT). Further, our model exploits the varying

charging prices among the submitted requests and decides

where to place the spectrum and how to prioritize prof-

itable clients. Besides, the proposed method shows

increased SP profits significantly by optimal admission for

clients’ requests, considering the collected profits in its

allocation decisions when compared with the existing RL

and AECCR schemes, because the benchmark RL

scheme is only interested in selecting the best offers and

completes executing these requests in-service regardless of

the new arrival requests with more rewards and the main

concern of the AECCR scheme is protecting primary users

Fig. 7 Amount of reimbursement as a function of bargaining cost

Fig. 8 Client’s satisfaction level as a function of the amount of

reimbursement

Fig. 9 Client’s budget as a function of the amount of reimbursement
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(PUs) so it enforces clients to release channels upon PUs

return. In future work, an interesting direction to pursue is

cooperating with other SPs for optimal admission of

spectrum requests. Managing the spectrum becomes more

complex in this case as the SP needs to consider the

interaction and relations among the different SPs. We will

also use machine learning and integrate fuzzy-logic and

game theory-based optimization [34] using deep, and

reinforcement learning [35], as well as possible cognitive

control-theoretic elasticity, approaches [36]. Finally, we

intend to test our proposed schemes in real-time systems.
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