
ORIGINAL PAPER

Low-latency AP handover protocol and heterogeneous resource
scheduling in SDN-enabled edge computing

Chunlin Li1,2,3 • Zhiqiang Yu3,4 • Xinyong Li5 • Libin Zhang5 • Yong Zhang3 • Youlong Luo3

Accepted: 22 February 2023 / Published online: 10 March 2023
� The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
As mobile devices are widely used and various applications emerge, users have higher demands on data rates and

computing power. Software Defined Network (SDN) can configure and manage various devices in the network through a

centralized control controller, making the network more flexible. In an SDN-enabled edge computing environment, dense

multiple access devices make mobile devices handover frequently, and mobile devices handover between different access

points becomes an inevitable problem. To address this problem, we propose an Access Point (AP) handover strategy based

on the signal strength and traffic load. The scheme uses the global view and centralized control capability of the SDN

controller to obtain, manage, and analyze information, then calculate the weights and compare them, and finally develop

the handover policy. On the other hand, to improve system resource utilization and meet the performance demands of

different applications, MEC systems need to allocate computing and communication resources appropriately to keep users’

Quality-of-Service (QoS) experience. We propose a joint optimization strategy for computing and communication

resources based on the Lagrange multiplier method. The policy calculates and analyzes the task execution latency and

energy consumption of edge servers and local terminals, and develops an optimization scheme for sub-channel allocation

and resource allocation. It aims to reduce latency and energy consumption as much as possible. The results of the

experiments in this paper illustrate that the proposed AP handover scheme which is on the basis of received signal strength

indicator (RSSI) and traffic load can effectively improve the task completion time and energy consumption performance.

The proposed joint optimization strategy of computing and communication resources based on the Lagrange multiplier

method can effectively improve energy consumption and delay performance.
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1 Introduction

As wireless technology becomes more widespread, mobile

devices are widely used and the amount of data they gen-

erate shows exponential growth and diversification of data

types, which puts higher demands on the computing power

and requires a new way to process data that can compen-

sate for the lack of hardware resources and at the same time

achieve low latency, high reliability and low cost for the

task. MEC technology has emerged for this situation [1–3].

It satisfied the demand for real-time data analysis, pro-

cessing, and response of terminal devices, and realized the

management of computing and storage resources [4, 5].

However, with the increasing scale of the network, the

emergence of various applications, and the increasing

number of users, issues such as user mobility still face
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many challenges, and the user demand for high data rates

and high computing power needs to be further addressed

[6–8]. The traditional network architecture with tightly

coupled data forwarding and control logic has low flexi-

bility and poor scalability, and to address the limitations of

the traditional network architecture SDN emerged as a new

network architecture [6, 9, 10]. It separates the forwarding

function and control function of traditional networks and

reduces the built-in functions of network devices by using a

centralized control controller to configure and manage

various devices in the network. The controller has an open

programmable interface and will provide the user with a

network-wide view and the system will become more

flexible [11–13]. Users can access the status information of

the underlying devices through the controller and can

program policies such as traffic scheduling [14–16]. End-

point handover in SDN-based network architecture can

improve resource utilization and obtain better network

service quality [17].

Although there are multiple access devices deployed at

the network edge, it is difficult for users to find the most

suitable access point from the wide range of network

access points. In a dense multiple access device environ-

ment, frequent handover of user terminals will occur during

mobility, which will lead to wasted channel resources and

will reduce the user’s quality of experience (QoE). The

handover algorithm of mobile devices in multiple network

access points will become very important. In addition, in

MEC systems, the resources of the MEC system need to be

properly allocated and optimized in order to make the

computational tasks complete within their latency con-

straints and to allow more computational tasks to be pro-

cessed by the MEC server. Resource allocation can

improve the quality of service for users as well as enhance

the computational performance of the system.

To avoid wastage of channel resources and ensure the

quality of service for users, this paper proposes an AP

handover algorithm based on the RSSI and traffic load. To

address the resource allocation problem of the system, this

paper presents a joint computational and communication

resource allocation algorithm based on the Lagrangian

multiplier method.

This paper has the following two main points.

(1) In this paper, we propose a handover solution based

on RSSI and traffic load. The method uses the global

view of the SDN controller and the centralized

control capability of the SDN controller to obtain,

manage and analyze information, then calculates the

weights and compares them, and finally formulates a

handover policy.

(2) In this paper, a joint communication and computing

resource allocation method is proposed, and a model

for joint optimization of sub-channels as well as

computing resources is formulated with the objective

of minimizing energy consumption and latency.

The remaining parts of this paper are structured like the

following. Section 2 detailing the work involved in wire-

less AP handover and resource allocation. Section 3 mod-

els the wireless AP handover problem and a detailed

description of wireless access point handover based on

signal strength and traffic load. Section 4 establishes the

resource allocation model as well as introduces the joint

optimization algorithm of communication and computa-

tional resources based on the Lagrange multiplier method.

Section 5 presents the comparative experimental results of

the algorithm. Section 6 mainly summarizes the whole

paper.

2 Related work

2.1 Handover

Suitable handover algorithms not only lower the con-

sumption of channel resources, but also a better QoS for

users, and there has been a lot of research on network AP

handover in existing works[18–25]. Aldhaibani et al. [18]

introduced an optimal handover (HO) algorithm in a new

Software Defined Wireless Network (SDWN) architecture.

The HO algorithm effectively improves QoE over dense

wireless LANs. Wu et al. [19] put forward a handover skip

solution for reference signal received power (RSRP) based

in optical fidelity (LiFi) networks. The new method com-

bines the RSRP value and its rate of change to determine

the handover target. Gilani et al. [20] designed a new

wireless LAN mobility management approach to handle

load balancing and mobility management through Network

Function Virtualization (NFV) technology and SDN and

use NFV technology to reduce the problem of high han-

dover latency. Chen et al. [21] presented a load balancing

scheme for SD-WiFi networks that integrates the overload

problem and the handover process. Ding et al. [22] pro-

posed an authenticated handover mechanism under SDN

domain (AHMMD). Kiran et al. [23] proposed an access

point load balancing based handover scheme for SDN-

WiFi system for efficient AP load based handover in

overlapping wireless LAN cells. Zhang et al. [24] addres-

sed the problem of frequent handover and handover failure

in 5G ultra-dense networks, and proposed an unnecessary

handover scheme in the light of understanding the user

activity state of 5G networks and the new RRC inactivity

state of 5G RRC layer. Gharsallah et al. [25] proposed a

software-defined handover scheme to improve the han-

dover in future 5G networks.

2172 Wireless Networks (2023) 29:2171–2187

123



2.2 Resource allocation

Resource allocation can improve the quality of service for

users as well as enhance the computational performance of

the system, and the resource allocation problem has been

studied in a number of existing works [26–33]. Ji et al. [26]

presented an optimized framework based on deep learning

to solve problem of resource allocation from wireless

MEC. Xue et al. [27] studied the joint optimization of task

offloading and resource allocation for multitasking and

multi-server. They split the objective problem into two sub-

problems, task allocation and resource allocation. Among

them, resource allocation is subdivided into communica-

tion resource optimization and computational resource

allocation. Wu et al. [28] proposed a pure DQN approach

to solve the resource allocation and offloading policy

problem with Q-learning (QL). Wu et al. [29] discussed the

resource allocation problem in MEC networks and pro-

posed a combined auction mechanism for combined

resource allocation. Zhang et al. [30] presented a resource

allocation and vehicle-to-everything offloading problem by

introducing an SDN controller, giving computational

resource allocation, transmission power control, offloading

decisions and sub-channel allocation scheme. Aghdam

et al. [31] present federated MEC optimization and wireless

resource allocation for maximizing the energy efficiency of

the system in a multi-layer NOMA HetNet. Du et al. [32]

studied multi-user resource allocation and offloading

decisions in a UAV-assisted MEC environment. Al-Razgan

et al. [33] proposed a virtual machine resource algorithm

for efficient task scheduling and resource allocation based

on the feasibility of virtual machine availability in edge

cloud servers.

3 Handover algorithm model based on RSSI
and traffic load

3.1 Description of SDN-based seamless
handover scenarios

The scenario description of the handover is shown in

Fig. 1. We set the scenario to a single control domain in the

SDN-based wireless access network, i.e., within the man-

agement domain of a single controller. The architecture

mainly contains multiple wireless APs, SDN controllers,

edge servers, base stations, and mobile terminal devices.

The assumption is that the amount of access points is A and

the amount of end devices is M. The set of end devices is

denoted by M ¼ fm1;m2; . . .mKg and the set of APs is

denoted by A ¼ fa1; a2; . . .; aNg. Where it is specified that

the terminal device can at most connect to one AP at the

same time.

3.2 Parametric model affecting AP performance

The main idea of the load balancing terminal handover

mechanism proposed in this chapter is as follows: using the

global view of the SDN controller to collect the state

information of all AP at the bottom and all mobile termi-

nals associated with them; then integrating the collected

state information according to the algorithm proposed in

this chapter to calculate the weight value of each AP,

determining the overall performance of each AP based on

the weight value, and finally making the handover decision

to select the AP with the best performance for the mobile

terminal. Through this handover mechanism, the network

load is balanced and the overall efficiency of the network is

improved. In this chapter, signal strength, traffic load, and

the number of connected terminals are selected as

parameters.

3.2.1 Signal strength

Signal strength is one of the main parameters to judge the

performance of the AP. Since the signal strength value may

change from time to time due to the influence of geo-

graphic environment and other elements, in order to dilute

the changes brought about by the influence of such external

factors, this paper will do the following smoothing process

on the received signal strength. The signal strength mea-

sured from the AP side is periodically obtained by the SDN

controller and recorded to obtain the signal strength set S,

which is expressed as formula (1).

S ¼ s1; s2; . . .; si; . . .; sRf g ð1Þ

S is the set of signal strength values acquired by the con-

troller at every T0 interval, and R is the number of signal

strength values. Then, S is grouped in chronological order,

and S is expressed as formula (2).

S ¼ s1; . . .; sNf g; . . .; siNþ1; . . .; sJNþNf g; . . .;f
s H�1ð ÞNþ1; . . .; s H�1ð ÞNþN

� �� ð2Þ

where H is the amount of groups, N is the amount of signal

strength in each group, H and N are taken as 15. Usually,

the larger the value of signal strength, the relatively small

impact of environmental interference, so each group in

formula (2) will be sorted from the largest to the smallest

rule, then take the first n numbers and sum them first, then

take the average, and finally the set S0 is obtained, the

expression as in formula (3).
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S0 ¼ S01; S
0
2; . . .; S

0
i; . . .; S

0
H

� �
ð3Þ

where S0i is expressed as in Eq. (4).

S0i ¼
1

n

Xn

n¼1
sn ð4Þ

3.2.2 Traffic load

Usually, the heavier the load, the poorer the AP’s perfor-

mance. To calculate the traffic load on each AP, this paper

assumes that the terminal M on the connected AP receives

INT bytes and sends OUTT bytes in time period T. The unit

traffic of terminal M in time period T is expressed as

Eq. (5).

QM ¼ INT þ OUTT
T

ð5Þ

The overall traffic load on the AP is equal to the traffic

information of all terminals connected to that AP, and the

overall traffic load of the AP is shown in Eq. (6).

QAP ¼
Xk

i¼0

Qi ð6Þ

where k indicates the number of terminals connected to the

AP.

3.2.3 AP weight calculation

Indicator weighting is an essential influence parameter,

which can directly impact the evaluation results. The AP

performance weight V is expressed as formula (7).

V ¼ aS0 � 1

bQAP
ð7Þ

Among them, the weight of the received signal strength

and the bandwidth of AP occupied by the terminal in

selecting the candidate handover user set can be adjusted

by adjusting these two weight values to adjust the pro-

portion of factors in constructing the candidate handover

user set. SDN controller will maintain a weight table of

each AP in the network.

3.3 Handover algorithm

This chapter proposes the terminal handover algorithm of

the wireless access layer in the network. This chapter pro-

poses the terminal handover algorithm for the wireless

access layer in the network. When a terminal device is

connected to a network first, the SDN controller will per-

form the authentication operation and then find the AP

from the AP weight table that has the highest weight value

accordingly to the terminal device to accomplish the con-

nection of the device. In addition, due to the fluctuation of

network services and the mobility of end devices, the

weight table of APs needs to be constantly updated, and

this part of the work will be done by the SDN controller.

When the AP corresponding to a terminal device is

Fig. 1 handover scenes
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detected to be unable to provide the best service, the AP

with the highest weight value is selected for the terminal

device to handover. The algorithm is as follows.

4 Heterogeneous resource allocation
scheme

4.1 Resource allocation scenarios

The system architecture for resource allocation in this

paper is shown in Fig. 2, which consists of an SDN con-

troller, user terminals and multiple base stations configured

with edge servers. Among them, the terminal devices are

connected to the base stations through wireless networks,

and the base stations can offload tasks to the remote cloud

nodes via the Internet and accept the computation results

from the remote cloud nodes’ responses and return them to

the terminal devices. Suppose there are N user terminals,

each user requests multiple tasks at a time, and these tasks

have the same data size and task complexity. Each of the

user’s tasks can be optionally offloaded to the edge server

for execution or executed locally. Ai indicates the amount

of tasks that end device i currently needs to perform. The

amount of tasks performed locally by end device i is

denoted by Qi, and the task count offloaded to the edge

server is represented by Qi
c. The offloading decision con-

straint of endpoint i can be expressed as formula (8).

Qi þ Qc
i ¼ Ai i 2 1; 2; 3; � � � ;Nf gð Þ ð8Þ

It is assumed that each base station is provided with an

edge server, each terminal device has a computing task to

be completed, and the terminal devices in each base station

operate in the same frequency band and interfere with each

other. The number of base stations is denoted byM. The set

of channels is denoted by R ¼ 1; 2; 3; � � � ; rf g. The

offloading decision of a user is denoted by

D ¼ d1; d2; d3; . . .di½ �. where di denotes the offloading

decision of the ith terminal devices. Local execution of a

task is denoted by di = 0 and offloading the task to the

MEC server for execution is denoted by di = 1.

4.2 Communication model

Offloading compute to the edge for processing can reduce

latency and energy consumption compared to local com-

puting, but transferring task data consumes additional
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latency and energy consumption. In addition, the amount of

data sent by the device for request information is small

compared to the task data offloaded to the edge, and the

energy consumption and latency incurred for sending and

receiving this information is usually not discussed in edge

computing systems. According to the Shann-hartley theo-

rem, the communication model from user i to base station

m can be defined as formula (9).

Ri;m ¼ bi;mx log2 1þ qigi;m
u2 þ

P

j2Nn if g
qjgj;m

0

B@

1

CA ð9Þ

where x denotes the channel bandwidth, bi;m denotes that if

user i selects base station m for offloading, then bi;m ¼ 1,

and vice versa bi;m ¼ 0.qi denotes the transmission power

of user i, gi;m denotes the channel gain between user i and

base station m, u2 denotes the Gaussian white noise power,

and qjgj;m denotes the interference caused by other users

transmitting offloaded data to user i.

4.3 Computational model

The resource allocation strategy that is put forward in this

paper aims at reducing the energy consumption of terminal

devices and the latency of the system. Since the data level

of the processed task is much lower than the data level

when the task is generated, the energy consumption and

time delay in the process of returning the computation

results to the terminal are not considered in the calculation.

The time delay of the system includes communication

delay and computation delay. The communication latency

includes the latency of transferring the task data from the

terminal device to the base station, and the calculation

latency includes the local execution latency and the MEC

execution latency. The power consumption of the terminal

includes transmission energy consumption and local com-

putation energy consumption, which mainly includes the

energy consumed by the user to compute the task itself and

the energy required for uploading task information to the

base station.

The computation task of user terminal i is defined as an

array Ui ¼ Di;Ci;D
out
i

� �
, where Di denotes the size of the

input data for task computation,Ci denotes the number of

CPU cycles required for single task execution,Dout
i denotes

the size of the response data after task computation. In the

following, we will discuss them both separately.

(1) Local execution

When the task is executed locally,Si ¼ 0, the

maximum computing power limit of the mobile

terminal and the computing power are represented by

Fl
i and f li ; tli and eli denote the time and energy

consumption required for the task to be executed

locally, respectively. Thus, the time for the task can

be expressed as formula (10).

tli ¼
Ci

f li
ð10Þ

Accordingly, the total energy consumption of the

mobile terminal during the local execution of the

task can be expressed as formula (11).

eli ¼ k f li
� �2

Ci ð11Þ

where k f li
� �2

is the energy consumption per CPU

cycle of the mobile terminal for performing com-

puting tasks. k is a constant, which is usually taken as

k = 10–26.

(2) Edge server execution

When offloading tasks to the edge server,Si ¼ 1,

denoting the computing power of the edge server by

f ci , has a maximum value of Fc
i ;ru denotes the data

sending rate; tci;m and eci;m indicate the time and

energy consumption of task offloading to the edge

server for execution, respectively. Its time consump-

tion includes both server execution time and trans-

mission time as formula (12).

tci;m ¼ Di

ru
þ Ci

f ci
ð12Þ

Similarly, the total energy consumption of a

mobile terminal consists of data transmission energy

Fig. 2 system framework for resource allocation
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consumption and mobile device idle energy con-

sumption as formula (13).

eci;m ¼ pi
Di

ru
þ pli

Ci

f ci
ð13Þ

where pi denotes the mobile terminal i’s transmitting

power and pIi is the power when the device is idle.

Assuming that the tasks executed by the endpoints

are with the same size, part of the batch of tasks can

be handled by the edge server and locally at the same

time. The terminal completes the task with the total

energy consumption E as in Eq. (14). The terminal’s

total delay in completing the task T is as in Eq. (15).

E¼
XN

i¼1

XM

m¼1

eli þ eci:m
� �

ð14Þ

T¼
XN

i¼1

XM

m¼1

max tli; t
c
i;m

� �
ð15Þ

4.4 Problem description

The objective of this chapter is to minimize the latency and

energy consumption of the system-wide users in terms of

computation time and energy consumption. Then the

channel allocation Z and computational resource X allo-

cation optimization problem for this user scenario can be

expressed as Eq. (16).

C1 min
Z;X

W Z;Xð Þ ¼ E Z;Xð Þ þ kT Z;Xð Þ

C2
XM

m¼1

bi;m � 1; Qi � 0;Qc
i � 0

C3 zri 2 0; 1f g; 8r 2 R; i 2 1; 2; � � � ;Nf g

C4
XN

i

zri � 1; 8r 2 R;

C5
X

r2R
zri � 1; i 2 1; 2; � � � ;Nf g

C6 X� 0
XN

i

xi �X; xi [ 0;

ð16Þ

where k denotes the weighting factor. The above C1-C6

equation carries some constraints. One more base station is

selected for access. zri ¼ 1 denotes the assignment of

channel r to user i. Otherwise zri ¼ 0, the MEC server

assigns positive computing resources to the user. Only one

user is allowed to access any channel and one channel is

assigned to at most one user.

4.5 Channel and computational resource
allocation algorithm

The assignment of user channels is first considered as a

matching problem of users and channels, which is solved

using matching theory. The preference relation for selec-

tion is formed by the preference functions of the user and

the channel. Users and channels will be matched for

preference selection to maximize transmission rate. The

preference function of user i for channel r is given in

Eq. (17).

Vi rð Þ ¼ zir ð17Þ

Equation (17) displays the impact of the user’s trans-

mission rate for channel selection. The higher the trans-

mission rate of user i on channel r, the smaller the

offloading cost for that user. And each user tends to offload

the computational task on the channel with higher trans-

mission rate.

When channel r receives connection requests from dif-

ferent users, there are cases when different users request

the same channel. In order to minimize the offloading cost,

the channel r should select the user with the maximum

transmission rate and the least interference from other

users. Therefore, the preference function of channel r for

user i is given in Eq. (18).

Vi rð Þ ¼ vzik � /nri ð18Þ

where v is denoted as the unit rate gain factor of user i for

transmission task on channel r, / is the unit interference

cost factor, and nri is the total interference that user i re-

ceives from other offloaded users on channel r.

After the channel assignment is completed, the problem

of computing resource allocation can be shown in Eq. (19).

min
X

W Xð Þ

W Xð Þ ¼
XN

i

cci
xi

XN

i

xi �X; xi [ 0

ð19Þ

where xi denotes the computational power allocated to user

i for the server. c denotes the computational latency weight

for the user to perform the computer task. ci denotes the

CPU cycle required to perform the task.

The Hessian matrix of W Xð Þ consists of the elements
o2W
ox2i

¼ 2cci
x3i

[ 0 and oW2

oxioxn
¼ 0 i 6¼ nð Þ, and W Xð Þ is a semi-

positive definite matrix. It is deduced that W Xð Þ is a con-

vex function, and thus the problem of resource allocation is

converted into a convex optimization problem. Further-

more, and based on the KKT condition that constrains
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xi [ 0 to be relaxed, the Lagrangian function under the

inequality constraint can be expressed as Eq. (20).

K X; að Þ ¼
XN

i

cci
xi

þ a
XN

i

xi � X

 !

ð20Þ

where a� 0 is a Lagrangian multiplier.

Let oK=oxijx�i ¼ 0, then the optimal solution can be

obtained as in Eq. (21).

x�i ¼
ffiffiffiffiffiffiffiffiffiffiffi
cci=a

p
ð21Þ

Substituting Eq. (21) into (20), we can obtain the

Lagrangian dual function of Eq. (19), expressed as

Eq. (22).

min
X

K X; að Þ ¼ 2
ffiffiffi
a

p XN

i

ffiffiffiffiffiffi
cci

p � aX ð22Þ

Next, we find the first-order partial derivative of a in

Eq. (22) and make it equal to 0 to obtain Eq. (23).

a� ¼

PN

i

ffiffiffiffiffiffi
cci

p

X

0

BB@

1

CCA

2

ð23Þ

Finally, the optimal computational resource x�i can be

obtained, as in Eq. (24).

x�i ¼
X
ffiffiffiffiffiffi
cci

p

PN

i

ffiffiffiffiffiffi
cci

p
ð24Þ

The core pseudo-code of the resource allocation algo-

rithm is shown in Algorithm 2.

13 end for 

14 Update the set of unmatched users based on the list of rejected users for all channels

15 If there are other requests between user and channel, skip to step 1

16 Calculate the channel assignment matrix

17 Calculate *
ix  according to Equation (24) 

18 end 

...

2178 Wireless Networks (2023) 29:2171–2187

123



5 Experiments

5.1 Experimental setup

(1) Experimental Setup for the proposed handover pol-

icy.

The experimental environment in this paper con-

sists of multiple user devices, SDN controllers, and

edge node servers. Table 1 shows the specific

experimental parameter settings.

(2) Experimental Setup of proposed resource allocation

strategy.

The experimental environment in this section

consists of multiple end devices, SDN controllers,

and edge node servers. The specific experimental

parameters are set as shown in Table 2.

5.2 Analysis of experimental results
on handover strategy

5.2.1 Comparison algorithms

The following handover scheme is compared with the RSSI

and traffic load based handover scheme (RTF) presented

for this paper.

(1) pre-scanning algorithm (PSA)

The literature [34] proposes a pre-scanning algo-

rithm that starts channel scanning when the RSSI is

less than the scanning threshold but not less than the

handover threshold, and caches the dynamic infor-

mation of the scanned APs so that when the RSSI is

less than the handover threshold, the scanning phase

can be directly crossed and the AP with the best

signal is selected from the cache list for access and

handover. RSSI-based handover algorithm is a more

traditional terminal handover scheme in the handover

algorithm, which generally takes the signal strength

of each AP received by the terminal as the basis for

handover.

(2) Adaptive load-balancing algorithm(ALBA)

The literature [35] designed an algorithm based on

association control for adaptive load balancing in

wireless software-defined networks. The algorithm

derives an optimal scheme considering the amount of

users and traffic load on each AP.

5.2.2 Algorithm performance metrics

To evaluate the RTF scheme for performance, handover

delay, handover times, throughput, load balancing, and

packet loss rate as algorithm performance evaluation

metrics are selected.

(1) Time delay is the time experienced by the transmis-

sion of data from the sender side of a network to the

receiver side, reflecting one of the important refer-

ences of network service quality.

(2) The number of handover refers to a period of time

the entire system terminal equipment to move the

process occurs the number of handover.

(3) Load Balance shows the system’s overall state at a

point in time. We assume that all computing nodes

have the same load situation at a certain moment.

The calculation formula is shown in (25).

g ¼ ðloadiÞ2

ðN � load2i Þ
ð25Þ

where g is a quantitative scalar in the range of

[0,1], the larger its value, the more balanced the load

distribution among APs. N denotes the number of

APs in the network, and loadi denotes the workload

of APi
(4) Throughput and packet loss rate are both important

parameters to reflect the load situation.

5.2.3 Experimental results

Figures 3, 4, 5 and 6 show the effect of time variation on

different performance parameters. As shown in Fig. 3, the

variation of delay with time is compared for three different

Table 1 Experimental key parameters

Parameters Value

Number of APs 5

Local computing rate for users (GHz) [0.5, 2.0]

Power in the transmit/receive state of the device (w) [1, 4]

Power in the idle state of the device CPU (w) [0.1, 0.6]

Table 2 Experimental key parameters

Parameters Value

Number of subchannels 20

Subchannel bandwidth(MHz) 6

Local computation rate(GHz) [0.5, 2.0]

Computation rate of edge server(GHz) [1, 10]

Power in non-idle state of terminal device (w) [1, 4]

Power in the idle state of the end device (w) [0.1, 0.6]

The delay weight of calulation [0.1, 0.9]

Gaussian channel noise (w) 2 9 10-13
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handover algorithms. The variation of handover delay with

time for a single user terminal, it can be clearly seen that

the delay increases when a switchover occurs between 10

and 20 s at the terminal. At 5 s, compared to the PSA

scheme, the latency of the RTF scheme is 29.2% lower,

and compared to the ALBA scheme, the latency of the RTF

scheme is 14.7% lower; at 15 s, compared to the PSA

scheme, the latency of the RTF scheme is 40.2% lower,

and compared to the ALBA scheme, the latency of the RTF

scheme is 7.0% lower; when 25 s, compared to the PSA

scheme, the latency of the RTF scheme is 28.7% lower,

and compared to the ALBA scheme, the latency of RTF

scheme is 11.2% lower. ALBA with this paper’s algorithm

uses an SDN controller, and the phase of authentication in

handover is skipped, saving some time.

Figure 4 shows the variation of throughput with time. At

5 s, the throughput of the RTF scheme is 32.2% and 8.1%

higher than that of the PSA and ALBA schemes, respec-

tively. At 15 s, the throughput of the RTF scheme is

160.1% and 8.3% higher than that of the PSA and ALBA

schemes, respectively. And when 25 s is reached, the

throughput of the RTF scheme is 26.8% and 4.7% higher

than that of the PSA and ALBA schemes, respectively. As

shown in Fig. 4, a switchover occurs between 10 and 20 s,

and the PSA scheme has a significant decrease in handover

throughput when a switchover occurs. In contrast, the RTF

scheme and the ALBA scheme switch more smoothly, and

the drop in throughput varies less.

Figure 5 shows the average number of handover in the

three schemes with time. As shown in the figure, at 120 s,

the average number of handover is 22.3% lower for the

RTF scheme compared to the PSA scheme, and 15.7%

lower for the RTF scheme compared to the ALBA scheme;

at 240 s, the average handover times of the RTF

scheme are 37.4% and 15.6% lower than those of the PSA

and ALBA schemes, respectively. At 300 s, the average

handover times of the RTF scheme are 29.1% and 11.3%

higher than those of the PSA and ALBA schemes,

respectively. The PSA algorithm triggers the handover

process frequently because of the signal strength which is

subject to environmental interference factors and the

variable size relationship. The ALBA scheme takes into

account the number of users and traffic load. In contrast,

the algorithm in this paper integrates the signal strength

considering the AP traffic load and reduces many unnec-

essary handover times using SDN controller decisions.

Figure 6 illustrates the load balancing degree of APs in

the three schemes over time. As shown in the figure, at
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200 s, the AP load balancing degree of the RTF scheme is

50.0% and 13.4% higher than that of the PSA and ALBA

schemes, respectively. At 300 s, the AP load balancing

degree of the RTF scheme is 78.8% and 10.5% higher than

that of the PSA and ALBA schemes, respectively. When

500 s is reached, the AP load balancing degree of the RTF

scheme is 49.1% and 8.2% higher than that of the PSA and

The main handover factor of the PSA algorithm is the

received signal strength, and as time goes by, the method of

considering only the signal strength will lead to some APs

having a higher load, while the resources of other APs are

idle, resulting in a waste of resources. The RTF scheme and

the ALBA scheme consider the load balancing situation, so

it does not lead to load imbalance among APs.

Figures 7, 8 and 9 illustrate the influence of the amount

of user terminals on the results of the experiment. The

experiment time is set to 1500 s.

Figure 7 presents the variation of system throughput

with the amount of terminals during the handover of the

three scenarios. As shown in the figure, the throughputs of

all three handover schemes are gradually increasing with

the amount of terminals. When the amount of terminals is

8, the RTF scheme has 16.0% and 1.4% higher system

throughput than the PSA scheme and the ALBA scheme,

respectively. At the amount of terminals is 20, the RTF

scheme has 10.1% and 4.8% higher system throughput than

the PSA and ALBA schemes, respectively. At the amount

of 20 terminals, the RTF scheme has 12.5% and 5.5%

higher system throughput than the PSA scheme and the

ALBA scheme, respectively.

Figure 8 illustrates how the load balance of APs varies

with the number of terminals during the handover process

of the three schemes. When the number of terminals is 8,

the load balancing degree of AP of RTF scheme is 9.1%

and 3.1% higher than that of PSA scheme and ALBA

scheme, respectively. When the number of terminals is 16,

the load balancing degree of AP of RTF scheme is 19.3%

and 5.9% higher than that of PSA scheme and ALBA

scheme, respectively. When the amount of terminals is 20,

the load balancing degree of AP of RTF scheme is 31.4%

and 4.1% higher than that of PSA scheme and ALBA

scheme, respectively. As shown in the figure, the load

balancing degree of APs of all three handover schemes

gradually increases and then decreases with the increase of

the amount of terminals, and the PSA scheme selects the

one with the largest signal strength for each handover, and

the load balancing degree of APs increases with the

increase of the number of terminals until the number of
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terminals reaches 12, and after that, the increase of the

number of terminals causes some APs’ resources to be idle,

which leads to the unbalanced AP load. This leads to

unbalanced load of APs. The ALBA scheme mainly con-

siders the load balancing situation, and selects the AP with

the lowest load in each switchover, and the load situation

among APs will become more and more balanced as the

amount of terminals increases. The proposed RTF algo-

rithm in this paper takes into account the AP load situation

in AP handover, so it does not lead to load imbalance

among APs.

Figure 9 shows how the packet loss rate varies with the

amount of terminals during the handover of the three

schemes. As shown in the figure, the packet loss rate of all

three handover schemes gradually increases as the amount

of terminals increases, and the rate of increase is slow.

When the number of terminals is 8, the packet loss rate of

RTF scheme is reduced by 43.2% compared with PSA

scheme, and 19.5% compared with ALBA scheme. When

the number of terminals is 16, the packet loss rate of the

RTF scheme is 33.3% reduced compared to the PSA

scheme, and 11.1% reduced compared to the ALBA

scheme. At the number of terminals of 20, the packet loss

rate of the RTF scheme is reduced by 32.0% compared to

the PSA scheme and by 10.5% compared to the ALBA

scheme.

Figures 10, 11 and 12 illustrates the influence of user

terminal movement speed on the results of the experiment.

Set the experiment time to 1500 s and the number of user

terminals to 15.

Figure 10 shows the change of handover times with user

terminal motion speed in the handover process of the three

schemes. At the user terminal motion speed of 3 m/s, the

handover times of the RTF scheme are 34.4% and 7.0%

lower than those of the PSA and ALBA schemes, respec-

tively. At the user terminal motion speed of 5 m/s, the

handover times of the RTF scheme are 45.7% and 21.1%

higher than those of the PSA and ALBA schemes,

respectively. At the user terminal motion speed of 8 m/s,

the handover times of the RTF scheme are 50.4% and

28.1% higher than those of the PSA and ALBA schemes,

respectively. The number of handover is 50.4% and 28.1%

higher than that of PSA and ALBA schemes, respectively.

As shown in the figure, the handover delay of all three

handover schemes increases gradually with the increase of

user terminal motion speed. This is because as the motion

speed of the user terminal becomes larger, the time that the

terminal stays in an AP decreases and the number of

handover increases. It is obvious from the figure that the

proposed algorithm reduces the amount of handover and

avoids the ping-pong effect, and outperforms the PSA and

ALBA schemes in terms of the number of handover.

Figure 11 illustrates the change in handover delay with

the user terminal motion speed during the handover of the

three schemes. At the user terminal motion speed of 3 m/s,

the handover delay of the RTF scheme is 10.4% and 6.1%

respectively less than the PSA solution and the ALBA

solution. At the user terminal motion speed of 5 m/s, the

handover delay of the RTF scheme is 18.2% and 5.8%

respectively less than the PSA solution and the ALBA

solution. At the user terminal motion speed of 8 m/s, the

handover delay of the RTF scheme is 35.0% and 16.2%

higher than that of the PSA and ALBA schemes, respec-

tively. The handover delay of the RTF scheme is 35.0%

and 16.2% higher than that of the PSA and ALBA

schemes, respectively. As shown in the figure, the han-

dover delay of all three handover schemes gradually

increases with the increase of the user terminal motion

speed. This is because as the motion speed of the user

terminal becomes larger, the time that the terminal stays in

the AP decreases, and then the handover delay becomes

larger. It can be seen that the algorithm proposed in this

paper outperforms the other two algorithms on the han-

dover delay in the figure.

Figure 12 presents the change in packet loss rate with

the speed of user terminal movement during the handover

process of the three schemes. As the figure shows, when the
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user terminal is moving at 3 m/s, the packet loss rate of the

RTF scheme is 31.0% and 9.1% respectively less than the

PSA solution and the ALBA solutions. At the user terminal

speed of 5 m/s, the packet loss rate of the RTF scheme is

32.3% and 12.2% respectively less than the PSA solution

and the ALBA solutions. At the user terminal motion speed

of 8 m/s, the packet loss rate of the RTF scheme is 34.5%

and 13.7% respectively less than the PSA solution and the

ALBA solution. As shown in the figure, the packet loss rate

of all three handover schemes gradually increases with the

increase of the user terminal movement speed. the PSA

scheme chooses the one which has the maximum signal

strength for each handover, and there are more handover

times and a lot of meaningful handover, which leads to a

higher packet loss rate. From the figure, it is obvious that

the proposed scheme in this paper outperforms another two

schemes in terms of packet loss rate.

5.3 Analysis of experimental results
on handover strategy

5.3.1 Comparison algorithm

We compare the following resource allocation solution

with the Communication and Computational Resource

Allocation Algorithm (CCRA) in this paper.

(1) alternating direction method of multipliers based

algorithm (ADMM)

In the literature [36], an optimization problem for

wireless cellular networks for MEC is proposed, and

an algorithm based on alternating direction multipli-

ers (ADMM) is proposed by transforming a convex

problem into the original one.

(2) joint task assignment and resource allocation

approach(JOR-MEC)

An approach based on the joint resource alloca-

tion and task assignment in a multi-user MEC

architecture is proposed in the literature [37]. The

method combines optimal offloading decisions with

wireless resource allocation and aims to minimize

the mobile terminal-side energy consumption under

applied delay constraints.

5.3.2 Experimental results

This experiment uses the control variables method and will

simulate the user processing the computational task within

20 min.

Figure 13 illustrates the total system energy consump-

tion as a function of the amount of terminal equipment. As

the figure shows, the total system energy consumption of

the CCRA scheme is 13.5% smaller than that of ADMM

and 10.5% larger than that of JOR-MEC at the number of

users of 15, and 8.4% smaller than that of ADMM and

6.1% larger than that of JOR-MEC at the number of users

of 30. As can be seen from the figure, the total system

energy consumption of each algorithm is increasing as the

number of users increases.

Figure 14 illustrates the system total power consump-

tion as a function of the average task data volume. As the

figure shows, the total system energy consumption of the

CCRA scheme is 15.3% smaller than that of ADMM and

8.3% larger than that of JOR-MEC at an average task data

volume of 150 kb, and 8.8% smaller than that of ADMM

and 5.1% larger than that of JOR-MEC at an average task

data volume of 300 kb. From the figure, it is observed that

the total system energy consumption of each algorithm

increases as the average task data volume increases. The

algorithm in this paper uses the centralized control function

of SDN to achieve resource allocation and reduce energy

consumption under the edge computing architecture, while

the JOR-MEC scheme minimizes energy consumption

under the application latency constraint.

Figure 15 presents the variation of the total task pro-

cessing latency as a function of the user numbers. As the

figure shows, the total task processing latency of the CCRA

scheme is 30% smaller than ADMM and 41.6% smaller
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than JOR-MEC at the number of users of 6. At the number

of users of 15, the total task processing latency of the

CCRA scheme is 19.4% smaller than ADMM and 30.6%

smaller than JOR-MEC. From the figure, we can see that as

the amount of users becomes larger, the total task pro-

cessing latency also enlarges. The increasing user number

will result in an increase in the number of tasks, and task

processing will require queuing in a queue, and the allo-

cation of resources will result in longer processing latency

and increased network transmission latency.

Figure 16 illustrates the variation of task completion

rate as a function of the amount of users. At a user count of

10, the CCRA solution has a task completion rate 2.7%

greater than ADMM and 1.3% greater than JOR-MEC. At a

user count of 50, the task completion rate of the CCRA

scheme is 1.8% greater than ADMM and 0.9% greater than

JOR-MEC. The graph shows that as the user number

increases, the task completion rate decreases. The amount

of users increases, the amount of tasks increases, the

demand for resources increases, and the number of tasks

completed per unit of time decreases.

Figure 17 shows how the system cost (weighted sum of

energy consumption and delay) varies with the number of

users. As shown in the figure, the CCRA solution has a

system cost 36.1% smaller than ADMM and 21.2% smaller

than JOR-MEC at a user count of 15, and 28.0% smaller

than ADMM and 18.2% smaller than JOR-MEC at a user

count of 30. From the figure, with the increase of users, the

amount of task computation will rise, and the system cost

will also increase. Among all the algorithms, the proposed

algorithm takes into account the effects of energy con-

sumption and delay, and introduces SDN with the lowest

cost of the system.

Figure 18 illustrates the variation of system cost with

server processing power. As shown in the figure, the sys-

tem cost of CCRA solution is 23.1% smaller than ADMM

and 18.4% smaller than JOR-MEC when the server pro-

cessing power is 2 GHz; and 10.8% smaller than ADMM

and 5.4% smaller than JOR-MEC when the server pro-

cessing power is 8 GHz. From the figure, the amount of

task computation will increase with the increase of users

and the system cost will also increase. The larger server

processing capacity indicates that the server has sufficient

resources for computing. The larger the edge server com-

putational resources, the more computational resources are

allocated to each offload task, and the system cost is nat-

urally reduced. The system cost eventually converges when
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the server processing power gets to a level where the tasks

of all three algorithms can complete their tasks.

6 Conclusions

This paper proposes an AP handover algorithm based on

the RSSI and traffic load. The method uses the global view

of the SDN controller and the centralized control capability

of the SDN controller to obtain and analyze information,

then calculates the weights and compares them, and finally

formulates a handover policy. In addition, this paper

develops a model for joint optimization of sub-channels as

well as computational resources with the objectives of

minimizing the delay and energy consumption overhead of

users, and presents a joint optimization algorithm for

computing and communication resources.

There are still many shortcomings in this paper. (1)

More factors can be considered when designing the AP

handover algorithm to get better results. (2) When per-

forming resource allocation, the joint optimization of

computational offloading and resource allocation can be

considered.
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