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Abstract
In the early stage of large-scale disasters, the first batch of emergency supplies are often in short supply, and decision-

makers responsible for material distributions need to send emergency materials to the recipients in the shortest possible

time, while also taking into account the minimum transportation costs. In these scenarios, the traditional particle swarm

algorithm has been frequently used, however it faces the challenge of ‘‘precocious puberty‘‘ and is unable to resolve the

scheduling problem. To solve this issue, this paper proposes an optimization model for material dispatch in emergency

events using a non-dominant sorting algorithm for vehicular communication. The model first satisfies the shortest delivery

time and material demand, establishes the shortest route for vehicle travel, and then proposes a multi-objective uncon-

trolled solving ant colony algorithm to break through the bottleneck of the juvenile algorithm by solving the problems of

convergence of NSGA-II algorithm and uneven distribution of Pareto front surface. Moreover, the objective function and

constraints for vehicles at each emergency supply point are defined, which must not exceed the total number of available

vehicles. The case study shows that the Pareto non-inferior solution searched by NSGA-II is ideal under the premise that

multiple goals are optimal, and the Pareto non-inferior solution scheme available for researchers to choose is improved.

The model and algorithm objectively optimize the overall layout of emergency material distribution.
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1 Background

A plethora of new road safety applications and use cases

have emerged for safer and more efficient travel due to the

convergence of wireless communication and vehicular

networks. The basis of road safety applications is the

accurate collection of traffic data and the subsequent

transmission of that data in real time. Vehicles utilize the

status information of other vehicles, including speed,

direction, and position etc. to acquire application-specific

objectives [1]. The application-specific objectives and

scenarios have motivated the research community to excel

the research in various domains of vehicular communica-

tion. The emergence of unmanned aerial vehicles (UAVs)

and fog-enabled vehicles has provided an opportunity to

explore new research domains on an unprecedented scale.

Emergency tasks, e.g. people search and rescue missions

assigned to UAVs are typically time-sensitive, as they are a

life-or-death situation in the aftermath of a tragedy. The

interplay of UAVs with fog-enabled vehicles has the ability

to run highly demanding tasks with strict latency require-

ments, taking into account limited computing resources and

harsh energy supply replenishment for UAVs in post-dis-

aster relief operations [2].

Disaster management, on the other hand, is always a

challenging task for rescue operators. In the US alone,

every year 60,000 people die due to disasters at the expense

of 150 billion USD of damages [2]. It is a serious sudden

disruption, triggered by man-made or natural hazards. In

such scenarios, immediate response and proper manage-

ment can play a vital role in disaster management, thus the
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loss can be reduced [3]. Disaster management involves

strategically organizing resources and the supply chain,

which are often an uphill battle, thus there is a need for

technological support in order to cope with a disaster. The

utilization of vehicular networks could be the best solution

for the supply chain in disaster management as they are

increasingly affordable, reliable, and portable. Thus the

integration of Vehicular Networks for rescue missions can

reduce the mortality rate and increase the chances of sur-

vivors [4].

In this paper, we proposed an optimization model for

supply chain for disaster management. In the first stage, the

model calculates the minimum delivery time to figure out a

shortest path for optimal allocation of material dispatch in

emergency events. Our main contribution in the study are

as follows:

• We propose an optimization model for material

dispatch in emergency situations utilizing a non-dom-

inant sorting algorithm for vehicular communication.

• The proposed model establishes the shortest route for

vehicle travel by satisfying the shortest delivery time

and material need.

• To overcome the juvenile algorithm’s bottleneck, we

propose a multi-objective uncontrolled solving ant

colony algorithm that addresses the NSGA-II algo-

rithm’s convergence issues as well as the unequal

distribution of the Pareto front surface.

The rest of the paper is organized as follows; recent

work related to the proposed approach is presented in

Sect. 2. Section 3 presents the material distribution and

model construction, design of the algorithm is proposed in

Sect. 4 and finally Sect. 6 concludes the paper after the

testing and analysis phase in Sect. 5.

2 Related work

In [5], a technology based on the non-dominant sorting

genetic algorithm-II (NSGA-II) is proposed to solve the

problem of distribution optimization of emergency sup-

plies, which is simpler and more efficient than the tradi-

tional genetic algorithm-based method, does not require

weighting factors, and can solve the optimization problem

of multi-objective and multi-constraint. In this work, taking

into account factors such as emergency material capacity,

demand at disaster points, and total number of delivery

vehicles, based on the simulation results of four different

material distributions, it is found that the number of iter-

ations based on the NSGA-II algorithm increases, and the

increase in the abundance of the Pareto solution will

increase the uniformity of the distribution. The authors in

[6] solve an example of a multi-objective constraint with

two objective functions and six constraints, using an exact

algorithm and an approximation algorithm, which is an

appropriately modified version of the multi-criteria

branching and delimitation algorithm. In addition, through

the analysis of experimental results, the work concludes

that SPEA and NSGA-II can solve the same problem, but

the precise algorithm surface, they are in the calculation of

the optimal boundary, the NSGA-II algorithm boundary is

smoother and clearer.

The ability of the best-first search in the vs/or search

space in multi-objective constraint optimization is pro-

posed and evaluated in [7]. The main advantage of the

AND/OR representation of the search space is the speed. In

the benchmarks of stochastic and true multi-objective

constrained optimization, the superiority of the optimal

optimization method over depth priority and branch

boundary search is proved. Emergency supplies vehicle

distribution is a very important and realistic issue that

affects the recovery time of an area after a disaster and the

avoidance of secondary disasters. To solve the problem of

emergency material distribution, the most important thing

is the two goals of speed and cost. On the surface of the

example, the algorithm in [8] can combine the crowded

density sorting mechanism and the non-dominant solution

sorting mechanism with the cross-variation operation

operator of the genetic algorithm to obtain a better Pareto

solution set, which is an algorithm that meets the Open

Location-Routing Problem (OLRP) solution requirements.

For emergency relief from uncertain disasters and needs,

build an emergency dispatch model from multiple targets

to the place where the material is sent. In [9], initially the

uncertainty of emergency material demand is studied, and

then the multi-objective function and constraint function

are constructed. The multi-objective optimization model is

established, and finally the target combination optimization

model is modified by algorithmic test. The results show

that the method has strong adaptability and good perfor-

mance in emergency rescue, which verifies the rationality

of the model and the feasibility of the algorithm.

In view of the problem that emergency rescue needs to

achieve the shortest completion time and the largest aver-

age full load rate of transportation, the authors propose a

material distribution model through the analysis of the

diversity, limitation, maximum load and maximum

capacity of transportation in [10]. The model is based on a

multi-objective constraint algorithm that constructs integral

iterations, non-negative solution space constraints, and

hyper plane constraints to update the speed of particles.

Numerically, the optimal solution set to NSGA-II has

better convergence and scalability. In emergency man-

agement and related fields, how to quickly respond to post-

disaster emergency needs and reduce disaster losses

through the emergency material distribution system of
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universities is still a challenging research topic in The

Korean style. The system must ensure that the number of

recipients is maximized, and the recipients have equal

opportunities to receive assistance. According to the dif-

ferences in the characteristics of supply and demand after

the disaster, it can be divided into one-time demand and

periodic demand, and the two demand pairs have different

allocation strategies. On the basis of considering the clas-

sification of emergency material supply points, disaster

points and emergency materials, the work in [11] takes into

account the minimization of emergency material distribu-

tion. This allows for effective distribution strategies to be

developed on a case-by-case basis. In emergency situa-

tions, remote areas have limited resources available, so the

main issue that needs to be addressed here is how emer-

gency resources should be allocated among remote areas.

The authors in [12] develops an optimal resource and

vehicle scheduling models to meet their needs. The inte-

grated model covers the following issues: heterogeneity

and dynamics of requirements and route planning of

vehicles, as well as a multi-objective model based on the

general measures necessary in an emergency. The pre-po-

sitioning of emergency supplies is essential to increase the

speed of response and mitigate the impact of disasters. To

achieve this goal, we chose water wave optimization to

design a multi-objective algorithm for the main problem

and biogeographic-based optimization for the sub-problem.

By designing synthesis, the technique of a multi-layered

distributed framework is proposed, which consists of bat-

ches of components with hierarchical relationships that can

be created from scratch or retrieved from multiple sources

over the network.

In some instances, components may include optimiza-

tion constraints and derive from other components to sat-

isfy optimization constraints. In order to solve the problem

of path optimization of vehicle-helicopter combined

transportation to cope with large-scale disasters, by mini-

mizing the average waiting time and economic cost of

emergency response, a fuzzy multi-objective optimization

model with traffic constraints and capacity limitations is

established in [13]. In the model presented in [14], the

authors take into account that some disaster areas are

limited due to the damage of the road network, the ability

of means of transport to be limited, and the demand for

emergency supplies is uncertain, and only special means of

transport are allowed to arrive. Then, the Jingying strategy

random neighborhood search (NSGA-SNS-II) is designed

to solve the model. In order to improve the efficiency of

emergency resource scheduling at multi-field stations, a

multi-target emergency material resource scheduling

model with non-dominant ranking algorithm is proposed in

[15]. In the proposed model, considering the change of

casualties, the first goal is the number of effective rescue

materials, and the lowest goal is the lowest transportation

cost. In the actual material transportation, various modes of

transportation and their cost and capacity are the main

restrictive factors. The emergency distribution at different

sites also has implications for material transport, and these

targets and constraints are discussed in the established

model in [16]. In an emergency, the design of the distri-

bution network has a great impact on the timely supply of

rescue supplies. The supply network has many deficiencies

in emergency rescue operations for large-scale events.

Therefore, the work in [17] builds a three-level supply

network for large emergencies, comprehensively consid-

ering the material distribution and transfer station selec-

tion, so that the decision makers can grasp the overall

situation and formulate a more scientific and planned

material distribution plan.

Fuzzy constraints are treated by the most likely method,

and multi-targets treat by the constraint method. Mini-

mizing cost and maximizing service level satisfaction are

considered as two main objective functions and then

developing two competing objective functions in the

competition. The developed competitive multi-objective

model is solved by using the elastic constraint method,

with numerical examples evaluating the power of the

proposed method in [18]. A multi-objective allocation and

scheduling optimization model that includes reserve points,

dispatch points, and emergency rescue materials is estab-

lished in [19]. The NSGA-II algorithm is proposed to

compute the overall layout model, and then to design the

binary chromosome-encoded NSGA-II and the corre-

sponding individual repair strategies to address the poten-

tial conflict of emergency rescue supplies between multiple

dispatch points.

3 Model construction for material
distribution

In this section, first we discussion the assumptions made

for our proposed model in Sect. 3.1. Various symbols used

by the models are presented in Sect. 3.2. The objective

function and constraints imposed for building the model

are presented in Sect. 3.3.

3.1 Model assumptions

In order to highlight the main characteristics of the logistics

system in an emergency, the advanced nature is assumed as

follows:

1) Emergency supplies are available with multi-supply

points.
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2) There are multi-disaster points having a variety of

emergency materials.

3) A certain number of emergency material supply

points are established to deliver materials to disaster-

stricken points.

4) Choose a vehicle from the list of vehicles allocated to

the selected supply point only. Number of allocated

vehicles is sufficient.

5) The multi-cycle supply point of emergency material

demand remains unchanged.

6) The longer the delay in the delivery of materials to

the disaster site, the less utility it will have.

7) The distribution of materials between facilities at the

same level is not allowed, and the distribution of

materials between facilities at different levels is

realized by direct distribution.

3.2 Symbol description

The parameters used in our work are as follow.

I: Collection of disaster points, i ¼ 1; 2; � � �m,i 2 I;

J: Candidate supply point collection,

j ¼ 1; 2; � � � n,j 2 J;

T: Relief cycle set,t ¼ 1; 2; � � � s,t 2 T ;

K: Emergency supplies type collection, k 2 K;

P: The number of selected emergency supply points;

dikt:t Cycle disaster point i demand for emergency sup-

plies k;

ak: Unit weight of material k;

bk: The unit volume of material k;

Cj: The capacity of the supply point j;

W: The maximum load of the vehicle;

V: Maximum capacity of the vehicle;

f: The total number of available vehicles;

M: A large number;

uk: The utility generated by the demand for unit material

k being met in the slot period;

V: The number of delay periods for the delivery of unit

material k to the disaster point v ¼ 1; 2; � � � vmax;

ukv: The utility produced by the delay of demand per

unit of material k v cycles. If v[ vmax so, then ukv ¼ 0.

In this study,

Xi:j is chosen as the supply point as 1, otherwise as

0,j 2 J;

Yijt: The disaster point of the t cycle i is denoted as 1 if it

is delivered by supply point j, otherwise it is 0,i 2 I,j 2 J;

xijkt: The amount of category K material transported by

point j in the t-cycle of the disaster i;

wijktv: The demand for k-type materials at the disaster

point i of the i th cycle is delayed by the supply point j the

amount of v cycle delivery;

lijkt: The unmet demand for class k materials at the

disaster point of the t-cycle i;

rj: The number of available vehicles allocated to supply

point j;

sjk: The amount of k-type goods at supply point j.

3.3 Model Building

Based on the above problem description and symbolic

definition, the multi-objective dynamic positioning-alloca-

tion model established in this paper can be expressed as:

3.3.1 Objective function

Goal 1

maxU ¼
X

i2I

X

j2J

X

k2K

X

t2T
ukxijkt

þ
X

i2I

X

j2J

X

k2K

X

t2T

Xvmax

v¼1

ukvxijktv: ð1Þ

Indicates the disaster point i demand utility maximiza-

tion goal;

Goal 2

min Z � ze � zf
�� ��; ; 8 e f 2 I; ðe 6¼ f ð2Þ

where,

zi ¼

P
k2K

P
t2T

ukdikt �
P
j2J

P
k2K

P
t2T

ukxijkt þ
P
j2J

P
k2K

P
t2T

Pvmax

v¼1

ukvwijktv

P
k2K

P
t2T

ukxijkt
; 8i 2 I:

ð3Þ

Indicates the goal of fairness in the distribution of goods

[20].

3.3.2 Constraints

X

j2J
Xj ¼ p: ð4Þ

Indicates the establishment of p emergency supply

points;
X

j2J
rj � f: ð5Þ

Assign constraints to vehicles at each emergency supply

point, which must not exceed the total number of available

vehicles;

Yijt �Xj; 8i 2 I; j 2 J; t 2 T ð6Þ

xijkt �MYijt; 8i 2 I; j 2 J; k 2 K; t 2 T ð7Þ
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wijktv �MYij tþvð Þ; 8i 2 I; j 2 J; k 2 K; t 2 T ; v

¼ 1; 2 � � � vmax: ð8Þ

Indicates that only emergency supplies are allocated to

emergency supplies that have been opened;

rj �Msjk; 8j 2 J; k 2 K: ð9Þ

Indicates that rescue vehicles are allocated only to

selected open emergency supply points;

sjk �MXj; 8j 2 J; k 2 K: ð10Þ

Indicates that emergency relief supplies are only dis-

tributed at selected open emergency supply points;
X

k2K
bksjk �CjXj; 8j 2 j j 2 J;Xj ¼ 1

�� ��� �
: ð11Þ

The capacity of the distribution of supplies for the

selected open emergency supplies supply points;
X

j2J
xijkt þ wijktv þ lijkt
� �

¼ dikt; 8i 2 I; k 2 K; t 2 T :

ð12Þ

Express the equation for the balance of the inflow of

relief materials into each disaster point, that is, the sum of

the material supplied by the disaster point in the current

cycle, the delayed delivery amount and the amount to be

satisfied should be equal to the total demand for material k

at the disaster point;
X

i2I
xijkt þ wijk t�vð Þv
� �

� sjk; 8j 2 J; t 2 T ; v

¼ 1; 2 � � � vmax: ð13Þ

Indicates that the outflow of materials from each

emergency supply point does not exceed the distribution of

its supplies [21];
X

i2I

X

k2K
ak xijkt þ wijk t�vð Þv
� �

� rjW ; 8j 2 J; t 2 T ; v

¼ 1; 2 � � � vmax: ð14Þ

Indicates the capacity constraint of the rescue vehicle

carrying supplies;
X

i2I

X

k2K
bk xijkt þ wijk t�vð Þv
� �

� rjV; 8j 2 J; t 2 T; v

¼ 1; 2 � � � vmax: ð15Þ

Represents the weight constraint of the supplies carried

by the rescue vehicle;

zi ¼

P
k2K

P
t2T

ukdikt �
P
j2J

P
k2K

P
t2T

ukxijkt þ
P
j2J

P
k2K

P
t2T

Pvmax

v¼1

ukvxijktv

P
k2K

P
t2T

ukdikt
; 8i 2 I:

ð16Þ

The satisfaction rate is the satisfaction rate that is

effective for the needs of each affected point [22].

Xj 2 0; 1f g; 8j 2 J ð17Þ

Yijt 2 0; 1f g; 8i 2 I; j 2 J; t 2 T : ð18Þ

Equations (17) and (18) are 0–1 integer constraints;

Initialize population Pt t=0

Mutation,crossover,new population Qt

Combined population Pt and Qt to Rt

Calculate the corresponding objective 
function value of Rt chromosome

The Pareto frontier F1,F2,F3, is 
obtained by sorting fast non dominated 

solutions

For the qualified Pareto front Fi ,the 
congestion density is calculate and 

sorted

Select NP chromosome as Pt+1 take t 
to be t+1

t>T?

Stop output Pareto optimal solution 
set

Yes

No

Fig. 1 NSGA-II flowchart

Wireless Networks (2022) 28:3715–3727 3719

123



xijkt;wijktv; lijkt; sjk � 0; 8i 2 I; j 2 J; k 2 K; t 2 T ; v
¼ 1; 2 � � � vmax:

ð19Þ

Equation (19) represents a non-negative constraint;

rj � 0 is an integer, 8j 2 J: ð20Þ

Equation (20) represents a non-negative integer

constraint.

4 Multi-objective optimization genetic
algorithm design

4.1 Optimized unconverted solution sorting

The optimized non-dominant solution ordering (NSGA-II)

can combine the non-dominated solution sorting mecha-

nism based on crowd density and the cross-variation

operation of the genetic algorithm to obtain a better Pareto

solution set, which is an algorithm that meets the OLRP

solution requirements. Based on the genetic algorithm of

non-dominant solution sequencing, the initial population is

obtained by initialization P0, and each chromosome in the

initial population corresponds to a distribution

Table 1 Means and variance of

the three algorithms
Algorithm MOP2 MOP3 MOP4 TC4 TC6

NSGA-II 0.363 0.006 0.456 0.004 0.368 0.018 0.384 0.009 0.384 0.0012

PAES 1.608 0.066 1.362 0.043 1.088 0.063 1.582 0.058 1.184 0.053

SPEA 0.732 0.078 0.891 0.056 0.723 0.018 0.0183 0.000 0.812 0.022

Table 2 the optimal boundary

distance and his standard

deviation for the three

algorithms

Algorithm MOP2 MOP3 MOP4 TC4 TC6

NSGA-II 0.002 0.000 0.015 0.000 0.024 0.001 4.523 4.223 0.032 0.001

PAES 0.171 0.002 11.362 12.043 0.123 0.031 0.593 0.532 0.125 0.002

SPEA 0.125 0.004 0.034 0.001 0.043 0.001 7.324 0.432 0.223 0.001
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Fig. 2 NSGA-II optimal

boundary based on MOP4
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Fig. 3 The PAES optimal

boundary based on MOP4
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scheme [23]. Order P1 and Q1 combine to obtain a popu-

lation Rl of 2NP, which is produced by this algorithm to

approximate Pareto optimal solution leading level F1, F2,

F3,…, and then obtains the quantity by crowd density

sorting method NP’s chromosomes enter the next genera-

tion of chromosome populations Plþ1, thus preserving elite

individuals from entering the next generation of chromo-

some populations [24].

4.1.1 Chromosome encoding and initialization

In this paper, the initial chromosomal population is

obtained using the method of natural number arrangement

encoding, each with three substrings, and its expression is

shown in Eq. (21).

Slg ¼ slg11; s
l
g12; . . .; s

l
g1k

� �n

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
sl
g1

; slg21; s
l
g22; . . .; s

l
g2k

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
sl
g2

; slg31; s
l
g32; . . .; s

l
g3n

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
sl
g3

ð21Þ

where n represents the chromosome; k is the vehicle; l

represents the algebra, when l = 0 represents the initial

population; g represents the g th chromosome in the pop-

ulation, g = 1, 2,…, NP.

4.1.2 Mutation operations

In this paper, Slg the inverted variation method is used to

mutate the three substreets.

Step1: Pick two points at random.

Parent = [1 2/3 4 5 6 7 8/9 10];

Step2: Invert the gene site between the two points to get

the substring.

Substring = [1 2/8 7 6 5 4 3/9 10].

The variation vector corresponding Slg to the mutation is

generated by the mutation operation, as shown in Ul
g

Eq. (22).

Ul
g ¼ ulg11; u

l
g12; . . .; u

l
g1k

� �n

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ul
g1

; ulg21; u
l
g22; . . .; u

l
g2k

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ul
g2

; ulg31; u
l
g32; . . .; u

l
g3n

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ul
g3

:

ð22Þ

4.1.3 Cross operation

The test vector is obtained by cross operation Vl
g, where the

vector is generated by the two-point intersection method

vlg1 and vlg3 the vector is generated by a single-point

crossover operation vlg2. Therefore, the experimental vector

Vl
g is expressed in the usable formula [25].

ulg11; u
l
g12; . . .; u

l
g1k

� �n

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ul
g1

; ulg21; u
l
g22; . . .; u

l
g2k

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ul
g2

; ulg31; u
l
g32; . . .; u

l
g3n

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ul
g3

:

ð23Þ

4.1.4 Select actions

Select the sorting steps:

Step1: Combine the current population Xl with the cor-

responding experimental vector to Vl form a new popula-

tion with a Rl scale of 2NP, and Rl calculate the

corresponding target values for each individual.

Step2: Perform a Rl quick non-inferior solution ranking

on each individual to get an approximate Pareto optimal

solution frontier grade F1, F2, F3.

Step3: The Fi number of individuals in the set is

expressed Si. According to the following equation, the

corresponding leading edge grade r is found, and Fr the

crowd density of the medium individual is calculated, and

the calculated crowd density is arranged in descending

order [26].

Pr�1

i¼1

Si �NP

Pr

i¼1

Si �NP

8
>><

>>:
: ð24Þ

Table 3 Capacity of candidate emergency supply points

Candidate emergency supply point number Facility capacity (tons)

1 80

2 100

3 85

4 90

5 70

6 110

Table 4 Material requirements at the affected sites

Disaster point number Food (tons) Daily necessities (tons)

1 95 80

2 82 65

3 100 90

4 80 100

5 90 85

6 65 70

7 105 90

8 75 65

9 80 100

10 100 110
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Step4: F1 Selected Fr�1 individuals and Fr former NP�
Pr�1

i¼1

Si individuals to enter the next generation Xtþ1.

4.2 Implementation process

The specific process is shown in the following Fig. 1:

4.3 Evaluation model

Comparing NSGA-II and Pareto Archived Evolution

Strategy (PAES), the superiority of the NSGA-II algorithm

over emergency allocation of goods can be seen, [27] and

the test function is as follows:

MOP2:

f1 xð Þ ¼ 1� exp �
X3

i¼1

xi �
1ffiffiffi
3

p
� �2

 !
ð25Þ

f2 xð Þ ¼ 1

� exp �
X3

i¼1

xi þ
1ffiffiffi
3

p
� �2

 !
; �4� x1; x2; x3 � 4:

ð26Þ

MOP3:

f1 xð Þ ¼ 1þ A1 � B1ð Þ2þ A2 � B2ð Þ2
h i

ð27Þ

f2 xð Þ ¼ xþ 3ð Þ2þ yþ 1ð Þ2
h i

ð28Þ

where:

Table 5 Typical Pareto solution

Typical

solution

Develop

supply points

Number of

cycles

The point of the

service

Emergency material

requirements (tons)

The number of

vehicles allocated

Target

value 1: U

Target

value 2: U

Foodstuff Daily

necessities

1 1 1 2,5,9 118 50 4 1308.6 63.7

2 3,5 36 44

3 1,3 35 45

2 1 2,4 61 40 8

2 1,4,10 129 166

3 1,8 94 104

3 1 3,6 83 96 8

2 3,5 41 48

3 5,7,9 149 41

2 1 1 1,4,7 86 77 5 1306.9 61.6

2 4 62 23

3 5,7 55 103

3 1 9 69 25 7

2 1,2,3 92 89

3 2,3,8 132 55

4 1 6,7,10 125 77 8

2 3,6,8 81 115

3 3 75 28

3 2 1 5,7,8 154 53 8 1304.9 56.8

2 1,4,9 131 73

3 2,4 71 32

3 1 3,6 119 66 7

2 5 57 35

3 1,5 114 70

6 1 10 18 59 5

2 2,10 67 92

3 3,5 147 27
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A1 ¼ 0:5 sin 1� 2 cos 1þ sin 2� 1:5 cos 2 ð29Þ
A1 ¼ 0:5 sin 1� 2 cos 1þ sin 2� 1:5 cos 2 ð30Þ
B1 ¼ 0:5 sin x� 2 cos xþ sin y� 1:5 cos y ð31Þ
B1 ¼ 0:5 sin x� 2 cos xþ sin y� 1:5 cos y: ð32Þ

MOP4:

f1 xð Þ ¼
Xn�1

i¼1

�10 exp �0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i þ x2iþ1

q� �� �
ð33Þ

f2 xð Þ ¼
Xn

i¼1

xij j0:8þ5 sin xið Þ3
� �

: ð34Þ

TC4:

f1 xð Þ ¼ x1; 0� x1 � 1 ð35Þ

f2 xð Þ ¼ g 1�
ffiffiffiffiffi
x1
g

r� �
; �5� x2; � � � ; x10 � 5 ð36Þ

Thereinto

g xð Þ ¼ 91þ
X10

i¼2

x2i � 10 cos 4pxið Þ
� �

ð37Þ

TC6:

f1 xð Þ ¼ 1� exp �4x1ð Þ sin6 6px1ð Þ; 0� xi � 1 i
¼ 1; � � � ; 10 ð38Þ

f2 xð Þ ¼ g 1� f1=g

� �2� �
: ð39Þ

Thereinto

20
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40
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55

60

65

70

8690 8700 8710 8720 8730 8740 8750

Pareto solution

Z

M-U

Fig. 5 Pareto Frontier

Table 6 Algorithm performance test

serial number Population size Maximum iteration number Number of different Pareto solutions Time(s)

1 100 400 53 526.07

2 100 200 41 255.44

3 100 50 30 66.42

4 50 50 13 31.23
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g xð Þ ¼ 1þ 9
X10

i¼2

xi=9

 !4

: ð40Þ

We designed two methods: one based on continuous

distance and the other based on average distance. Com-

paring the first non-dominant layer with the consistent

distribution, the corresponding deviation is as follows [28].

D ¼
Xv1j j

i¼1

di � d
�� ��

v1j j : ð41Þ

Table 1 the difference between the mean and variance

obtained by comparison of the three algorithms of NSGA-

II, PAES and SPEAD.
Table 2 compares the three algorithms of NSGA-II,

PAES and SPEA to obtain the distance of Pareto’s optimal

boundary and its standard deviation.

As shown in Figs. 2, 3 and 4, the Pareto optimal

boundary graph obtained by the MOP4 test function shows

that the NSGA-II has a better and clearer distribution.

Comparing the above three algorithms with the test

function TC6 to obtain their optimal boundary values
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Fig. 6 Pareto front of different studies
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respectively, specified here g = 3.5, the boundary of

NSGA-II is smoother and clearer.

5 Algorithm testing and analysis

5.1 Algorithm parameter settings

The relevant parameters of the multi-objective optimiza-

tion genetic algorithm are set as follows in Tables 3 and 4:

5.2 Simulation results of the study

To verify the reliability and feasibility of the built model,

the present algorithm is programmed to obtain the partial

operation results shown in Table 5. The optimal solution

distribution is shown in Fig. 5.

The algorithm constructed in this paper can solve mul-

tiple supply points and multiple disaster points in a certain

period of time, which reflects the reliability and availability

of the model. Decision makers can reasonably allocate

materials according to the overall situation, reasonably

allocate materials for each material demand point, seek

fairness, and choose a suitable post-earthquake emergency

organization plan on the Pareto front.

5.3 Algorithm performance analysis

We set four examples according on the population size and

number of iterations to test the performance of the algo-

rithm. Experimental results are shown in Table 6 and

Fig. 6, and from the comparison plots, we can see that the

computation time increases with the number of iterations.

As the population size increases and the number of

iterations increases, so does the number of Pareto solutions.

The distribution is also more uniform [25].

6 Conclusions

After the emergency occurs, the selection of the optimal

emergency rescue materials distribution route is the pri-

mary problem for the emergency decision makers. The

allocation of resources shall not exceed the resource

reserve, and the demand of materials obtained at each

disaster point is the main goal of the optimization model.

We complete the modeling for two targets and multiple

constraints, and give the optimized algorithm for solving it.

The independent solution-based sorting algorithm is suit-

able for large-scale emergency material distribution design

routes. The site selection is reasonable, and can provide

various decision-making methods, have a good adaptability

to the emergency situation, greatly optimize the emergency

materials distribution planning system, and reduce the

difficulty of emergency materials distribution. The exper-

imental results justify that the proposed model is efficient

as compared to the existing ones and can be used for a wide

range of applications that require optimal allocation of

material dispatch for emergency events.
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