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Abstract
Caching the most likely to be requested content at the mobile devices in a cooperative manner can facilitate direct content

delivery without fetching content from the remote content server and thus alleviate the user-perceived latency, reduce the

burden on backhaul and minimize the duplicated content transmissions. In addition to content popularity, it is also essential

to consider the users’ dynamic behaviour for real-time applications, which can further improve communication between

user devices, leading to efficient content service time. Most previous studies consider stationary network topologies, in

which all users remain stationary during data transmission, and the user can receive desired content from the corresponding

base station. In this work, we study an essential issue: caching content by taking advantage of user mobility and the

randomness of user interaction time. We consider a realistic scenario in a cooperative caching problem with user devices

moving at various velocities. We formulate the cache placement problems as maximization of saved delay with capacity

and deadline constraints by considering the contact duration and inter-contact time among the user devices. A deep

reinforcement learning-based caching scheme is presented to solve the high dimensionality of the proposed Integer linear

programming problem. The proposed caching schemes improve the long-term reward and higher convergence rate than the

Q-learning mechanism. Extensive simulation results demonstrate that the proposed cooperative caching mechanism sig-

nificantly improves up to 23 % on hit ratio, 24 % on acceleration ratio and 25 % on offloading ratio compared with existing

mechanisms.

Keywords Device-to-Device mobile networks � Cooperative cache placement � Deep reinforcement learning �
DDPG � User mobility

1 Introduction

The proliferation of mobile devices and multimedia

applications generate a huge volume of content that

requires additional resources on the Internet and this leads

to the exceptional growth of network traffic and imposes a

massive load on the backhaul [1]. According to the Cisco

survey, overall mobile data traffic anticipated to rise 7-fold

from 2017 to 2022 [2]. To meet user demands and deal

with the overwhelming traffic, network densification (de-

ploying the base stations densely) is a fundamental tech-

nique in mobile edge networks (MEN) [3]. A significant

part of backhaul traffic is the duplicate downloads of some

popular content [4]. Thus, mobile edge caching (MEC) is a

prominent technique that utilizes the edge nodes (i.e., base

stations and mobile devices) as caching nodes to bring the

contents near users, thus alleviating the core network
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burden and enhancing user Quality of Experience (QoE)

[3]. So, the edge nodes can serve a massive amount of

duplicate content requests and this reduces the service

delay and reduces the content delivery distance. Caching

content at mobile devices with the use of device-to-device

(D2D) communications [5] can alleviate the stress on the

backhaul links by offloading network traffic to D2D links

as contrary to base station caching [6]. In addition to

providing content near to users, caching at mobile devices

even reduces network latency [7]. Therefore, this can

support latency-critical mobile applications in a mobile

edge computing framework.

The effective cache utilization is reduced when the

individual nodes with limited storage make independent

decisions since they may redundantly cache popular con-

tent. A practical solution is to facilitate cooperation among

edge nodes by sharing the content and which has been an

important consideration in this work. Moreover, different

edge nodes share their content in cooperative caching,

which forms more extensive cache storage and enables

cache diversity [8]. Since the user demands follow skewed

distribution, most of the users’ demands are for a few

contents [9]. Hence, caching the content proactively during

the off-peak time enhances the network performance. Due

to the enormous amount of content and limited cache

capacity, optimizing proactive caching strategy by utilizing

the user requests is crucial in obtaining the advantage of

edge caching [10]. Most proactive caching mechanisms

cache the content cooperatively at base stations (BS) to

reduce fetching content from a central server [11]. Some

earlier works [5, 12–15] focuse on cooperatively caching

data at mobile users for static D2D mobile networks. In a

dense network, the assumption stated by previous publi-

cations [5, 12–15] is unreasonable. This study looks at the

cache placement problem in a real setting where users of

varying speeds connect to other users and BSs at irregular

intervals. Users will consistently move among users and

will be able to download only portions of the requested

content from the various users they encounter throughout

their path. If the user cannot receive the entire content from

the contacted user, the requested content is retrieved from a

base station, which ultimately enhances delay and

adversely impacts QoS. Even though [16–18] assume user

mobility, the randomization of contact duration is not taken

into account. Data transmission is related to contact dura-

tion, according to [19]. The user travels at a fast speed if

the contact time is short and at a low speed if the contact

time is long. As a result, contact time randomization pro-

duced by user mobility has an impact on data transmission,

which in turn has an impact on content placement. Hence,

we want to build caching approach that take into account

limited resources, content popularity, deadlines, contact

length randomization (user speed), and user mobility.

A few challenges need to be handled when it comes to

efficient caching in D2D enabled MEN. First, the user’s

mobility, short contact time, and inter-contact time make it

challenging for mobile devices to cache content proac-

tively. Second, determine eligible mobile devices for

content caching, as devices with long duration’s of com-

munication coverage may be enabled to cache accept-

able content. Third, determine the number of the content

segments that need to be cached at the eligible mobile

devices. In order to achieve real-time device selection,

some learnt patterns produced by resource availability in a

dynamic mobile edge network environment must be

exploited. As a result, real-time content caching on mobile

devices improves user experience while maintaining a

tolerable response latency.

In this work, we aim to maximize the saved delay by

considering the capacity and deadline constraints for

accessing a large volume of data. We consider the content

request deadline for generality and practicality, which is

reasonable in latency-sensitive mobile and IoT applica-

tions. The novelty of this work lies in designing a cache

mechanism for a dynamic environment with the random-

ness of user mobility by considering the limited storage at

each edge node. The mobility aware cooperative content

caching using D2D communications is modeled as an

Integer linear programming problem. As the number of

mobile devices grows, it becomes more challenging to

locate possible mobile devices in real-time using exhaus-

tive search algorithms. Hence, we proposed a DRL (deep

reinforcement learning) based cooperative caching mech-

anism to identify possible mobile devices to be cached. We

apply deep deterministic policy gradient (DDPG) to speed

up the learning process of the proposed approach because

of the slower convergence of traditional learning methods

induced by vast action space and higher dimensionality.

The contributions of this work are as follows:

– Design an Integer linear programming problem for

cooperative content caching problem: maximization of

saved download delay subject to constraints, namely

cache capacity and deadline of the content in D2D

enabled mobile edge networks.

– Formulating the designed cooperative cache placement

problem as a Markov decision process problem to

maximize the cumulative reward by ensuring the

coordination of the mobile users.

– Design a cooperative caching scheme based on deep

reinforcement learning mechanism, DDPG to speed up

the learning rate and enhance content placement at

mobile users to maximize the saved delay.

– Extensive simulations have been performed to show the

efficacy of the proposed deep reinforcement learning

based cooperative caching algorithm by considering
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acceleration ratio, hit ratio, offloading ratio and caching

reward.

The rest of this paper is organized as follows. The summary

of related work is discussed in Sect. 2, and the network

model, user mobility model, content request model and

problem formulation are presented in Sect. 3. The deep

reinforcement learning algorithm, DDPG is presented in

Sect. 4. The simulation environment, and the results are

discussed in Sect. 5. Concluding remarks are provided in

Sect. 6.

2 Related work

Content caching has been studied widely in the literature.

Li et al. [9] have presented a survey on content placement

and delivery mechanisms in various cellular networks. The

advantages of using content caching in mobile networks

were highlighted by Zhou et al. [20]. Practically users

request a small number of frequently accessed top-ranked

content. Content pre-fetching that depends on content

popularity has been investigated in the literature [12, 21].

Shanmugam et al. [12] have proposed a caching mecha-

nism for each helper node to reduce the expected download

delay. Authors in [12] studied a content assignment prob-

lem in an uncoded scenario and showed the proposed

problem is NP-hard, and presented a 2-approximation

algorithm. Poularakis et al. [21] presented an approxima-

tion approach for content cache placement in small cell

network (SCN) using content popularity knowledge. To

minimize the load on the backhaul, the authors proposed a

mobility framework by modeling the random walks on the

Markov chain. Collaborative cache placement has been

investigated in SCN to handle the limitation of cache

capacity at each node to improve the user QoS [8, 22, 23].

The works mentioned above consider the content popu-

larity known in advance. Moreover, popularity prediction

based caching strategies were also studied in [10, 24, 25].

In [24], authors proposed a learning theoretic perspective

for content caching heterogeneous networks with time-

varying and unknown popularity profiles. Further, the

authors presented a cache update mechanism showing

better performance for periodic updates. Chen et al. [10]

have presented an echo state network to estimate the con-

tent popularity and node mobility to maximize the user

QoE in unmanned areal vehicle placement. However, the

works mentioned above consider the content popularity

prediction and neglected the device caching capabilities,

the dynamic user requests and environment complexities.

In contrast, our work considers the reinforcement learning

to handle the dynamic environment.

The increasing mobile devices’ capabilities exploit user

devices as the caching nodes to bring the content near

users. Utilizing the user devices as caching nodes reduces

user-perceived latency and enhances user QoS. There have

been some studies focusing on device-to-device commu-

nications. Wang et al. [26] have introduced a D2D big data

framework for intelligent content dissemination and

offloading. Li et al. [13] have investigated a distributed

caching mechanism to select appropriate user nodes and

allocate content at selected nodes in cellular networks

using D2D communications. The authors aim to maximize

social welfare and minimize the delay at the same time.

Based on the user’s social relationship, the social welfare is

modeled as a many-to-one game-further, the authors show

that the presented scheme performs better than existing

schemes and is stable. Pan et al. [5] have studied the data

offloading using D2D communication, assuming the

physical transmission requirements and cooperation among

users to maximize the offloading gain. The users request

the desired content from trustworthy users in the D2D

proximity. Further, the authors presented an iterative

scheme depending on the asymptotic approximation of

success probability. Prerana et al. [6] have discussed the

classification, challenges and solutions of employing

device-to-device communications in a 5G environment.

Wu et al. [27] have presented a content sharing framework

with placement and delivery stages and proposed a coop-

erative caching mechanism in 5G environment. Yang et al.

[14] have presented a cost-aware energy-efficient data

offloading technique to trade-off between cost, energy

efficiency and delay. The data offloading problem is for-

mulated as an optimal control problem and presented as an

approximation scheme. Liu et al. [28] studied an optimal

caching mechanism by modelling a multi-objective opti-

mization problem to maximize the hit rate and minimize

the ergodic delay and outage probability. Fu et al. [29]

have studied a caching mechanism to improve the caching

quality of device-to-device facilitated mobile networks.

Nevertheless, the above-mentioned earlier studies only

consider fixed network architectures, do not consider user

mobility, and employ machine learning mechanisms to

place the content.

Some works in the literature consider user mobility.

Wang et al. [16] have presented an efficient D2D

offloading mechanism using the predicted contact period

metric expected available duration to assess the opportu-

nity that an object may be retrieved via a D2D link. Qiao

et al. [18] studied a cache mechanism founded on the

Markov decision process to maximize the QoS in vehicular

networks with highway network scenarios. Due to user

mobility, there may be frequent interconnections with the

users who may suffer from connection delays and long

hand-offs. A decomposition-based scheme is presented to
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dynamically solve the dynamic programming problem of

allocating the available storage space to the users. Zhao

et al. [30] have presented user mobility and interest pre-

diction based cache placement and cache-aware replace-

ment mechanisms to maximize the utility in IoT networks.

Zhang et al. [31] have investigated the user interest request

prediction based mobility aware D2D caching mechanism

to maximize the opportunistic cache utility. In [32], the

authors presented a network slicing mechanism to effi-

ciently handle heterogeneous resources in a vehicular net-

work with assured QoS. Ibrahim et al. [33] have presented

a coded caching mechanism to reduce device-to-device

communication-based data dissemination load. Sun et al.

[34] have investigated a caching mechanism in a D2D

environment by considering the user mobility to minimize

the network latency. In [23, 35] , the authors have designed

the content placement in a small cell environment using

mobility and contact duration to reduce the traffic load.

Zhou et al. [36] have investigated the reverse auction-based

incentive-driven deep reinforcement learning scheme to

reduce the burden on backhaul links. However, the studies

mentioned above consider mobility and the authors have

not considered the learning perspective in the D2D net-

works. In contrast, we utilise a machine learning scheme to

solve the high dimensionality problem in a cache-enabled

D2D network.

Moreover, some recent works have exploited the ML-

based techniques in wireless communications

[13, 25, 30, 36–40]. In [38], Qiu et al. have presented a

model-free DRL based online offloading scheme for

blockchain empowered MEC networks. Bajpai et al. [37]

have presented content caching in the device-to-device

network using deep learning-based recurrent neural net-

works and transformers for better performance. He et al.

[40] have presented a Deep RL (DRL) mechanism to make

resource allocation decisions optimally. Li et al. [13] have

presented two deep reinforcement learning-based caching

schemes to design efficient content placement and a

delivery scheme. Furthermore, some familiar RL approa-

ches, including SARSA [30] and deep Q-network (DQN),

are explored and employed in real-world communication

networks. Zeng et al. [41] have studied a DRL based

caching mechanism in a D2D scenario to maximize the hit

ratio. Jiang et al. [42] have formulated the content caching

in D2D networks as multi-armed bandit problem and pre-

sented two Q-learning based multi agent learning mecha-

nisms. Q-learning based multi agent learning mechanism

maintains the Q-value in memory because the massive

state-action space storage of individually BS may exhaust.

Li et al. [43] have presented two DRL mechanisms for

content placement and a content delivery mechanism in

IoT networks. Chakraborty et al. [44] have presented a

cache mechanism to enhance cache hit rate by utilizing the

LSTM and CNN. In [28], the authors proposed a DRL

based caching mechanism to minimize the outage proba-

bility. Authors in [36] present a Deep Q-Network based

incentive mechanism. However, the works mentioned

above consider the learning perspective in the D2D net-

works. The authors of earlier works have not taken envi-

ronment complexities, user mobility, user velocity and

randomness of contact duration. This inspires us to utilise

machine learning methodologies to solve the exciting

problem of designing an efficient content placement

mechanism in a cache-enabled D2D network while con-

sidering the contact duration and inter-contact time.

3 System model and problem formulation

In this section, the network model, user mobility model,

content delivery model and problem formulation are pre-

sented in detail.

3.1 Network model

Mobile edge computing improves users’ capabilities by

providing cache capacity (i.e., storage), network resources

and computing near to the users. Consider a mobile edge

network containing a macro base stations (MBS) equipped

with a MEC server, a set U of U mobile users with limited

cache capacity and a content server as shown in Fig. 1.

Each mobile device u 2 U has a limited cache Su called

local storage. The storage of each mobile device is used for

content caching. The content server acts as an origin server

that stores all contents. A user may be in the communi-

cation range of more than one user but user can commu-

nicate with only one user at a particular time. The user may

get the desired content from more than one mobile users

who are in the communication range of the user. The

mobile users are communicated to each other using the

device-to-device communication. A user directly con-

nected to a base station and the user may be in the com-

munication range of more than one BS at any point in time.

However, any user can communicate with only one BS at a

particular time. Mobile users are attached to the base sta-

tions according to a cellular network protocol. The con-

nected base stations are accountable for serving user

requests. Each user receives content requests from multiple

users in the communication range without knowing its

popularities. The user can serve the requests in three ways:

– Local storage The mobile user checks the local storage

of the user. If the requested content is available on the

mobile device, then receive the content within the

deadline. Otherwise, the content is obtained from either
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neighbour user or base station based on the availability

of the content.

– Neighbour user If the user requested content is not

available at the local storage, then the content can be

obtained from the nearby users in the communication

range based on the availability of the content at

neighbouring users.

– Base station If the requested content does not exist with

any users in the communication range, the content

would be served from the associated base station by

fetching the content from the central server through a

backhaul link.

It is depicted in Fig. 1 that each content is shown in various

colours, divided into multiple segments. Each segment of

the content is denoted with a number. The user with a color

demonstrates that the user is requesting the content of the

same color, and the coverage area of a user is depicted with

a circle of the same color. The user needs to acquire all the

numbered segments of the same color to get the desired

content. A user U4 is moving across the MBS starting from

U3 and requesting content f1. Since U4 is in the coverage of

U3, U4 gets the content segments 1 and 2 of content f1 and

moves to U5. U4 gets segment four from U5 and segment

five from U6. The leftover segment (3) is obtained from the

MBS. U4 gets the desired content by collecting the content

segments from the different users and MBS.

3.2 User mobility model

The user mobility pattern and contact information has been

modelled similar to [32]. The mobile user moves across the

base stations while contacting multiple users in the moving

path. The users in the communication range of the moving

user are called the neighbours, and these neighbours met

with a particular average time as illustrated in Fig. 2b. The

mobile users in contact may exchange the content based on

the contact time and inter contact time shown in Fig. 2a.

The contact and inter contact pattern between two users in

the given network is considered a set of independent

Poisson processes and these random variables follow an

exponential distribution with parameters ku;v. The time

between two sequential contact times of two users is

denoted as inter contact time. The average contact rate of

Fig. 1 Illustration of the

proposed system model

(a)

(b)

Fig. 2 Illustration of the mobility model based on inter-contact time

and contact duration
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users u and v is denoted as ku;v, determined from historical

information.

3.3 Content request model

Consider a set F of F contents in the content library

located in the content server. Each content f is determined

with two features Sf denotes the size of the content and dlf
denotes maximum allowed access latency to get content f.

The time split into slots and each time slot is denoted by

t 2 T . We assume that the content requests are indepen-

dent. The user can request only one content in time t and

user location cannot change in any given time slot. In this

work, we consider the Maximum Distance Separable

(MDS) codes to encode the given content into multiple

segments to reduce the redundant content caching at

mobile devices and improve efficiency. Each mobile

device caches the encoded content segments rather than

original content. The content requested user need to collect

at least B bits to retrieve the original content.

The user may request the content based on the content

popularity. In this work, we consider that each user has

different content preferences. When a user u requests a

content f, the requested content is served immediately if

available in the local storage. If the content is not available

at local storage, the requested content can be served from

the users who come across the user moving path. Other-

wise, the user retrieves the content from the base station,

which is associated with the requesting user. The contact

duration of users u and v is indicated as Cu;v, the content

transmission rate is indicated as ru;v, and the number of

segments transmitted from user v to u in one contact is bu;v.
If the requesting user obtains l segments from the users in

contact, then the remaining content segments will be

retrieved from the associated base station. The list of

symbols used in this work are listed in Table 1.

3.4 Definitions

Definition 1 (Contact time) The two mobile devices in the

communication range of each other and can share the

content with other devices in communication range is

known as the contact time.

Definition 2 (Inter-contact time) The time between each

consecutive contact of two mobile devices is known as

inter-contact time.

Definition 3 (Saved delay) The difference between the

download delay from the content server and the mobile

device is defined as a saved delay.

Definition 4 (Deadline) The requested content needs to be

served within the given time limit, which describes the

maximum allowable time for the service denoted as

deadline.

3.5 Problem formulation

The caching mechanism of encoded segments in a mobile

user is indicated as Xv�f , where xvf 2 X represents the

number of coded segments f cached at user v. Because of

the user mobility, the user may contact with same user

multiple times and communicate with multiple users in the

moving path. The valuable content retrieved by the user in

first contact with other users is denoted as

yv;1f ¼ min
n
xvf ;Cu;v

ru;v
Sf

o
ð1Þ

Retrieving the valuable content f by user in the

Table 1 List of Notations

Term Definition

U Set of base stations

F Set of contents

Su The cache capacity of u-th user

Sf The size of f-th content

dlf The deadline of content f

t 2 T Time slot

Cu;v Contact duration of user u and v

ru;v Content transmission rate between user u and v

bu;v Number of segments transmitted in one contact

between user u and v

xvf Number of coded segments of content f cached at

user u

yv;lf Useful content f downloaded from user u in l th

contact

avu Number of appearances of user in v

dvu; d
m
u ; d

cs
u The delay for transmitting unit of coded content

to mobile user u from user, base station, content

server

Dt The expected saved delay

sti; a
t
i;R

t
i System state, action spaces and reward at MEC

i in t

ci; ci;j; ci;h Cost of serving f from local, nearby and central

server

rti;l; r
t
i;j; r

t
i;h l contents fetched from local, nearby and central

server

ai; d
t
fþ ;i

Cost of replacement and number of contents

replaced at i

yti;j Target network

;; h Actor and critic network weight parameters
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lthcontactðl 2 f2; 3; . . .; avugÞ with vth mobile user is xv;lf ¼
xvf �

Pl�1
t¼1 y

v;t
f represented as

yv;lf ¼ min
n
xv;lf ;Cu;v

ru;v
Sf

o
ð2Þ

Retrieving a content f successfully determines that the

number of encoded segments obtained by mobile users

needs to satisfy at least the requested contents’ size. The

content retrieved from the users who come across the path

is denoted as wf ¼
P

v2U;v 6¼u
P

l2avu y
v;l
f . Since the user can

get the desired content from the neighbouring users and

MECs within the communication range, first, we formulate

the delay to get the content from the users and then for-

mulate the delay to get the content from the MEC. The

average number of encoded segments retrieved from the

users in the path by a user is denoted as

wu
f ¼

X
f2F

pf � wf � ðdcsu � dvuÞ ð3Þ

Here, dcsu and duu denote the delay in transmitting the con-

tent from the content server and user. The term ðdcsu � duuÞ
gives the saved delay. The delay in transmitting the content

from MEC to the user is computed using Eq. (2) (i.e., the

reasonable amount of content can be retrieved from the

associated MEC). Hence, the average number of encoded

segments retrieved from the MEC in the path by a user is

denoted as

wm
f ¼

X
m2M

X
f2F

pf �min
n
xvf ;Cu;m

ru;m
Sf

o
� ðdcsu � dmu Þ ð4Þ

Therefore, the total number of encoded segments retrieved

from the other users and MEC is denoted as

w ¼ 1

U

X
v2U

wu
f þ wm

f ð5Þ

w gives the total delay to get the content from the neigh-

bouring users and MECs.

We aim to maximize the saved delay by placing the

encoded segments of requested content at each user device

subjective on deadline and capacity constraints. Hence, the

problem is formulated as:

max wt ð6Þ

s.t.
X
f2F

Sf � xvf � Su;8v2U ð7Þ

wt� dlf ;8v2U ;8f2F ð8Þ

xvf � Sf ;8v2U ;8f2F ð9Þ

xvf 2 f0; 1; . . .;Bg;8v2U ;8f2F ð10Þ

The objective (6) is the total saved delay caused by users of

the overall network. The constraints (7) ensures that the the

number of segments cached at user should not exceed the

capacity of each user device. Constraints (8) assures the

maximum permissible delay for the reply to a demand.

Constraints (9) specifies that each user does not require to

cache more than B segments to avoid redundant storage.

The constraints (10) is the non-negativity constraint of the

decision variables.

The content placement problem presented in Eq. (6) is a

mixed integer non-linear programming (MINLP) problem

and proved as NP-hard [17, 35]. The problem presented in

Eq. (6) can be addressed by finding the optimal decision

variables fXtg in the present time slot. The distribution of

the summation of U independent random variables is

required to evaluate Eq. (6). Nevertheless, the decision

variable present in Eq. (6) is an integer variable and

changing dynamically which requires to gather a huge

quantity of network state information. Besides, the expo-

nentially increasing number of mobile users experience

high computational complexity for the straightforward

computation of the proposed objective function. Because of

the user mobility, randomness of contact and to take an

intelligent caching decision, we cannot adopt the conven-

tional optimization methods [45]. The continued advance-

ments and strong characteristic representation capabilities

of Deep Learning (DL) [46] have encouraged learning in

wireless networks. Hence, we designed a deep reinforce-

ment learning scheme to cooperatively cache content at

user devices.

4 Deep reinforcement learning mechanism

We designed a reinforcement learning mechanism to solve

the proposed problem where the agent learns an optimal

caching scheme to cache the content at the user devices in

the mobile edge network. RL facilitates the agent to learn

from the environment through trial and error with the help

of its own experiences and feedback by interacting with the

environment by performing actions. The RL agent aims to

maximize the overall reward by greedily exploiting all

probable actions till the most suitable set of actions. In this

work, we consider the states and actions as the time and

mobile devices, respectively. Besides, the reward is

designed as a function of saved delay. In the dynamic

scenario, the agent does not know mobile devices directly

as a fixed set of actions. Hence, we present deep rein-

forcement learning mechanism to select the more prefer-

able mobile devices based on the highest reward. The base

station collects and maintains the complete information

about each mobile device in its transmission range, like the
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number of devices contacted, average contact time, data

transmission rate, and node storage capacity. Devices

encountered: Number of devices encountered in the mobile

user path is denoted as E. Contact time: The average

contact time of the mobile device is denoted as T. Trans-

mission rate: The amount of content transmitted in a

contact time is denoted as R. The efficient content caching

mechanism using the DRL mechanism, DDPG, is pre-

sented in subsection 4.1.

4.1 Content caching using deep reinforcement
learning

It is harder to ensure maximum saved delay in Eq. (6) since

different users have different needs for limited resources.

The proposed problem needs to gather a massive amount of

network state information. Due to the dynamic nature of

the problem and to take an optimal caching decision, we

cannot adopt the conventional optimization methods. With

the huge success of reinforcement learning (RL) and deep

learning (DL) in the recent years motivated us to use the

deep reinforcement learning (DRL) in wireless networks

which is considered as an effective technique to handle

complex problems. Inspired by the benefits of DRL in

resource management in wireless networks, we use a deep

deterministic policy gradient (DDPG) mechanism to attain

an efficient solution for Eq. (6). The agent in DRL gathers

the necessary information about the mobile device

resources as well as the various requests of users. After

that, the agent handles the caching decisions by taking

action.

4.1.1 Problem formulation based on DRL

Implementing DRL in this mechanism aims to enhance the

system’s adaptability in a challenging (dynamic) environ-

ment. The caching decisions are determined based on the

present state which is not depend on the previous state

information. Hence, we can model the the proposed prob-

lem as Markov decision process (MDP). A MDP is defined

as a tuple fS;A;R;P; cg. S defines the sate space, A defines

the action space, R defines the system reward, P defines the

immediate reward and c denotes the discount factor.

– Let S is the set of system state space where

S ¼ fsijsi ¼ ðNt
i ;K

t
i ;B

t
i;w

t
i; n

t
iÞg. In each time slot t,

the state sti contains the set of user requests Kt
i , MEC i

cache state Nt
i , content delivery deadline Bt

i, number of

devices encountered wt
i, average contact duration nti and

available cache size Ct
i at user i. Where Kt

i ¼
fkti;1; kti;2; . . .; kti;Ug; kti;u is the contents requested by

user u at user i in time t, Bt
i ¼ fbti;1; bti;2; . . .; bti;Fg, bti;f is

the content delivery deadlines of user i for accessing the

requested content f in time t.

– A is the set of actions where A ¼ fa1; a2; . . .; ang. The

action represents a set of mobile devices over which the

content is cached to maximize the saved delay. The

number of mobile devices in each action is equal to the

number of wireless channels. The actions entirely

depend on the state information (i.e., each state may

have different actions). A ¼
S

t2T a
t
i; 8si 2 S represents

the action space analogous to the state space S. The

agent selects the actions depending on the current

policy.

– R is the immediate reward ri obtained by performing an

action ai on the environment with state si. The reward

also contains penalties in case of sufficient resources

not available. This work maximises the saved delay by

obtaining the desired content at a low transmission

delay within the fetching deadline. Each mobile device

replaces the cached content if the cache is full

otherwise caches the content at the local storage. In

the cooperative environment, based on the availability

of the content, either neighbouring mobile users or the

BS serves the users requests. The user’s local storage is

denoted as the local user, the nearby users in the

communication range of mobile users are called

neighbouring users, and the BS is associated with the

user called central server.

1. Suppose the content requested by user is available at

the local storage, the content can be delivered imme-

diately with low latency. The cost of delivering content

from local user is denoted as ci. Let us consider that the

user i fetches l contents from its local storage in time t

is indicated as rti;l. Therefore, the cost of the local user

service is represented as cir
t
i;l.

2. Suppose some of the contents requested by the user are

not served by the local storage i. Let us consider that

the content requested by user is available at neighbour

user j, and the content is served by j to the user i. The

cost of fetching content from j to i is denoted as ci;j. Let

l contents are fetched from j to i in time t is denoted as

rti;j. Therefore, the cost of neighbouring user service is

represented as
P

j2M;j 6¼i ci;jr
t
i;j.

3. Suppose the content requested by the user is unavail-

able at any of the users. The corresponding BS obtains

the content from the content server. Let us consider the

cost to get the content from the content server to the

user i via BS h denoted as ci;h. Let l contents are

fetched from content server h to i in time t is denoted as

rti;h. Therefore, the cost of content server service is

represented as ci;hr
t
i;h.

The overall cost of the service in time t is represented as
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cir
t
i;l þ

X
j2M;j 6¼i

ci;jr
t
i;j þ ci;hr

t
i;h ð11Þ

The content server serves the content miss at local storage

and neighbouring users. Hence, the user replace the newly

fetched content with less popular content. Therefore, the

cost should contain the replacement cost along with the

delivery cost. Let the cost of replacing content at user i is

denoted by ai. The number of content segments replaced by

user i at time t is indicated as dtfþ;i ¼ fi � ðxtf ;i \ xt�1
f ;i Þ where

xtf ;i indicates content f cached in user i in time t, xt�1
f ;i

indicates the content f cached in user i at time t � 1 and fi
indicates the content requests at user i. Therefore, the

replacement cost is defined as
X
f2F

aid
t
fþ;i ð12Þ

The total cost is represented as sum of (11) and (12). That

is

cir
t
i;l þ

X
j2M;j 6¼i

di;jr
t
i;j þ ci;hr

t
i;h þ

X
f2F

aid
t
fþ;i ð13Þ

We consider that each content should be satisfied within

the specified deadline of the content. If the content does not

get within the deadline, the penalty cost should be included

in the reward. The penalty cost of the system is represented

as qti;f b
t
i;f , where bti;f is the deadline of content f in user i

and qti;f is the content frequency.

The cost of utilizing the neighbour users cache is higher

than without the local cache. Therefore, we need to max-

imize the saved cost for an effective caching scheme. The

reward function of user i is denoted as

Rt
i ¼ ðci;h � ciÞrti;l þ

X
j2M;j6¼i

ðci;h � ci;jÞrti;j

�
X
f2F
ðaidtfþ;i þ qti;f b

t
i;f Þ

ð14Þ

Maximizing the reward is maximizing the cost of saved

delay. The term rti;j depends on the local cache and

neighbouring cache. The instant reward of the system is

defined as

Rt ¼
X
i2M

Rt
i ð15Þ

In the proposed system, each BS is considered as an agent.

Based on the systems sates, each agent determines its cache

placement. We indicate p ¼ fp1; p2; . . .;pMg set of all

caching strategies, p : S! A is a caching policy, which

associates the current system state s to a permissible action

a. The optimal caching policy p� maximizes the long-term

reward in the RL. To maximize the system’s long-term

reward, each agent needs to work cooperatively because

the immediate and long-term rewards impact agent actions.

Hence, the cooperative content replacement problem

expressed to maximize the cumulative discounted reward.

The value function VpðSÞ : is defined as

E

"X1
t¼0

ctRtjsð0Þ ¼ s; p

#
ð16Þ

where 0� c\1 is the discount faction, c decides the future

reward’s effectiveness to the present decision. Lower c
values give more weight to the immediate reward. We need

to find the optimal caching policy p� follows Bellman’s

functions

Vp� ðsÞ ¼ Rðs; p�ðsÞÞ þ c
X
s02S

Ps0sV
p� ðs0Þ ð17Þ

where Ps0s is the state transition probability. Bellman’s

functions usually solved by either value or policy iteration

methods. Assume that there is a list of all acceptable poli-

cies P. The optimal policy is then determined as

p� ¼ argmax
p2P

VpðSÞ ð18Þ

– P is the transition probability. Agent performs an action

based on the transition probability from one state to the

next state.

– c is the discount factor which is in the range of 0 to 1.

The c ¼ 1 means the agent evaluates its actions based

on sum total of all its future rewards and c ¼ 0 means

the agent learns an action based on the immediate

reward.

4.2 DDPG framework for cache placement

There are two learning mechanisms in RL, model-based

RL and model-free RL. A transition table is used by model-

based RL algorithms (such as value and policy iterations).

A transition table can be thought of as a life hack book that

comprises all the information an agent requires to succeed

in the world it exists. Model-free RL algorithms such as

Q-Learning and SARSA do not employ the transition

probability distribution associated with Markov Decision

Processes (MDP). However, they learn the optimal policy

through observation and experimentation. The maximum

reward (i.e., reinforcement signal) obtained from all

potential actions is used to update a Q-learning agent’s

policy, independent of the agent’s policy. On the other

hand, SARSA learning updates the agent’s policy imme-

diately from the actions performed, which are dependent on

the current policy. However, when the number of nodes in

the network is large, the RL-based approach has several

drawbacks, such as inefficiency and instability. Because of
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its great features, excellent performance, and sufficient

processing time, deep reinforcement learning, a combina-

tion of RL and deep neural networks, has been widely

employed in wireless communication.

We apply DRL to address the presented optimization

problem by characterizing the state, action, and reward.

Q-learning is indeed a classic instance of reinforcement

learning. Q-learning employs a Q-table to keep track of Q

values for various state and action orders. Nevertheless,

this might not be appropriate for cases having enormous

state and action spaces. Deep Q-Network (DQN) calculates

Q values using a deep neural network, accommodating

greater dimensional states and action spaces but having a

slow convergence speed. We use the deep deterministic

policy gradient (DDPG), a model-free and actor-critic

approach to solving the caching problem.

Deep neural networks (DNNs) approximate the policy

and value functions in the DDPG algorithm, which is an

expanded version of the actor-critic method. Compared to

traditional RL algorithms, DDPG can solve optimization

problems with huge state and action spaces with high

dimensional concerns. Further, with continuous action

spaces, DDPG may ensure efficient decisions. The struc-

ture of DDPG learning algorithm is shown in Fig. 3. The

DDPG network consists of three essential components

replay memory, primary and target networks. The actor-

network and the critic network each have two neural net-

works, making four neural networks for the primary net-

work and the target network. The actor-network is used to

investigate policies, whereas the critic network is used to

evaluate policies. In order to enhance the policy gradient,

the critic network also provides critic values. The state-

action pairings, the associated reward, and the future state

are stored in the replay memory. To reduce data correlation

effects, the agent will randomly choose these samples

during the training process. The proposed DDPG technique

consists of two primary DNNs:

– An actor, parameterized by x, produces action in

response to a state, such as at ¼ pðst;xÞ.
– Given a state, Qðst; at; ;Þ, a critic parameterized by ;

gives the Q-value of the performed action.

The policy parameter x is updated using the primary actor-

network by interacting with the environment using the

current state s and action a to produce reward r and the

next state s0. The policy parameter ; and the current Q

values (Qðst; at; ;Þ) are updated using the primary critic

network. DDPG further employs a target actor, pðst;x0Þ,
and a target critic, Qðst; at; ;0Þ, to enhance the network

training stability, where x0 and ;0 are the target actor and

target critic parameters, respectively. The values of

Fig. 3 Schematic diagram of DDPG Algorithm
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parameters x0 and ;0 are not copied directly from x and ;,
but they’ve been updated in the following way:

x0i  nxi þ ð1� nÞx0

;0i  n;i þ ð1� nÞ;0
ð19Þ

Where n signifies the update parameters, which are often

modest values like 0.1 or 0.01. The actor network updates

its parameter x by reducing the loss function

rxJðxÞ � E½raQðst; a; ;Þ ja¼pðst ;xÞ;rxpðst;xÞ� ð20Þ

In the meantime, the critic is optimized iteratively to

minimize the loss function, which is described as

Lð;Þ ¼ Est ;at

h�
Yt � Qðst; at; ;Þ

�2
i

ð21Þ

where st ¼ fst1; st2; . . .; stMg, at ¼ fat1; at2; . . .; atMg and Yt ¼
Rt þ cQðstþ1; pðstþ1;x0Þ; ;0Þ here 0� c\1 is the discount

factor.

After analyzing system state st, the agent applies action

at to the environment at time slot t. At the end of the time

slot, the agent receives an instant reward Rt, and the system

moves to state stþ1. The state, action, reward and next state

information (st; at;Rt; stþ1) is stored in the limited replay

memory as an agent’s experience. When new data arrives,

the oldest sample will be removed if the buffer is full. The

actor and critic networks are trained by randomly chosen

mini-batches of experiences from the replay memory.

Algorithm 1 summarized the content caching mechanism

based on DDPG mechanism.

5 Performance evaluation

This section employs simulations to evaluate the proposed

deep reinforcement learning based cache placement

scheme (DDPGCP). Firstly, the details of the simulation

environment, performance metrics, and reference algo-

rithms have been presented. In addition, the proposed

DDPGCP mechanism’s results have been compared to that

of reference methods in terms of system parameters, and

the simulation studies are thoroughly analyzed.
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5.1 Simulation environment

We do our experiment with the following settings in order

to assess the effectiveness of the proposed caching tech-

nique. We consider a cellular network with a single cell

scenario where the cell consists of a macro base station

(MBS) and 20 mobile users are distributed randomly across

the coverage of the MBS. The mobile users (user devices)

move across the network, randomly contact the other

mobile users, and communicate using D2D communication

in the considered scenario. The Gamma distribution is

followed for contact rate among the various devices [17].

The central library contains 600 contents with a size of 40

MB [25, 35], and individual content is encoded into five

segments [34]. In each contact, a mobile user can suc-

cessfully transmit two encoded segments. The cache

capacity of an individually mobile user is 0.2GB, accom-

modating at most five contents. The content popularity

follows Zipf distribution [12, 23]. Needed content for the

mobile users are served by other mobile users through D2D

communications before the deadline 800s, and MBS will

serve the failed segments after the deadline. All results of

the simulation shown here are the average of 50 runs. The

values of the simulation parameters are presented in

Table 2.

5.2 Performance metrics

To compare the performance of cache replacement

schemes, we consider the following metrics:

1. Cache Hit Ratio The fraction of requests served over

the total requests.

2. Acceleration ratio The fraction of saved delay and

overall delay (from the controller).

3. Offloading Ratio The offloading ratio measures the

capacity of the base station to offload data by assessing

the volume of information offloaded by D2D content

delivery to the total proportion of demand data in the

cell.

4. Cache Reward The reward measures the cumulative

long-term reward collected from caching (i.e., Sum of

the intermediate reward of all mobile devices) using

Eq. (15).

5.3 Reference algorithms

In this section, we compare the proposed scheme with the

following caching approaches: Most Popular Caching

(MPC) [23, 47, 48], Random Caching (RC) [10, 49], Deep

Q-Network (DQN) [36] and Greedy Caching Policy (GCP)

[17].

1. MPC: Each device caches the most popular content

fragments based on user request statistics until the

cache is full.

2. RC: A random caching scheme ensures that every

device stores data randomly until the cache is full,

regardless of user popularity.

3. GCP: [17] proposes greedy mobility aware caching

approach to maximise the D2D offloading ratio while

considering user mobility. The average number of

successfully delivered file segments via D2D commu-

nications to the total number of file segments is known

as the D2D offloading ratio.

4. DQN: In this scheme the caching policy is determined

based on the algorithm used in [36].

The first three cache replacement strategies update the

content individually based on popularity, randomly and

greedily, whereas the other strategies consider deep rein-

forcement learning to place the contents. The fourth cache

replacement strategy (DQN) is different from the proposed

strategy (DDPGCP) because, the former is the value-based

RL, and the latter is policy-based RL.

5.4 Demand model

We use the real-world Dataset MovieLens 1M Dataset [50]

in our simulations to investigate for requesting content. The

MovieLens dataset consists of 3952 movies, 1000209 user

ratings that take integer values [1 (worst), 5 (best)] and

6040 users. Each row of the dataset consists of userid,

movieid, rating and timestamp. The rating information is

considered the content request since the user rates a movie

followed by watching it [51]. We consider the rating

Table 2 Simulation Parameters

Parameters Values

Simulation area 500=m� 500=m

Number of users 90

Number of contents 600

Number of base stations 15

Content size (10, 100] MB

The delay between BS and user (5,25]s

The delay between BSs 20s

The delay between content server and BS 80s

The deadline of the content (10,30] s

Actor and critic learning rate 0.001, 0.0005

Network update rate 0.01

Discount 0.9

Mini batch size 256

Replay memory capacity 105

Number of episodes 1500

Number of steps in each episode 100
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information as the frequency of movie requested by a user.

We also assume that the number of requests for a movie

within 10, 100 and 1000 requests as the features. Therefore,

we select the top 600 popular content requested by users

and the 100 most active users to analyze the user request

statistics. More than 90% of the ratings are from the first

year in the dataset, so we consider only the first year ratings

for simulation. We obtain the skewness parameter a ¼ 0:8

by fitting the actual data from the dataset with the Zipf

distribution as shown in Fig. 4.

This simulation runs the proposed algorithms on a

desktop with a dual-core Intel i5-5200U 3.20 GHz, and 8

GB installed RAM. The simulation environment was cre-

ated using the Python 3.9.9 programming language. We

conducted comprehensive experiments to compare the

proposed caching mechanism to existing caching tech-

niques across various parameters.

Four scenarios are considered to demonstrate the per-

formance of the DDPGCP. In scenario 1, the number of

contents is 600, the deadline considered is 800s, the Zipf

parameter is 0.6, and the cache capacity ranges from 0.2GB

and the number of user devices varies from 10 to 50 with

step size 10. In scenario 2, the number of users is 20, the

number of contents is 600, the deadline considered is 800s,

the Zipf parameter is 0.6, the cache capacity ranges from

0.1 to 0.3GB with step size 0.05GB. In scenario 3, the

number of users is 20, the deadline considered is 800s, the

Zipf parameter is 0.6, the cache capacity is 0.2GB, and the

number of contents varies from 200 to 1000 with step size

200. In scenario 4, The number of users is 20, the number

of contents is 600, the Zipf parameter is 0.6, the cache

capacity is 0.2GB, and the content deadline varies from

500 to 1000 with step size 100.

5.5 Impact of number of user devices

We show the impact of number of users on cache hit ratio,

offloading ratio and acceleration ratio in Fig. 5. The

number of contents is 600, the deadline considered is 800s,

the Zipf parameter is 0.6, the cache capacity is 0.2GB and

the number of user devices varies from 10 to 50 with step

size 10.

We can see the effect of the cache hit ratio with a

varying number of MECs in Fig. 5a. The cache hit ratio

increases as the number of mobile users grows. The reason

behind this is that as the number of mobile devices grows,

the network’s overall cache storage grows, providing

mobile users additional opportunities to obtain necessary

information via D2D interactions. Due to the utilization of

user mobility information, both the mobility aware caching

approaches outperform conventional caching techniques.

Additionally, the performance disparity among the pro-

posed caching algorithms and other caching strategies

widens when mobile devices grow. As mobile devices

evolve, user mobility information becomes critical for

caching strategy design. The proposed DDPGCP mecha-

nism provide improvement of up to 23, 15, 11 and 6.4 % on

hit ratio compared with RC, MPC, GCP and DQN,

respectively.

Fig. 4 a Comparison of content popularity vs content rank of

Movielens dataset

(a) (b) (c)

Fig. 5 Comparison of the proposed and existing schemes using number of mobile users vs a Cache hit ratio b Acceleration ratio c D2D

offloading ratio
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In Fig. 5b, the impact of the number of user devices on

the acceleration ratio is presented. The acceleration ratio

displays an upward trend with the growing number of

users. This is because the increasing number of users

cumulatively provide more cache storage and enough space

to cache more appropriate content at the user devices leads

to serving the content near to users. We can notice that the

performance gap between the DRL based schemes, namely

DDPGCP and DQN, increases with the increasing user

devices. The growth of the curves became low with the

higher number of users since the popular content is already

cached at the nearby user devices. Most importantly, the

proposed mechanism achieves a higher acceleration ratio

than other caching schemes due to the utilization of

mobility information. The proposed DDPGCP mechanism

provide improvement of up to 17, 17, 13 and 5.3 % on

acceleration ratio compared with RC, MPC, GCP and

DQN, respectively.

In Fig. 5c, the impact of the number of mobile devices

on offloading ratio is presented. The proposed caching

scheme outperforms other caching methods because it

exploits the user mobility information. With the increasing

number of users, the performance gap between the pro-

posed mechanism and other caching mechanisms is wider

than DQN. This shows that more users make more room to

cache appropriate content by utilizing the mobility infor-

mation. The proposed DDPGCP mechanism provide

improvement of up to 27, 18.6, 11.4 and 3.2 % on D2D

offloading ratio compared with RC, MPC, GCP and DQN,

respectively.

5.6 Impact of cache size of user devices

The impact of cache size on hit ratio, D2D offload ratio,

and acceleration ratio is presented in this subsection

(Fig. 6). The number of users in this scenario is 20, the

number of contents is 600, the deadline considered is 800s,

the Zipf parameter is 0.6, and the cache capacity ranges

from 0.1 to 0.3GB with step size 0.05GB.

In Fig. 6a, the impact of cache size on the cache hit rate

is shown. The cache hit rate displays an upward trend with

the expansion of the cache size. The rationale for this is

that mobile users will be able to cache more contents with

higher storage sizes, which will be successfully shared via

D2D connections, leading to faster content delivery. We

can notice that the proposed mechanism outperforms other

caching schemes by achieving a higher cache hit ratio. The

DDPGCP and DQN mechanism shows superiority over the

other caching schemes due to the mobility information.

The proposed DDPGCP mechanism provide improvement

of up to 24.3, 20.7, 14 and 3.9 % on hit ratio compared with

RC, MPC, GCP and DQN, respectively.

In Fig. 6b, the impact of cache size on the acceleration

ratio is presented. The acceleration ratio evolves higher

with the larger cache sizes. With the increase in the cache

capacity, all the mechanisms increase quickly compared to

lower cache sizes. This is because of getting more storage

to accommodate more popular content at each user device.

The proposed DDPGCP outperforms other existing

schemes with significant improvement in the acceleration

ratio. By utilizing the mobility information, DQN and

DDPGCP gain the acceleration ratio than other schemes.

The proposed DDPGCP mechanism provide improvement

of up to 24.8, 14.6, 11 and 4 % on acceleration ratio

compared with RC, MPC, GCP and DQN, respectively.

In Fig. 6c, the impact of the cache size on the offloading

ratio is presented. As expected, the D2D offloading rate of

all caching mechanisms increases as cache size increases.

The DRL based caching schemes, namely DDPGCP and

DQN, produce a greater offloading rate than existing cache

approaches. The reason is that exploiting device contact

information of the mobility-based cache approaches pro-

vides an advantage over the non-mobility based caching

schemes. The proposed mechanism has a significant

advantage with the limited cache size since it exploits the

user contact information and transmission rate. The pro-

posed DDPGCP mechanism provide improvement of up to

24.4, 21, 13 and 2.5 % on D2D offloading ratio compared

with RC, MPC, GCP and DQN, respectively.

(a) (b) (c)

Fig. 6 Comparison of the proposed and existing schemes using cache size vs a Cache hit ratio b Acceleration ratio c D2D offloading ratio
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5.7 Impact of number of contents

We show the impact of number of contents on cache hit

ratio, offloading ratio and acceleration ratio in Fig. 7. The

number of users is 20, the deadline considered is 800s, the

Zipf parameter is 0.6, the cache capacity is 0.2GB and the

number of contents varies from 200 to 1000 with step size

200.

In Fig. 7a, the impact of number of contents on the

cache hit ratio is presented. The bars indicate an downward

trend as contents rise. The user attention may be more

distributed when there is more content. Unfortunately, the

cache size of caching users stays unchanged and caching

users cannot store such a vast quantity of content, making

the requesters’ demands extremely challenging to satisfy.

Random caching and most popular schemes perform poorly

compared to other methods. The quantity of available

content grows, the allocation of popular content becomes

more scattered, and consumer preferences for content

become more divided. However, the proposed caching

approach outperforms other caching schemes. The pro-

posed DDPGCP mechanism provide improvement of up to

13, 10.3, 6 and 2 % on hit ratio compared with RC, MPC,

GCP and DQN, respectively.

In Fig. 7b, the impact of the number of contents on the

acceleration ratio is presented. With the volume of the

increasing content, the acceleration ratio decreases. The

RC and MPC are declining more than other caching

approaches. The GCP has a better performance with less

volume of content. As the volume of content increases, the

gain of the GCP also starts decreasing, the performance

gap between the DRL based schemes is widening.

Exploiting the mobility information makes the DQN and

DDPGCP mechanism serve the user demanded content at

the appropriate node. The proposed DDPGCP mechanism

provide improvement of up to 15, 11.8, 3 and 2.4 % on

acceleration ratio compared with RC, MPC, GCP and

DQN, respectively.

In Fig. 7c, the impact of the number of contents on the

offloading ratio is presented. The downward trend of the

curves indicates that with the growing volume of content,

the contents’ diversity rises. We can notice that DDPGCP

shows similar performance with GCP with fewer contents.

The ever increasing contents allow DDPGCP to cache the

popular content based on user preferences at suitable user

nodes, improving the performance gap between GCP and

DDPGCP. The proposed DDPGCP mechanism provide

improvement of up to 11.7, 9, 2.7 and 0.4 % on D2D

offloading ratio compared with RC, MPC, GCP and DQN,

respectively.

5.8 Impact of mobility

We shown the impact of the user mobility on acceleration

ratio in Fig. 8. Every mobile user pair’s contact rate is

generated based on the gamma distribution

Cð4:43; 1=1088Þ [17]. The different average mobile device

speed is generated using Cð4:43h2; 1=1088hÞ. We notice

that the acceleration ratio first decreases and raises slowly

with the increasing contact rate. The lower h value repre-

sents the lower moving speed, which results in a higher

contact duration but a lower number of contacts. This leads

to getting a higher number of segments with fewer

(a) (b) (c)

Fig. 7 Comparison of the proposed and existing schemes using number of contents vs a Cache hit ratio b Acceleration ratio c D2D offloading

ratio

Fig. 8 Comparison of the proposed and existing schemes using user

mobility vs Acceleration ratio
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contacted user devices, hence caching the most popular

content at the user devices. Also, the higher h values mean

user devices are moving at a fast pace, resulting in more

contact with less contact time, leading to cache most

popular contents to address most of the user demands. The

medium h values show that the users are moving with

moderate speed, leading to cache more diverse content at

each user device to minimize duplicate contents at the

entire network. As a result, we may deduce that user

movement knowledge is critical in developing caching

strategies, particularly in high mobility scenarios. The

proposed mechanism achieves better acceleration than

other caching schemes. The proposed DDPGCP mecha-

nism provide improvement of up to 16, 14.75, 9.4 and 2.8

% on acceleration ratio compared with RC, MPC, GCP and

DQN, respectively.

5.9 Impact of deadline

We show the impact of content deadline on offloading ratio

in Fig. 9. The number of users is 20, the number of contents

is 600, the Zipf parameter is 0.6, the cache capacity is

0.2GB and the content deadline varies from 500 to 1000

with step size 100. The proposed DDPGCP mechanism

outperforms other caching schemes. As the deadline

evolves larger, it allows user devices to disseminate the

content through D2D connections and gives extra time to

move across the region. We can notice that the proposed

caching mechanism performs similar to the DQN caching

schemes with a smaller deadline, and the performance gap

is widening with the larger deadlines. Since the shorter

deadline produces insufficient user interactions among the

user devices to send the entire content for the maximum

number of contents leads to delivering only small portions

of the content from various contents. The larger deadlines

allow the user devices to deliver the entire content suc-

cessfully. The proposed DDPGCP mechanism provide

improvement of up to 14.6, 12.6, 4.8 and 1 % on D2D

offloading ratio compared with RC, MPC, GCP and DQN,

respectively.

5.10 The convergence performance

We show the convergence performance of the DDPGCP

and DQN schemes in Fig. 10. We can observe that the

proposed DDPGCP scheme has a higher reward than the

DQN scheme. The reason is that DQN learns the Q values

utilized to determine the policy, which is often an epsilon-

greedy policy, whereas DDPG tries to learn the policy

directly. Hence, the proposed mechanism has higher con-

vergence performance than other schemes. We can see that

the initial episodes reward is higher for DQN, and as the

number of episodes increases, DDPGCP converges much

faster.

We show the convergence performance of the DDPGCP

schemes with different learning rates in Fig. 11. After 400

training episodes, the average rewards for four learning rate

values grow and start to converge. Specifically, with a low

learning rate, the proposed method converges slowly, and

as the learning rate grows, the proposed method converges

quickly. However, when the learning rate is equal to 0.1,

the presented method may converge to locally optimal

values; therefore, raising the learning rate may not yield

better results. We can notice that the learning rates 0.1 and

0.01 are converged around 400 episodes. In our simula-

tions, the proposed technique can give the highest rewards

at a learning rate of 0.01. As a result, in the current sim-

ulations, we set the learning rate to 0.01.

In Fig. 12, the performance comparison of cache hit

ratio and acceleration ratio is presented. In this simulations,

the number of users are 20, skewness parameter is 0.6, the

deadline is 800s, number of contents is 600 and the cache

capacity is 0.2GB.

From Fig. 12a, we can see that the rule-based cache

replacement mechanism shows a relatively stable hit ratio

since they have not considered real-time continuous

learning from the environment. The deep reinforcement

Fig. 9 Comparison of the proposed and existing schemes using

deadline vs D2D offloading ratio

Fig. 10 Convergence of proposed scheme (DDPGCP) and DQN
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learning-based algorithms curves indicate an upward trend

and stabilize after that. The GCP has a higher hit ratio than

DQN and DDPGCP initially, but as the episodes increase,

it slowly diminishes. That is because the GCP is a greedy

cooperative cache replacement mechanism where each user

greedily caches the content based on local information, not

considering the other agents’ knowledge in caching deci-

sions. Therefore, each agent may cache content redun-

dantly leads to obtain more content from the content server.

In DQN, the agents cache the content based on the central

controller, which cooperates with communication

overhead. The proposed DDPGCP outperforms the other

mechanisms since it directly learns instead of learning from

the determined policy to cache more popular content.

In Fig. 12b, the impact of training episodes on the

acceleration ratio is presented. We can see that the rule-

base mechanism does not increase as the training episode

increase. We can notice that the proposed mechanism has a

lower acceleration ratio than GPC and DQN, and the per-

formance gap is widening with increasing training. The

proposed mechanism raises slowly but achieves a better

acceleration ratio than other caching schemes. That means

the DDPGCP caches more popular content with increasing

training, leading to more saved delays. The DQN and GCP

have a lower acceleration ratio since, in DRL, agents learn

and update policy determined by the centralized critic

without cooperation. GCP considers the mobility of the

users into the caching decisions; hence it achieves a better

acceleration ratio, but the lack of learning mechanism it

caches the redundant copies of the content at the users

leads to a lower acceleration ratio than DQN and

DDPGCP.

6 Conclusion

In this paper, the cooperative cache placement problem has

been analyzed in device-to-device mobile edge networks

by placing the content to maximize the saved delay with

deadline and capacity constraints. The saving latency has

been calculated analytically using the inter-contact move-

ment pattern. We formulate the problem as an Integer

linear programming problem for cooperative cache place-

ment. Since the proposed problem is NP-hard, we designed

a caching scheme for large-sized D2D enabled mobile edge

networks by integrating a deep reinforcement learning

based deep deterministic policy gradient mechanism to

enhance the long term reward and speed up the learning

process. It has been demonstrated that exploiting user

cooperation, content deadlines, and randomness of user

interaction information results in a considerable perfor-

mance gain in D2D enabled mobile edge networks. The

simulation results show that the proposed cooperative

cache placement improves up to 23, 24 and 25 per cent on

cache hit rate, acceleration ratio and offload ratio compared

with RC, MPC, GCP and DQN, respectively. For future

work, we investigate the optimized user association and

D2D link quality to improve the user quality of experience.

Data availibility The MovieLens 1M dataset was used to support this

study and its application details are available in https://grou-

plens.org/datasets/movielens/1m/. The data set is cited at relevant

places within the text as references.

Fig. 11 Convergence of proposed scheme (DDPGCP) with different

learning rates

(a)

(b)

Fig. 12 Comparison of the proposed and existing schemes using

training episode vs a Cache hit ratio b Acceleration ratio
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22. Baştuğ, E., Kountouris, M., Bennis, M., Debbah, M. (2016). On

the delay of geographical caching methods in two-tiered hetero-

geneous networks. In 2016 IEEE 17th International Workshop on

Signal Processing Advances in Wireless Communications

(SPAWC), IEEE, pp 1–5

23. Somesula, M. K., Rout, R. R., & Somayajulu, D. (2021). Contact

duration-aware cooperative cache placement using genetic algo-

rithm for mobile edge networks. Computer Networks, 193,
108062.

24. Bharath, B., Nagananda, K. G., Gündüz, D., & Poor, H. V.
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