
ORIGINAL PAPER

Benchmarking of lightweight cryptographic algorithms for wireless IoT
networks

Soline Blanc1 • Abdelkader Lahmadi1 • Kévin Le Gouguec2 • Marine Minier1 • Lama Sleem1

Accepted: 8 June 2022 / Published online: 22 July 2022
� The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Cryptographic algorithms that can provide both encryption and authentication are increasingly required in modern security

architectures andprotocols (e.g.TLSv1.3).Manyauthenticated encryption systemshavebeenproposed in thepast fewyears,which

has resulted in several cryptanalysis research work. In this same direction, the National Institute of Standards and Technology

(NIST) is coordinating a large effort to find a new standard authenticated encryption algorithm to be used by resource-constrained

and limited devices. In this paper, 12 algorithms of the 33 candidates of the Round 2 phase from NIST competition are being

benchmarked on a real IoT test-bed. These 33 ciphers implement authenticated encryption with associated data which aims at

preserving integrity, privacy and authenticity at the same time. In this work, we ported the 12 algorithms to different hardware

platforms (anx86_64PC, anAVRATmega128, anMSP430F1611and the IoT-LABplatform)andmakea fair comparisonbetween

their performance. We adapted these algorithms to the Contiki operating system to evaluate the latency and efficiency of each

algorithm on IoT applications deployed on a national experimental platform which is IoT-LAB. In addition, we used the FELICS-

AE benchmark to quantify locally the RAM, execution time and code size of each algorithm. In fact, this work provides practical

results of their performance in an IoT scenario which pave the way for further research on other algorithms, platforms or OS.

Keywords Lightweight cryptography, Internet of Things, Benchmarking � IoT-LAB � Felics-AE � NIST LWC round 2

candidates

1 Introduction

We live in an era where interconnected computing devices

keep getting more numerous, while cyber-attacks keep

getting more sophisticated and frequent. The need for new

standards that can protect communications against such

threats has increased. However, the available cryptography

standards do not meet the requirements of the new chal-

lenges we face today where constrained devices are mas-

sively deployed in the Internet of Things. They have

hardware limitations such as memory size and their battery

life must be preserved. For instance, limited health sensors

(e.g. heart pacemaker, brain simulator) are directly con-

nected to a network to gather useful data. Security here

plays a crucial role since unauthorized access to these

critical devices can be life-threatening. Other examples are

smart homes, green cities, supply chain management, etc.

Lightweight cryptography in the last 10 years has resulted

in more than 1400 papers which all aim at reducing

resource consumption, software and hardware efficiency on

different/limited platforms while remaining resilient

against different kinds of attacks. To help in the process of

development, evaluation and standardization of a suit-

able lightweight cryptographic algorithm, NIST has initi-

ated the Lightweight Cryptography Project. Looking back

& Abdelkader Lahmadi

lahmadi@loria.fr

Soline Blanc

soline.blanc@loria.fr

Kévin Le Gouguec

kevin.legouguec@gmail.com

Marine Minier

marine.minier@loria.fr

Lama Sleem

lama.sleem@loria.fr

1 Université de Lorraine, CNRS, Inria, Loria, 54000 Nancy,

France

2 Airbus CyberSecurity, Élancourt, France

123

Wireless Networks (2022) 28:3453–3476
https://doi.org/10.1007/s11276-022-03046-1(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0003-3882-1560
http://crossmark.crossref.org/dialog/?doi=10.1007/s11276-022-03046-1&domain=pdf
https://doi.org/10.1007/s11276-022-03046-1

at the NIST contests for the selection of new cryptographic

standards [36, 37], algorithms with weak security designs

were disqualified after the first evaluation phase. The

evaluation and the benchmark of the proposed solutions

play a major role in the evaluation of an algorithm on both

hardware and software efficiency. Since benchmark

frameworks allow for consistent evaluation, they are

important not only in the selection process of new cryp-

tographic standards, but also for carrying out a fair com-

parison of ciphers’ performance in given usage scenarios.

In 2015, NIST organized a workshop on lightweight

cryptography to discuss the security and resource require-

ments that should be available in a standard to secure IoT

applications. NIST received and published 56 algorithm

proposals, which include more than 200 AEAD cipher

implementation variants. The final goal of this initiative is

to find the best proposal that can be used in such limited

devices. The proposed algorithms are based on authenti-

cated encryption with associated data (AEAD). An

Authenticated Encryption (AE) algorithm can be defined as

a symmetric cryptographic algorithm that is capable of

simultaneously preserving the confidentiality and authen-

ticity of data [8].

In this paper, 12 candidate algorithms from NIST second

round competition are benchmarked on different hardware

platforms. Our first objective is to evaluate the ciphers by

using the FELICS-AE benchamrk to measure for each

algorithm three metrics: (1) RAM, (2) Execution time, and

(3) Binary code size. These metrics could be computed for

a PC, an AVR, an MSP430 and a 32-bit ARM processor.

After that, the second objective of this work is to evaluate

every algorithm on the IoT-LAB platform, which is a real

test-bed that provides access to hundreds of IoT boards for

experimenting and deploying across different sites. IoT-

LAB is used in this study due to these advantages: (a) user-

friendly interface; (b) multi-platform: offers experimenta-

tion boards; (c) multi-radio: the boards do not have the

same radio chips; (d) multi-topology: different physical

deployments; and finally (e) multi-OS: the different boards

support one or more embedded OS.

1.1 Motivation and contribution

The goal of this work is to provide a broad overview over

the ciphers performance footprints, as well as building a

benchmark for the performance evaluation of the NIST

round 2 candidate AEAD-algorithms1 by using the plat-

form IoT-LAB2. The benchmark code is available at this

link: https://gitlab.inria.fr/anon_group/iotlabandnist/. Our

benchmarking process is depicted in Fig. 1.

The four steps summarizing the motivation and the main

contribution of our work are the following:

1. The NIST AEAD algorithms: The first step is to

understand the NIST lightweight competition algo-

rithms which are tested to be standardized as light-

weight algorithms dedicated to authenticated

encryption with associated data (AEAD). 33 public

algorithms have been chosen for the round 2 compe-

tition and 12 of them are chosen in this work.

2. FELICS-AE: Adapting these algorithms to the

FELICS-AE [34] platform is done by importing their

NIST releases and adding their implementations to the

platform, as well as one of the test vector provided in

these releases. The platform then checks the imple-

mentations for their correctness on three different

hardware platforms. Then, a benchmark process is

carried out for the algorithms’ performance in terms of

cycle counts and memory usage. The current distribu-

tion of FELICS-AE includes only a few algorithms, but

more could be easily added. It is based on the FELICS

[18] platform3 which is dedicated to the evaluation of

stream and block ciphers that do not support authen-

ticated encryption. This step is described in Sect. 3.2.

Note that FELICS-AE and IoT-LAB support the same

hardware platforms which guided our choice of using

FELICS-AE in this step.

3. Contiki operating system: After evaluating the pro-

vided algorithms on FELICS-AE, we adapted their

respective codes to the Contiki operating system which

is supported by IoT-LAB. Contiki is dedicated to

running on hardware devices that are severely con-

strained in memory, power, processing power, and

communication bandwidth, such as embedded systems

and old 8-bit hardware. We used here Contiki-NG,

which is a new version of Contiki OS. It runs on a

variety of platforms based on energy-efficient archi-

tectures such as the ARM Cortex-M3/M4 and the

Texas Instruments MSP430. However, other operating

systems could be considered such as Riot [39].

4. IoT-LAB: Finally, we used these algorithms on an IoT

application that we deployed on the IoT-LAB platform

to evaluate their performance from a networking

perspective.

1 https://csrc.nist.gov/Projects/lightweight-cryptography/round-2-

candidates
2 https://www.iot-lab.info/ 3 https://www.cryptolux.org/index.php/FELICS

3454 Wireless Networks (2022) 28:3453–3476

123

https://gitlab.inria.fr/anon_group/iotlabandnist/
https://csrc.nist.gov/Projects/lightweight-cryptography/round-2-candidates
https://csrc.nist.gov/Projects/lightweight-cryptography/round-2-candidates
https://www.iot-lab.info/
https://www.cryptolux.org/index.php/FELICS

1.2 Organization

Section 2 describes the related work in the field of software

performance evaluations of cryptosystems. Section 3 pre-

sents the IoT-LAB platform and details the 12 algorithms

selected among the 33 NIST ligthweight candidates as well

as their evaluation with FELICS-AE. In Sect. 4, we detail

the way we instrument IoT-LAB to produce the seven

identified metrics for the 12 algorithms. In Sect. 5 we

provide the performance results while using two IoT nodes

(one client and one server) for the seven identified metrics

on the 12 algorithms. Finally, Sect. 6 concludes this paper.

2 Related work

In this section we present the related work regarding

existing cryptographic algorithms benchmarking tools and

their comparison with our methodology.

Many benchmarks have been proposed to evaluate the

performance of cryptographic algorithms on both hardware

and software [22, 31–33, 35]. For example, the BLOC [12]

project is one of the first attempts to evaluate lightweight

cryptographic algorithms on embedded devices. It is pub-

licly available and contains one of the largest collection of

algorithm implementations. In [13] the authors analyse the

performance of lightweight cryptographic algorithms on

wireless sensor nodes. The code is written in C and it

targets the 16-bit MSP430F1611 device [40]. Three metrics

are considered: execution time, RAM requirement and

code size. However, the RAM is not computed correctly,

since the unsigned int data type requires two bytes and not

one byte as considered by the authors on 16-bit

MSP430F1611 micro controller. Thus the identified RAM

requirement is half of the actual value. Further more, the

library is not flexible and does not allow the addition of

new algorithms easily. Finally, some implementations of

the studied ciphers do not verify the test vectors. Therefore,

we avoided using this platform and studied other options.

Two years after the BLOC project, the University of

Luxembourg provides the FELICS platform [18].

FELICS stands for Fair Evaluation of Lightweight Cryp-

tographic Systems. This benchmarking framework is

motivated by the need for a unified evaluation of light-

weight block ciphers and stream ciphers performances.

FELICS has a dedicated web page4 where an open virtual

machine can be downloaded and benchmarks are

maintained. Designers could upload new ciphers and could

get consistent and detailed feedback on how their cipher

compares with the state-of-the-art. The tool can evaluate

execution time, RAM footprint, and binary code size. The

tool supports four microcontroller families: an 8-bit

microcontroller (Atmel AVR ATmega128), a 16-bit

microcontroller (Texas Instruments MSP430F1611) and

finally two 32-bit microcontrollers (Arduino Due and ARM

Cortex-M3). Finally, FELICS-AEAD was presented at the

first NIST Lightweight workshop [21] as an extension of

FELICS done by the University of Luxembourg allowing

authenticated encryption. Unfortunately, we could not find

the source code. In the same way, FELICS-AE, also pre-

sented at the third NIST workshop [34], is also an exten-

sion of FELICS with the additional functionality of the

authenticated encryption5.

The third platform that was also studied is the eBACS

Project ECRYPT Benchmarking of Cryptographic Sys-

tems, which is considered as the first step to consistent

evaluation of cryptographic primitives for software [9].

The web page of this platform describes how to add new

implementations and how to collect the data for the

existing implementations. It allows the benchmarking of

algorithms implemented in C, C?? and assembly. The

only metric extracted is the cycle count (speed) and the

results are saved in a database in text format. The advan-

tage of this platform is the variety of supported hardware

platforms and architectures used to obtain the results while

the drawback is supporting only one metric which is the

execution time.

The fourth project is the XBX Project (eXternal

Benchmarking eXtension) [41]. It allows the benchmarking

of hash functions on different micro controllers. Two

metrics are extracted which are the binary code size and

RAM consumption. The code size is obtained through

static analysis of the generated binary file. The RAM

requirement is the sum of stack consumption and static

RAM requirement obtained from the application binary.

The framework is written in C, Perl and Bash. XBX is the

first project to unify measuring the performances of soft-

ware implementations of cryptographic primitives built for

different embedded devices using the same evaluation

methodology. The results in [42] are evaluated for eight

different devices with 8-bit, 16-bit and 32-bit CPUs.

However, its web page6 is no longer maintained.

Fig. 1 The steps of our benchmarking process

4 https://www.cryptolux.org/index.php/FELICS

5 the code is available on https://gitlab.inria.fr/minier/felics-ae.
6 https://github.com/das-labor/xbx

Wireless Networks (2022) 28:3453–3476 3455

123

https://www.cryptolux.org/index.php/FELICS
https://gitlab.inria.fr/minier/felics-ae
https://github.com/das-labor/xbx

3 Preliminaries

In this work, we relied on different platforms to build our

benchmarking process. First, FELICS-AE is used to verify

the test vectors of each implemented algorithm. Once the

test vectors are verified and RAM size, code size and

execution times have been obtained, IoT-LAB is used to

analyse the performance of the algorithms on a real IoT

network. Below, we describe the platform IoT-lab as well

as the evaluation of the selected algorithms by using the

FELIC-AE tool.

3.1 IoT-LAB: platform description

3.1.1 Overview

The IoT-LAB Platform [30] offers an easy way to deploy

experiments involving IoT nodes. It is part of the FIT

(Future Internet Testing) experimental facility, provided by

five French institutions of higher education and research:

UPMC, Institut Mines-Télécom, Inria, CNRS and Univer-

sity of Strasbourg. FIT is also part of OneLab [38] facility,

aiming to facilitate experimentation for academic and

industrial users. This facility is composed of four plat-

forms: PlanetLab Europe, FIT CorteXlab, NITLab and FIT

IoT-LAB. All these infrastructures are made available

through a single entry point, providing access to the dif-

ferent test-beds.

The IoT-LAB Platform provides 1786 wireless sensors

nodes, located on six different sites. These nodes can be

selected by an authenticated user in order to be used in one

(or more) experiment(s). For each of the chosen nodes, the

user can then provide a firmware to be deployed on them,

and select a profile defining what metrics will be measured

while the experiment is running. It is done through an

online dashboard, or through dedicated Python scripts

(IoT-LAB cli-tools [27]). The collected metrics can

then be accessed by the user through ssh.

3.1.2 Nodes, components and topologies

As previously mentioned, the IoT-LAB platform provides

access to 1786 nodes. These nodes are located in six dif-

ferent sites: Inria Grenoble (640 nodes), Inria Lille (293

nodes), Inria Saclay (264 nodes), ICube Strasbourg (400

nodes), Institut Mines-Télécom Paris (160 nodes) and CITI

Lab Lyon (29 nodes). Each site proposes a different

topology. The nodes are divided into four main categories,

regarding their architecture: there are 256 WSN430 nodes

(of 868 MHz), 883 M3 nodes, 524 A8 nodes and 123 other

‘‘custom’’ nodes. Each node is identified by its site

(Grenoble, Saclay, Lille, Lyon, Paris or Strasbourg), its

architecture and an integer ID. For instance, the node m3-

21.lille.iot-lab.info has Lille as site, m3 as architecture and

21 as integer ID. Finally, each node has a state: it can be

Alive if the node is available, Busy if it is currently used by

an experiment, Suspected if it is not available, Dead if it is

not working, or Absent.

Each node in IoT-LAB has three main components: the

Open Node (ON), the Gateway (GW) and the Control Node

(CN). The Open Node is flashed with the firmware pro-

vided by the user. During the experiment, it can be stopped,

re-flashed, rebooted, etc. The Gateway provides a con-

nection between the Open Node and the global infras-

tructure. Finally, the Control Node interacts with the Open

Node in order to monitors its sensors. Thus, it handles the

consumption and selects the power supply (battery or

Power over Ethernet). The Gateway and the Control Node

are the defined as ‘‘Host Nodes’’, so the user has not

interactions with them.

Several network topologies for the different sites are

also available. We define a topology for an experiment,

which represents the way the nodes communicates with

each other. It is defined by the direct communications

between them. Thus, we define three types of topologies

available for our experiments: the line topology, the grid

topology and the star topology. Unfortunately, we only

present in this paper results for the line topology as too

many packets were lost in the other topologies and the

obtained measurements are very noisy regarding the con-

sumption of algorithms.

3.1.3 Profile and experiment

A profile is used to determine which metrics are collected

when the experiment is running. In an experiment, a profile

can be associated to a specific node. The profile creation

form needs three main information: information related to

the architecture, information related to the consumption

and information related to the radio. Only the first one is

mandatory: a profile can be set not to measure the con-

sumption for instance. The architecture information is one

of three options, related to the architecture of the associated

node: ‘‘M3’’, ‘‘A8’’ or ‘‘Other’’. The consumption infor-

mation is divided into three parts: whether or not to mea-

sure the current (in amperes), the voltage (in volts) or the

power (in watts), the ‘‘period’’ and the ‘‘average’’. The

‘‘period’’, or ‘‘conversion times’’ (CT), and the ‘‘average’’

(AV) are used to define the periodic measure (PM) given

by the formula: PM = CT * AV * 2. The periodic measure

is used to configure the INA226, which is a component

used to monitor the current/power. Moreover, the average

value is used for the filtering of the signal. Thus, a greater

number of averages leads to a noise reduction for the

measurements. Finally, the information related to the radio

3456 Wireless Networks (2022) 28:3453–3476

123

can be defined with two options: in the first option, the

Retrieved Signal Strength Indication (RSSI) is measured,

and in the other option, the traffic is sniffed. An experiment

is launched by the user for a specific running time. Thus,

one of its parameters is the duration. The other parameters

correspond to the resources of the experiment. The

resources are the nodes, their associated firmwares and

their associated profiles. An experiment can be scheduled

to a specific time, or can be launched as soon as possible.

As soon as an experiment is defined, it has one of the

following states: it can be Waiting when the experiment

has not begun, Launching if it is beginning (i.e. the nodes

are being set up for it), Running when the experiment is

running, Terminated if the experiment is done, or Error if

an error occurred (or if it has been manually stopped).

Usage. Interacting with IoT-LAB experiments and

resources can be done through three main ways: using the

dashboard, using command lines tools or using the Python

library.

The dashboard is accessible through a web browser7. It

allows authenticated users to monitor their experiments,

their profiles and firmwares, and to get the testbed status.

The command line tools, developed in Python, are

available on the IoT-LAB Github repository [29] and

covered by the CeCILL v2.1 free software licence. They

allow a user to manage their experiments and profiles, or to

interact with running experiments. More documentation is

available on the IoT-LAB CLI tools documentation [26].

The IoT-LAB client is a Python library to access the

IoT-LAB API. Its source code is available on its Github

repository [28], and the API is described in the IoT-LAB

documentation [25].

3.2 Selected cryptographic algorithms

By lack of time, we have not implemented all the round 2

candidate algorithms of the NIST lightweight Competition.

Indeed, for each algorithm, we must first test that the code

correctly compiles on the dedicated hardware platform

using FELICS-AE and, once done, we flash the corre-

sponding code on nodes using the Contiki OS. Thus, we

have arbitrarily decided to test the following list of 20

algorithms with all finalists included (among 33):

– ASCON-128 and ASCON-128a [20]

– Elephant [10]

– ForkAE-128 [2]

– GIFT-COFB [4]

– GRAIN-128AEAD [24]

– Isap [19]

– HyENA [14]

– LILLIPUT-AE [1]

– LOTUS-AEAD and LOCUS-AEAD [15]

– PHOTON-Beetle [5]

– PYJAMASK [23]

– Saturnin [11]

– SKINNY-AEAD [7]

– SPARKLE [6]

– Subterranean 2.0 [16]

– SUNDAE-GIFT [3]

– TinyJAMBU [44]

– Xoodyak [17]

In the context of the IoT-LAB evaluation, we compare 12

of those algorithms with the baseline application no_enc

where no encryption and no authentication are used.

All the codes of these algorithms are available in the

submission package of round 2 candidates8. The size of the

key, of the nonce and of the tag are given in Table 1.

We provide in Table 2, in Table 3 and in Table 4 the

evaluation results in terms of code size (Bytes), RAM

(Bytes) and execution times (cycles) by using the FELICS-

AE framework for the 20 algorithms on the platforms AVR

ATmega128, MSP430F1611 and a classical PC. The codes

are compiled with the option -03 and we measure the

performances of encrypting 16 bytes of plaintext with 16

bytes of associated data.

In Table 2, we show the results in terms of RAM size,

code size and execution time for the 20 algorithms when

executing the algorithms on an AVR ATmega128. Two

groups emerge regarding the execution time: one group

composed of GIFT-COFB, Isap-A-128a, GRAIN-

128AEAD, HyENA-128, LOCUS-AEAD-128, LOTUS-

AEAD-128, Pyjamask-128, Elephant-160 and SUNDAE-

GIFT-96-128 require more than 1 millions of cycles

whereas the second group composed of Ascon-128, Ascon-

128a, ForkAE-128, Lilliput-I-128, Lilliput-II-128, Romu-

lus-M1-128, SKINNY-AEAD-M1-128, Saturnin-CTR-

Cascade-256, Schwaemm256-128, PHOTON-Beetle-

AEAD128 (with a dedicated code), Sub-terranean-SAE-

128 and Xoodyak-128 require less than 550 000 cycles.

The best performing algorithm in this category is Sch-

waemm256-128 (with a dedicated code) followed closely

by PHOTON-Beetle-AEAD128 with also a dedicated code.

Concerning code size, only six algorithms (PHOTO-

N6Beetle-AEAD128, Ascon-128, Ascon-128a, Schwaem-

m256-128, Lilliput-I-128 and Lilliput-II-128) have a code

size of less than or around 5000 Bytes. The other ones have

higher code sizes up to 36 000 Bytes. Concerning used

RAM, excepting HyENA-128, LOCUS-AEAD-128 and

LOTUS-AEAD-128, all the algorithms require less than

1000 Bytes of RAM even going down to 200 or 300 Bytes.

7 https://www.iot-lab.info/testbed/dashboard

8 https://csrc.nist.gov/Projects/lightweight-cryptography/round-2-

candidates

Wireless Networks (2022) 28:3453–3476 3457

123

https://www.iot-lab.info/testbed/dashboard
https://csrc.nist.gov/Projects/lightweight-cryptography/round-2-candidates
https://csrc.nist.gov/Projects/lightweight-cryptography/round-2-candidates

Of course, those results highlight the better performances

of a dedicated code.

In Table 3, we show the results in terms of RAM size,

code size and execution time for the 20 algorithms when

executing the algorithms on an MSP430F1611. The same

group (GIFT-COFB, Grain-128AEAD, Isap-A-128a,

HyENA-128, LOCUS-AEAD-128, LOTUS-AEAD-128,

Pyjamask-128, Elephant-160 and SUNDAE-GIFT-96-128)

and surprisingly PHOTON6Beetle-AEAD128 (with the

reference code) have bad performances: more than 1 mil-

lions of cycles whereas the others require less than 500 000

cycles. The case of GRAIN is clearly particular and mainly

depend on the code versions: with the ref code, the per-

formances are bad but with the optimized one, GRAIN is

among the best. Concerning the code size, 12 algorithms

(ForkAE-128, HyENA-128, Pyjamask-128, LOCUS-

AEAD-128, Romulus-N, GIFT-COFB, Isap-A-128a, Xoo-

dyak-128, Romulus-M1-128 and LOTUS-AEAD-128)

have a code size greater than 10 000 Bytes, all the other are

beyond this bound with a special mention to Lilliput-II and

Schwaemm256-128 where the code size does not exceed

3700 Bytes. For the RAM size, only HyENA-128, LOCUS-

AEAD-128 and LOTUS-AEAD-128 have a RAM size

greater than 1000 Bytes. We have to note that Grain with

the optimized code has a required RAM less than 100

Bytes, closely followed by TinyJAMBU-128 adn Lilliput-

II-128.

Thus, regarding the two embedded hardware platforms,

the results of the algorithms have closely similar trends:

they are good or bad for both.

Finally, in Table 4, we show the results in terms of

RAM size, code size and execution time for the 20 algo-

rithms when executing the algorithms on a classical PC

(Intel CoreTM i5-3570 CPU @ 3.40GHz, 7.7GiB RAM). It

seems that this evaluation is a little bit different, compared

to the others. The eight algorithms (Grain-128AEAD,

Elephant-160, PHOTON-Beetle-AEAD128, Grain-

128AEAD, HyENA-128, LOCUS-AEAD-128, LOTUS-

AEAD-128 and SUNDAE-GIFT-96-128) have execution

time greater than 80 000 cycles. However, GIFT-COFB

that behaves badly on small embedded platforms becomes

a reasonable candidate here with an execution time equal to

18 000 cycles, the same remark holds for Pyjamask-128

that has also a lower execution time in PC compared to the

other platforms. Special mention to Ascon-128 and Ascon-

128a that require about 2000 cycles. Concerning code size,

surprisingly, the behavior on a PC is closely the same as

the behavior on the AVR: Grain-128AEAD, ForkAE-128,

GIFT-COFB, HyENA-128, LOCUS-AEAD-128, LOTUS-

AEAD-128, Pyjamask-128, Romulus-M1-128, Romulus-N

and Subterranean-SAE-128 have a code size greater than

10 000 Bytes whereas Ascon-128 and Ascon-128a with the

ref code have a code size of about 2 000 Bytes. Con-

cerning RAM size, Grain-128AEAD (ref), HyENA-128,

LOCUS-AEAD-128, LOTUS-AEAD-128 and SUNDAE-

GIFT-96-128 require more than 2 000 Bytes of RAM

whereas Ascon-128 (opt64), Ascon-128a (opt64) and

Grain-128AEAD (opt32) require about 200 Bytes of

RAM.

3.3 Discussion

Our results show that the algorithm Schwaemm256-128 is

suitable for the AVR ATMEGA128 hardware platform

since it provides well balanced performance regarding code

size, RAM usage and execution time. For the

MSP430F1611 hardware platform, the most suitable algo-

rithm is GRAIN-128AEAD with optimized code (opt32).

On PC hardware platforms, the most suitable algorithm is

Ascon-128.

Thus, we find that analysing the performance of the

algorithms on small embedded platforms remains impor-

tant because the performance results obtained for a PC

could hide different realities in terms of execution time,

code size and RAM for many of them, in particular the

MSP430 being the most consuming platform in terms of

Table 1 Key, nonce and tag sizes for algorithms benchmarked with

FELICS-AE

Key: k Nonce: n tag size: s

Ascon-128 128 128 128

Ascon-128a 128 128 128

Elephant-160 128 96 64

ForkAE-128 128 104 128

GIFT-COFB 128 128 128

Grain-128AEAD 128 96 64

Isap-A-128a 128 128 128

HyENA-128 128 96 128

LOCUS-AEAD-128 128 128 64

LOTUS-AEAD-128 128 128 64

Lilliput-I-128 128 120 128

Lilliput-II-128 128 120 128

PHOTON-Beetle-AEAD128 128 128 128

Pyjamask-128 128 96 128

Romulus-M1-128 128 128 128

Romulus-N 128 128 128

Saturnin-CTR-Cascade-256 256 128 256

Schwaemm256-128 128 256 128

SKINNY-AEAD-M1-128 128 128 128

Subterranean-SAE-128 128 128 128

SUNDAE-GIFT-96-128 128 96 128

TinyJAMBU-128 128 96 64

Xoodyak-128 128 128 128

3458 Wireless Networks (2022) 28:3453–3476

123

execution time. Moreover, we also observe that dedicated

codes are of course more efficient than reference codes. So,

it is really important that authors provide dedicated codes

for dedicated platforms. We also provide in Appendix 1 the

results we obtained for the NIST finalists of an ARM

Cortex-M3.

4 Our benchmarking framework with IoT-
LAB

We will present in this section the way we have imple-

mented the identified performance metrics on the 12

selected algorithms. First, those algorithms need to be

compiled on Contiki before we can use them on the IoT

application to deploy on IoT-LAB.

4.1 Architecture

The global architecture of our framework is presented in

Fig. 2.

We describe here the different components interacting

with the benchmarking tool. Two types of components can

be distinguished: the external components and the internal

components. The internal components are entities we

developed and set up while the external components are

external entities we are only using.

4.1.1 External components

Two external components with which the benchmarking

tool interacts are the following: the IoT-LAB platform and

the IoT-LAB tools. Their code can be retrieved from the

IoT-LAB Git repository9.

Table 2 Benchmarking results using FELICS-AE on AVR ATmega128

Version CFLAGS Code size (B) RAM (B) Execution time (cycles)

ASCON-128 ref -O3 5838 265 193031

ASCON-128A ref -O3 6098 281 163965

ELEPHANT-160 ref -O3 5850 832 18525062

FORKAE-128 ref -O3 36579 605 194175

GIFT-COFB ref -O3 17066 222 1000301

GRAIN-128AEAD ref -O3 6375 814 2886593

HYENA-128 ref -O3 14712 1724 1199057

ISAP-A-128A ref -O3 6790 301 2817987

LOCUS-AEAD-128 ref -O3 19668 1462 1503685

LOTUS-AEAD-128 ref -O3 23540 1508 1504857

LILLIPUT-I-128 felicsref -O3 5258 265 111042

LILLIPUT-II-128 felicsref -O3 4484 231 132532

PHOTON-BEETLE-AEAD128 ref -O3 10016 270 1114077

PHOTON-BEETLE-AEAD128 avr8_speed -O3 3504 89 59204

PHOTON-BEETLE-AEAD128 avr8_lowrom -O3 1556 89 99668

PYJAMASK-128 ref -O3 20510 700 2038726

ROMULUS-M1-128 ref -O3 28314 398 416506

ROMULUS-N ref -O3 26622 377 127689

SKINNY-AEAD-M1-128 ref -O3 11994 448 288521

SUNDAE-GIFT-96-128 ref -O3 11674 225 1665220

SATURNIN-CTR-CASCADE-256 ref -O3 19202 615 125303

SCHWAEMM256-128 ref -O3 18525 313 151214

SCHWAEMM256-128 opt -O3 5074 247 139847

SCHWAEMM256-128 avr -O3 5776 222 41669

SUBTERRANEAN-SAE-128 ref -O3 11912 803 515615

TINYJAMBU-128 ref -O3 5298 163 366342

TINYJAMBU-128 opt -O3 6626 171 348636

XOODYAK-128 ref -O3 7102 363 269422

9 https://github.com/iot-lab.

Wireless Networks (2022) 28:3453–3476 3459

123

https://github.com/iot-lab

The IoT-LAB platform, described in the Sect. 3, allows

an authenticated user to launch experiments on IoT assets.

It then allows the user to access energy consumption data

and traffic data. Thus, it handles the experiments and for-

mats their related data.

The IoT-LAB tools are used to compile the firmwares in

order to make them run on the IoT assets and to specify,

retrieve and parse the requested experiments data.

4.1.2 Internal components

The benchmarking tool can be divided into three internal

entities: the SQLite3 database, the local files and the

Python scripts.

The SQLite3 database stores the experiments data, as

well as the topologies and measured data.

The local files store the data files generated by IoT-

LAB, which are retrieved by the Python script when an

experiment ends. They could be considered as temporary

files, as they are then parsed in order to extract metrics,

which are then stored in the database. They present dif-

ferent formats: the consumption data is contained in OML

files, the traffic data is contained in PCAP files. Log files

are generated as well.

A set of Python scripts orchestrate all the benchmarking

process. They parse the configuration file, create and fill the

database, manipulate the local files and interact with the

IoT-LAB platform and tools. A complete description of the

scripts and the way they interact with all the components is

given in Appendix 1. The Python scripts create the data-

base, store and retrieve data from it by using the Database

module. They also copy the files generated by IoT-LAB

while running an experiment to local files. Then, they parse

these files in order to sum them up in the database.

Moreover, the IoT-LAB tools propose an interface

through which the Python scripts can communicate with

the IoT-LAB platform. It namely includes an API to launch

experiments by submitting their parameters, and a user

space to retrieve the generated data.

Table 3 Benchmarking results using FELICS-AE on MSP430F1611

Version CFLAGS Code size (B) RAM (B) Execution time (cycles)

ASCON-128 ref -O3 7638 258 475222

ASCON-128A ref -O3 7914 276 398238

ELEPHANT-160 ref -O3 6524 806 17073111

FORKAE-128 ref -O3 24370 688 300268

GIFT-COFB ref -O3 12246 266 2943908

GRAIN-128AEAD opt32 -O3 11032 86 244766

GRAIN-128AEAD ref -O3 6646 580 3601170

HYENA-128 ref -O3 49064 1770 1181695

ISAP-A-128A ref -O3 11692 300 8109430

LOCUS-AEAD-128 ref -O3 16444 1478 1844356

LOTUS-AEAD-128 ref -O3 19530 1520 1844030

LILLIPUT-I-128 felicsref -O3 5048 352 151472

LILLIPUT-II-128 felicsref -O3 4296 298 178331

PHOTON-BEETLE-AEAD128 ref -O3 7972 372 1125425

PYJAMASK-128 ref -O3 16318 732 2930109

ROMULUS-M1-128 ref -O3 27096 490 471528

ROMULUS-N ref -O3 15040 526 187504

SKINNY-AEAD-M1-128 ref -O3 9626 466 355783

SUNDAE-GIFT-96-128 ref -O3 12122 228 4903216

SATURNIN-CTR-CASCADE-256 ref -O3 11004 566 126453

SCHWAEMM256-128 ref -O3 12483 292 132770

SCHWAEMM256-128 opt -O3 3652 254 135686

SUBTERRANEAN-SAE-128 ref -O3 10630 816 506407

TINYJAMBU-128 opt -O3 3806 142 299234

TINYJAMBU-128 ref -O3 4038 170 314440

XOODYAK-128 ref -O3 10119 316 174400

3460 Wireless Networks (2022) 28:3453–3476

123

4.2 Overall description of an experiment

We give here a general overview of generating an experi-

ment. More details are available in Appendix 1.

4.2.1 Configuration

The parameters required by the script in order to launch

experiments are given in Table 5.

4.2.2 How it works

Launching and handling an experiment is done in four

main steps:

1. Defining the resources related to the given configura-

tion file (or parameters)

2. Launching the experiment using the iotlabcli library

3. Launching the traffic capture when the experiment’s

status is ‘‘Running’’

4. Retrieving the data related to the experiment when the

status of the latter is ‘‘Terminated’’.

The resources related to an experiment are its nodes, the

firmwares and profiles associated to these nodes.

The client nodes and the server node are defined from

the architecture and the topology provided in the configu-

ration file. We manually identified the nodes corresponding

to a certain configuration (architecture, topology) by

observing which nodes are linked together when creating a

Table 4 Benchmarking results using FELICS-AE on PC

Version CFLAGS Code size (B) RAM (B) Execution time (cycles)

ASCON-128 opt64 -O3 9906 204 2256

ASCON-128 ref -O3 2113 344 2282

ASCON-128A opt64 -O3 12762 212 2529

ASCON-128A ref -O3 2208 344 2102

ELEPHANT-160 ref -O3 9284 1768 458421

FORKAE-128 ref -O3 20534 920 28022

GIFT-COFB ref -O3 15456 428 18407

GRAIN-128AEAD opt32 -O3 6184 168 100706

GRAIN-128AEAD ref -O3 12397 2044 151863

HYENA-128 ref -O3 19896 1896 82328

ISAP-A-128A ref -O3 4280 520 29535

ISAP-A-128A opt_64 -O3 21967 336 10578

LOCUS-AEAD-128 ref -O3 28400 1960 127586

LOTUS-AEAD-128 ref -O3 36043 2048 127831

LILLIPUT-I-128 felicsref -O3 5811 608 14621

LILLIPUT-II-128 felicsref -O3 5359 560 17015

PHOTON-BEETLE-AEAD128 ref -O3 8917 536 288870

PHOTON-BEETLE-AEAD128 ref -O3 8917 536 288973

PYJAMASK-128 ref -O3 17433 1128 49238

ROMULUS-M1-128 ref -O3 41416 824 42228

ROMULUS-N ref -O3 33851 1044 20102

SKINNY-AEAD-M1-128 ref -O3 7880 848 36341

SUNDAE-GIFT-96-128 ref -O3 5774 2000 117316

SATURNIN-CTR-CASCADE-256 ref -O3 10015 792 12861

SCHWAEMM256-128 ref -O3 9677 456 6022

SCHWAEMM256-128 opt -O3 3304 336 4343

SUBTERRANEAN-SAE-128 ref -O3 14059 1031 32584

TINYJAMBU-128 ref -O3 2234 248 4366

TINYJAMBU-128 opt -O3 2776 248 3503

XOODYAK-128 ref -O3 7241 568 9549

Wireless Networks (2022) 28:3453–3476 3461

123

RPL network10. Thus, the following nodes are associated to

the architecture ‘‘m3’’ and the ‘‘line’’ topology:

– m3-358.grenoble.iot-lab.info (as server),

– m3-318.grenoble.iot-lab.info (as client),

– m3-326.grenoble.iot-lab.info (as client),

– m3-334.grenoble.iot-lab.info (as client),

– m3-342.grenoble.iot-lab.info (as client),

– m3-350.grenoble.iot-lab.info (as client).

For each experiment, two firmwares are used: one for the

server node, and the other for the client nodes. For now, the

firmwares to use are only defined by the requested Oper-

ating System because, for each chosen operating system,

all the available algorithms are launched. The profile

‘‘consumption_and_sniffer’’ is used when traffic capture is

required.

Once the resources have been defined, the experiment is

launched using the library iotlabcli.experiment. The state

of the experiment is then retrieved each 30 seconds. As

soon as this state is Running, the traffic capture is launched.

The traffic capture is launched through the following

SSH command:

sniffer aggregator�l\site[;\architecture[;

\server id[�o\experiment id[�server:pcap

Thus, a PCAP file is created on the user space

\user[@\site[.iot-lab.info. It is retrieved at

the end of the experiment, along with the different mea-

sures defined by the profile.

4.2.3 Retrieving the data

Retrieving the data is the last step of the experiment

deployment. It is done by remotely copying the folder

generated by IoT-LAB regarding the selected profiles of

Fig. 2 Overview of the global

architecture of our

benchmarking framework

Table 5 Parameters of the

configuration file of a

benchmarking experiment

Parameter Description

Username Username to connect on IoT-LAB

Password Password to connect on IoT-LAB

Ssh-key-file SSH key file to perform a SCP on the IoT-LAB user space

Duration Duration of the experiment in minutes

Architecture Architecture of the nodes (for now, ‘‘m3’’ is implemented)

Topology Topology of the nodes

OS Operating system used for the firmware of the nodes

(for now, ‘‘contiki-ng’’ is implemented)

Profile Profile of the nodes

Operation Type of operation the user wants to do (in this case, it is ‘‘launch-only’’)

because we are focusing on the launching of the experiments)

10 As a routing algorithm is required, we decide to use the standard

RPL. See [43] for more details.

3462 Wireless Networks (2022) 28:3453–3476

123

the nodes. Moreover, the PCAP file created containing the

generated packets by the nodes is also retrieved. These data

are stored in the local folder data/\experiment_id[and

used by the Experiments Analysis Tool. For each node, the

voltage and the power of the nodes, as well as the captured

traffic are stored.

The Experiments Analysis Tool takes as inputs the files

generated and retrieved by the Experiments Deployment

Tool. The parameters required by the script in order to

analyze the experiments data are given in Table 6.

4.3 Performance metrics

First of all, for an accurate measure of the performance

metrics, we identified a transition time which corresponds

to 5% of the total time of the experiment. The packets

received before this transition time after the beginning of

the experiment are not considered, and also the packets

received after the end of the experiment, minus this time.

We identified the following metrics which are appro-

priate for evaluating the network performance of the

algorithms.

4.3.1 Bytes per second

The number of bytes per second for an experiment is

computed on the baseline experiment, where the client

does not wait between sending two packets. The sum of the

data packets’ lengths is then computed, and divided by the

time interval of the experiment which is its duration minus

twice the transition time.

4.3.2 Latency

When a client sends a packet, it writes it in the log file.

Likewise, when the server receives a packet, it writes it

also. In these records, each message is identified by an ID.

Thus, we retrieve the latency, by subtracting the reception

time and the sending time of a packet having the same ID.

4.3.3 Limit of packets per second

The limit of packets per second is obtained by dividing the

number of data packets received by the server, by the

duration of the packets capture. In this case, the client does

not wait between sending two packets. This number rep-

resents the amount of network charge a configuration can

handle.

4.3.4 Packet delivery ratio (PDR)

This ratio is obtained by dividing the number received

packets by the total number of packets sent. This value is

then multiplied by 100 in order to get a percentage. In this

case, the client does not wait between sending two packets.

4.3.5 Packets per second

The number of received packets is then computed, and

divided by the duration of the experiment. The duration of

the experiment is running time of the experiment minus

twice the transition time. In this case, the client does not

wait between sending two packets.

4.3.6 Mean of the power consumption

The experiment duration time is split in several time

subintervals. For each subinterval, the mean of the power

measures (in Watts) associated is computed by doing the

sum of the power measures saved for all the nodes of the

experiments, divided by the number of measures. These

mean values are then represented in a boxplot (one boxplot

for each algorithm). We also represent these mean values

by a graph, where the value of the X-axis for each measure

is the middle time of the associated interval. The graph can

present several curves: one per algorithm.

Watts per packet. The number of watts consumed per

packet is computed over the experiment duration as the

total consumption divided by the number of received

packets.

5 Obtained results

In this section, we present the obtained results regarding

the seven chosen metrics for the 12 candidate algorithms

by using two series of experiments.

Each experiment involves an IoT application deployed

on 2 nodes, a client and a server11 and lasts 20 minutes.

Each node has an ARM-Cortex M3 hardware and using the

OS Contiki-NG with RPL protocol as the underlying

routing protocol. We run two sets of experiments: one for

packets of length 128 bytes and one for packets of length

512 bytes. We have to note that the latency results of 512

bytes is missing because, we lost the corresponding data.

We provide in Figs. 3, 4, 5, 6, 7, 8, 9 and 10 the

obtained results for our 7 metrics, the no_enc scenario is

the baseline evaluation for all the experiments.

The most interesting result is the Fig. 3 where the

overall watts consumption is given. First, we note that

consumption values are really low (between 0.134 and

0.142 W) meaning that the consumption of all the algo-

rithms is really low compared to the no_enc scenario. We

11 We limit our study with 2 nodes because when trying more nodes,

whatever the topology, the metrics become more difficult to measure.

Wireless Networks (2022) 28:3453–3476 3463

123

find that the cryptographic operations are not the most

consuming part in IoT devices. The most efficient algo-

rithms in terms of energy consumption are ASCON-128a,

SPARKLE and GIFT-COFB for packets of size 128 bytes

and SUNDAE-GIFT when considering packets of size 512

bytes. GRAIN remains the most energy consuming for both

packet sizes. This first finding is confirmed by the graph

presented in Fig. 4.

The interpretation of the other metrics is more difficult.

However, a global view of the results show that the 512

bytes packets case seems to just flatten all these metrics

except for the no_enc case.

Table 6 Parameters of the configuration file for retrieving experiments data

Parameter Description

Architecture Architecture of the nodes (for now, ‘‘m3’’ is implemented)

Topology Topology of the nodes

Experiments Array of the IDs identifying the experiments to compare

Operation Type of operation the user wants to do (in this case, it is ‘‘analyse-only’’ because we are focusing on the experiments analysis)

Fig. 3 Mean power consumption (watt) over time

Fig. 4 Power consumption (watt) statistics

3464 Wireless Networks (2022) 28:3453–3476

123

In terms of bytes per second as shown in Fig. 5), the

most efficient algorithms in the 128 bytes packets case

seems to be PYJAMASK, LILLIPUT-AE, Subterrean 2.0 and

SUNDAE-GIFT. The worst algorithms in this case are

ASCON-128a and Sparkle. We think that ASCON-128a is

penalized because it is a stream cipher and it has thus a big

warm-up step. The GRAIN algorithm seems to perform a

little bit better.

In terms of latency as shown in Fig. 6, the same algo-

rithms seem to be performing well. However, it is difficult

to generalize the obtained result since the no_enc sce-

nario is not representative while it has not the lowest

average latency.

Regarding the limit of the number of packets per second

as shown in Fig. 7, the most efficient algorithms are

ASCON-128a, GIFT-COFB, LILLIPUT-AE, PYJAMASK,

Sparkle, Subterrean 2.0 and SUNDAE-GIFT.

Fig. 5 The measured number of bytes per second generated by the IoT application and for each used algorithm

Fig. 6 Measured latency (seconds) of the generated packets by the

IoT application and for each used algorithm

Fig. 7 The limit number of packets per second generated by the IoT application and for each algorithm

Wireless Networks (2022) 28:3453–3476 3465

123

Fig. 8 The packet delivery ratio (percentage) of the IoT application and for each algorithm

Fig. 9 Number of generated packets per second by the IoT application and for each algorithm.

Fig. 10 The consumed watts per packet by the IoT application and for each algorithm

3466 Wireless Networks (2022) 28:3453–3476

123

Concerning the Packet Delivery Ratio (PDR) as depic-

ted in Fig. 8, for both cases (128 bytes packets or 512 bytes

packets), the two algorithms ASCON-128a and SPARKLE

perform similar to baseline scenario no_enc with a per-

centage close to 98 %.

Regarding the number of packets per second generated

by the IoT application as shown in Fig. 9, five algorithms

perform correctly: GIFT-COFB, LILLIPUT-AE, PYJA-

MASK, Subterrean 2.0 and SUNDAE-GIFT. This metric is

clearly correlated to the metric of the number of bytes per

second and the metric watts per packet. Thus, the best

algorithms stay the best for those 3 metrics.

Finally, the metric of the consumed watts per packet is

given in Fig. 10. We clearly observe thatASCON-128a and

SPARKLE are disadvantaged in the 128 bytes packets case

but behave better when 512 bytes packets are considered.

Thus, in both cases, the algorithms that behave well are:

GIFT-COFB, Lilliput-AE, PYJAMASK, Subterrean 2.0

and SUNDAE-GIFT. Note also that the bad performances

of SKINNY-AEAD are mainly linked with the fact that we

use SKINNY-TK3 in our implementations leading to a

clear degradation of its performance due to the fact that 56

rounds of the ciphering function are required.

In fact, considering this metric is more realistic than the

average consumed power. Indeed, if we study the case of

ASCON-128a, that is the best algorithm in terms of average

consumed power, this algorithm becomes the worst when

considering watts per packet. This consumption of watts

packets is correlated to its bad results in terms of bytes per

second and packets per second where it they are low com-

pared to the other algorithms. The ASCON-128a algorithm

spends less energy because it ciphers fewer packets. Thus,

regarding the totality of metrics, the average consumed

power of the IoT application must be studied in relation with

the other metrics. The algorithms that behave well for bytes

per second, packets per second and watts per packet are the

ones that are the most efficient regarding energy consump-

tion. This is the case for GIFT-COFB, LILLIPUT-AE, PYJA-

MASK, Subterrean 2.0 and SUNDAE-GIFT.

6 Conclusion and future works

In this paper, we presented a new dedicated benchmarking

framework based on the IoT-LAB platform to evaluate

several lightweight cryptograhpic algorithms which are

candidate in the round 2 of NIST competition. We ported

these algortihms to the Contiki-NG OS and evaluate them

by using an IoT application deployed on the physical nodes

of the platform IoT-LAB while varying the packets size.

The code of our benchmarking tool is publicly available.

Indeed, we expect that developers and cryptographers rely

on it to add more algorithms and metrics.

Our work could be extended by adding algorithms,

metrics, and versions of the available algorithms, etc.

However, our main perspective is that this work establishes

the first step in the direction of real-world evaluation of

lightweight cryptograpihic primitives to enhance IoT

security.

Appendix A: performance results
for the NIST competition finalists on an ARM
Cortex-M3

Clearly, regarding the results of Table 7, SCHWAEMM256-

128 is the most efficient algorithm in terms of execution

time but has a dedicated implementation as the following

ones: ROMULUS-N and TINYJAMBU-128. The importance of

a dedicated implementation for the ARM Cortex-M3 is

thus of primary importance because all the algorithms

tested with the reference code have bad performances.

This is exactly the same behaviour concerning RAM

consumption where TINYJAMBU-128 and SCHWAEMM256-

128 have the lowest consumption, except that ROMULUS-N

becomes worst. The same remark holds for code size.

Wireless Networks (2022) 28:3453–3476 3467

123

Appendix B: detailed view of the python
scripts

Libraries

The Python scripts are written in Python3. They use the

following libraries:

– matplolib and pylab to draw figures

– datetime to handle time measures and compute time

intervals

– time to wait and get the current timestamp

– fpdf to generate a PDF report from a set of experiments

– sqlite3 to interact with the database

– path, from os, to handle files

– pyshark to parse PCAP files

– sys to handle error messages

– configargparse to parse the configuration file

– queue to put the different threads in a queue

– Thread, from threading, to implement a thread

– subprocess to launch the threads and retrieve their

output

– SSHClient, from paramiko, to handle SSH communi-

cation with the IoT-LAB user space

– SCPClient, from scp, to handle SCP operations with

the IoT-LAB user space

– json to handle JSON data

– iotlabcli to interact with the IoT-LAB API

– shutil to copy firmwares files

– enum to force the Algorithm, Architecture, Operat-

ingSystem, Operation, ProfileType, Topology and

DataProcessing values to be part of a predefined set

– Path, from pathlib, to create directories.

Classes

The Python scripts relies on six main classes, with their

relations are depicted in Fig. 11. The Thread class is

imported from the Python library threading.

Enum classes Six classes do not appear in the classes

diagram: they are called Algorithm, Architecture, Operat-

ingSystem, Operation, ProfileType and Topology. They are

written in the file utils.py. They all extend the Enum class,

from the enum library. These classes are used while

checking the content of the configuration file, in order to

force the algorithms, architecture, os, operation, profile,

and topology values to be part of a predefined set.

Singleton class While the data (such as the Enum clas-

ses, mentioned in the previous subsection) directly pro-

vided by the functions of the file utils.py are not retrieved

from a specific instance, the data provided by the database

is retrieved by calling the instance of a class. This is done

in order to guarantee that only one instance accesses the

database at a time, and to be able to close this instance at

Table 7 Performance results with -O3 on ARM Cortex-M3

Version Code size (B) RAM (B) Execution time(cycles)

SCHWAEMM256-128 armv7m_fast 6296 248 5355

SCHWAEMM256-128 armv7m_small 2340 280 6792

ROMULUS-N arm_inline_asm 20976 1572 10294

TINYJAMBU-128 opt 988 148 10342

ASCON-128 opt32 19744 280 13378

TINYJAMBU-128 ref 1212 176 13938

SCHWAEMM256-128 opt 1860 248 16035

XOODYAK-128 ref 5590 424 18546

SCHWAEMM256-128 ref 3070 356 20568

ASCON-128 ref 3256 584 35346

ISAP-A-128A opt_32_armv67m 13048 464 37294

GIFT-COFB ref 10032 372 64143

LILLIPUT-II-128 felicsref 3744 388 90604

ROMULUS-N ref 19756 708 100276

ISAP-A-128A ref 4222 656 511376

PHOTON-BEETLE-AEAD128 ref 9758 632 1270434

PHOTON-BEETLE-AEAD128 ref 9758 632 1270434

ELEPHANT-160 ref 4606 1452 1972673

GRAIN-128AEAD ref 3512 828 2659496

3468 Wireless Networks (2022) 28:3453–3476

123

Fig. 11 Class diagram of our

benchmarking tool

Wireless Networks (2022) 28:3453–3476 3469

123

the end of the scripts. Thus, the Database class extends a

Singleton class.

Modules

Overview of the modules

The scripts present six main modules: global, launch_ex-

periment, analytics, experiment, database and utils. The

first three modules are process-focused: they contain

functions to respectively orchestrate the modules regarding

to the configuration file, launch one or more experiments

on the IoT-LAB platform and retrieve the generated files,

and analyse these latter in order to extract measures. The

last three modules handle data: the experiment module

gathers data related to the experiment in order to manip-

ulate this entity, the database module control the interac-

tion with the database (including its creation), and the utils

module contains data related to our architecture (such as a

common format for the files’ names and paths).

Data handling modules

Experiment The experiment module represents an experi-

ment. It simplifies the handling of the information or the

operation related to this experiment. An experiment can be

instantiated using parameters defined by the user, or using

the database which will provide the parameters associated

to a given experiment ID.

Database The Database module provides tools to

retrieve or store data from the database. It contains the

Database class, which extends a Singleton in order to

ensure that only one instance access to the database at a

time. The Database contains six tables, depicted in the

Fig. 12. Three of them are statically pre-filled by the scripts

(Topology, Node and NodeTopology), while the other

three (Experiment, Measure, Traffic) store data retrieved

while the experiments are launched or analysed.

The Node table stores the nodes used in one or more

topologies. They present an ID, specific to our database, a

node ID, which is related to the ID on the IoT-LAB plat-

form, a site which indicated where the node is located (as

the IoT-LAB platform is divided into multiple sites), and

the architecture of this node.

The Topology table lists the topologies: they present an

ID, specific to our database and a name, for the user use.

The TopologyNode table links each node to its asso-

ciated topology and defines the role it takes (‘server’ or

‘client’). Thus, it contains an ID, specific to our database,

the role the node takes in the topology, the ID of the

associated topology and the ID of the associated node.

The Experiment table stores the parameters of each

experiment which has been launched on IoT-LAB through

the Benchmarking tool. It is linked to a topology, identified

by its ID. Two tables are associated to the Experiment

table: Measure and Traffic, detailed below.

The Measure table stores the power measures associ-

ated to an experiment. The experiment is identified by the

ID specific to the database. Each measure presents an

associated node, also identified by its ID, where the power

has been measured, a timestamp indicating when the power

has been measured, and the measured value in watts.

The Traffic table stores the data computed from the

PCAP capture on the server side during an experimenta-

tion, identified by its ID specific to the database. It itself

presents an ID specific to the database, the number of

considered packets, the time interval during which the

Fig. 12 Database overview

3470 Wireless Networks (2022) 28:3453–3476

123

packets have been captured, and the sum of the lengths of

the considered packets.

Utils The Utils module is a helper: it centralizes the

static data related to the Benchmarking tool architecture of

local files. Moreover, it gathers some functions used by

both the Global, Launch_Experiment and Analytics

modules.

Process handling modules

Global process When using the Benchmarking tool, the

user can configure four distinct operations, depicted in the

Fig. 13: ‘launch-experiments’, ‘analyse-experiments’,

‘analyse-last’ or ‘launch-and-analyse-last’. We can identify

two main phases of the process: ‘Launching experiments’

and ‘Analysing experiments’. The first one when the fol-

lowing options are selected: ‘launch-experiments’ and

‘launch-and-analyse-last’; the second one is used when

these options are selected: ‘analyse-experiments’, ‘analyse-

last’ and ‘launch-and-analyse-last’. These two phases are

detailed in the subsections below.

Launching experiments Input/Output The ‘Launching’

phase takes as input the experiments’ parameters. To

launch several experiments, a list of algorithms can be

submitted in the configuration file. The launched experi-

ments will then present the same parameters, except for

this algorithm. Only experiments with the same parameters

(duration, os, architecture and topology) can then be

compared with each other in the ‘Analysing’ phase. The

‘Launching’ phase outputs a list of experiments IDs. It

contains the IDs of the launched experiments.

Orchestrate the launching of the experiments The

Fig. 14 presents the global process of the ‘Launching’

phase. As mentioned before, multiple experiments can be

launched at once. Thus, each experiment is launched into a

specific Thread. The clients of these experiments do not

wait between two sent packets, so that the max number of

received packets can be computed. This value is used to

compile a new client, waiting between packets in order to

compute the latency. A second experiment, using this cli-

ent, is then launched. The second experiment is referred as

the ‘‘associated experiment’’ of the first one, while the first

experiment is referred as the ‘‘original experiment’’ of the

second one. The process launching one experiment is

described in the following paragraph.

Launch an experiment An experiment is submitted

using the IoT-LAB API. This is done by providing the

parameters given by the user. The nodes to be used are

chosen regarding the topology data contained in the data-

base. On IoT-LAB, an experiment can present multiple

states: ‘Waiting’, ‘Launching’, ‘Running’, ‘Finishing’,

‘Terminated’ and ‘Error’. For each experiment, its state is

regularly checked in order to determine the following

action of the Benchmarking tool. The first time the

experiment is detected as ‘Running’, a traffic capture is

launched on the server side. When the experiment is

detected as ‘Terminated’, the generated files are copied

locally through SCP. The experiment parameters (and ID)

are then stored in the database, in the Experiment

table (Fig. 15).

Analysing the experiments

Input/Output The ‘Analysing’ phase can take as input

the experiments’ parameters or their IDs. If parameters are

provided in the configuration file, the analysis will be done

on the last experiment launched presenting these parame-

ters. As for the ‘Launching’ phase, multiple algorithms can

be requested. They will be analysed separately, and all

presented in the output report. The maximal number of

experiments to consider for each algorithm is indicated in

the configuration file. The experiments to analyse can also

be identified directly by their IDs. The ‘Analysing’ phase

Fig. 13 Process phases

overview

Wireless Networks (2022) 28:3453–3476 3471

123

outputs a PDF report and PNG graphs (included in the

PDF).

Global process The Analysing phase process is depic-

ted in the Fig. 16. For each algorithm, the experiments are

retrieved (regarding their parameters or their IDs), and, for

each experiment, its power measures and its traffic data are

computed.

Power measures The power measures are retrieved

from OML file generated by IoT-LAB while the experi-

ment is running, as shown in Fig. 17. These files (one per

node) are then copied to local files through SCP. For each

experiment, several entries are stored in the table Measure

of the database: one per power measures, namely associ-

ated to a timestamp. The generation of the power graph

from these measures is detailed in the Fig. 18. When the

experiments are analysed, the data of these latter is gath-

ered when the experiments present the same encryption

algorithm. As the power is measured at a specific time, the

power measures are discrete values for all the experiments

and nodes. Thus, in order to gather data for several

experiments, their time duration is divided into several

time windows. The mean power of each time window is

Fig. 14 Steps for launching a process

Fig. 15 Steps for launching an experiment

3472 Wireless Networks (2022) 28:3453–3476

123

then computed. Thereby, a new power measure is simu-

lated: it presents the timestamp of the middle of the time

window as timestamp, and the mean of the power of the

experiments on this time window as value. The power

graph presents these power means. As the boxplot presents

the minimum, the maximum, the median and the first and

third quartile, the power measures are not to be prefor-

matted, contrary to the graph data. Thus, the power mea-

sures of all experiments are simply retrieved from the

database for each algorithm in order to build the associated

boxplot.

Traffic measures The traffic data is retrieved from the

PCAP file generated on the server side by IoT-LAB while

the experiment is running, and from the logs of all the

nodes, clients and server, as shown in Fig. 19. These files

are then copied to local files through SCP. The Bench-

marking tool then parses the PCAP file by using the

pyshark library. The only considered packets are the

packets sent from a client to the server containing an

Fig. 16 Global analysis process

Fig. 17 Power analysis process

Fig. 18 Power graph generation

Wireless Networks (2022) 28:3453–3476 3473

123

encrypted payload. A margin of 5% of the time interval of

the experiment is also ignored at the beginning and the end

of the capture. The traffic measures are computed from the

number, timestamp and lengths of the packets, which are

stored in the database as one entry of the Traffic table. The

computed traffic measures are the following: packets per

second, packets loss and latency.

Acknowledgements This work was partially supported by the project

IMPACT DigiTrust of ‘‘Lorraine Université d’Excellence’’.

References

1. Adomnicai, A., Berger, T. P., Clavier, C., Francq, J., Huynh, P.,

Lallemand, V., Le Gouguec, K. , Minier, M., Reynaud, L., &

Thomas, G. (2019). Lilliput-ae: a new lightweight tweakable

block cipher for authenticated encryption with associated data.

Submitted to NIST Lightweight Project.
2. Andreeva, E., Lallemand, V., Purnal, A., Reyhanitabar, R., Roy,

A., & Vizár, D. (2019). Forkae v. Submission to NIST Light-
weight Cryptography Project.

3. Banik, S., Bogdanov, A., Peyrin, T., Sasaki, Y., Sim, S. M.,

Tischhauser, E., & Todo, Y. (2019). Sundae-gift. Submission to
Round, 1.

4. Banik, S., Chakraborti, A., Iwata, T., Minematsu, K., Nandi, M.,

Peyrin, T., Sasaki, Y., Sim, S. M., & Todo, Y. (2019). Gift-cofb.

Submission to Round, 1.
5. Bao, Z., Chakraborti, A., Datta, N., Guo, J., Nandi, M., Peyrin, T.,

& Yasuda, K. (2019). Photon-beetle. Submission to the NIST
Lightweight Cryptography Standardization Effort.

6. Beierle, C., Biryukov, A., dos Santos, L. C., Großschädl, J.,

Perrin, L., Udovenko, A., Velichkov, V., Wang, Q., & Biryukov,

A. (2019). Schwaemm and esch: lightweight authenticated

encryption and hashing using the sparkle permutation family.

NIST round, 2.
7. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin,

T., Sasaki, Y., Sasdrich, P., & Sim, S. M. (2020). Skinny-aead

and skinny-hash. IACR Transactions on Symmetric Cryptology,
pages 88–131.

8. Bellare, M., Rogaway, P. (2000). Encode-then-encipher encryp-

tion: How to exploit nonces or redundancy in plaintexts for

efficient cryptography. In International Conference on the Theory
and Application of Cryptology and Information Security, pages
317–330. Springer.

9. Bernstein, D. J., & Lange, T. (2019). ebacs: Ecrypt benchmarking

of cryptographic systems. http://bench.cr.yp.to, Access on line in

December 2019.

10. Beyne, T., Chen, Y. L., Dobraunig, C., & Mennink, B. (2020).

Status update on elephant. NIST lightweight competition (2020).
11. Canteaut, A., Duval, S., Leurent, G., Naya-Plasencia, M., Perrin,

L., Pornin, T., & Schrottenloher, A. (2020). Saturnin: a suite of

lightweight symmetric algorithms for post-quantum security.

Transactions on Symmetric Cryptology, 2020(S1), 160–207.
12. Cazorla, M., Gourgeon, S., Marquet, K., & Minier, M. (2015).

Implementations of lightweight block ciphers on a wsn430

sensor.

13. Cazorla, M., Marquet, K., & Minier, M. (2013). Survey and

benchmark of lightweight block ciphers for wireless sensor net-

works. In 2013 international conference on security and cryp-
tography (SECRYPT), pages 1–6. IEEE.

14. Chakraborti, A., Datta, N., Jha, A., & Nandi, M. (2019). Hyena.

Submission to Round, 1.
15. Chakraborti, A., Datta, N., Jha, A. L., Cuauhtemoc, M., Nandi,

M., & Sasaki, Y. (2019). Lotus-aead and locus-aead. Submission
to Round, 1.

16. Daemen, J., Massolino, P. M. C., Mehrdad, A., & Rotella, Y.

(2020). The subterranean 2.0 cipher suite. IACR Transactions on
Symmetric Cryptology, pages 262–294.

17. Daemen, J., Hoffert, S., Peeters, M., Van Assche, G., & Van

Keer, R. (2020). Xoodyak, a lightweight cryptographic scheme.

Transactions on Symmetric Cryptology, 2020(S1), 60–87.
18. Dinu, D., Le Corre, Y., Khovratovich, D., Perrin, L., Großschädl,

J., & Biryukov, A. (2019). Triathlon of lightweight block ciphers

for the internet of things. Journal of Cryptographic Engineering,
9(3), 283–302.

19. Dobraunig, C.E., Eichlseder, M., Mangard, S., Mendel, F.,

Mennink, B., Primas, R., & Unterluggauer, T. (2020). Isap v2. 0.

20. Dobraunig, C., Eichlseder, M., Mendel, F., & Schläffer, M.

(2014). Ascon. Submission to the NIST LWC competition: http://
ascon. iaik. tugraz. at.

21. Dos Santos, L. C., Großschädl, J., & Biryukov, A. (2019). Felics-

aead: benchmarking of lightweight authenticated encryption

Fig. 19 Traffic analysis process

3474 Wireless Networks (2022) 28:3453–3476

123

http://bench.cr.yp.to

algorithms. In International Conference on Smart Card Research
and Advanced Applications, pages 216–233. Springer.

22. Eisenbarth, T., Kumar, S., Paar, C., Poschmann, A., & Uhsadel,

L. (2007). A survey of lightweight-cryptography implementa-

tions. IEEE Design and Test of Computers, 24(6), 522–533.
23. Goudarzi, D., Jean, J., Kölbl, S., Peyrin, T., Rivain, M., Sasaki,

Y., & Sim, S. M. (2020). Pyjamask: Block cipher and authenti-

cated encryption with highly efficient masked implementation.

IACR Transactions on Symmetric Cryptology, pages 31–59.
24. Hell, M., Johansson, T., Meier, W., Sönnerup, J., Yoshida, H.

(2019). Grain-128aead-a lightweight aead stream cipher. NIST
Lightweight Cryptography, Round, 1.

25. Iot-lab api documentation. https://github.com/iot-lab/iot-lab-cli

ent/blob/master/iotlabclient/client_README.md.

26. Iot-lab cli tools documentation. https://github.com/iot-lab/iot-lab/

wiki/CLI-Tools.

27. Iot-lab cli tools. https://pypi.org/project/iotlabcli/.

28. Iot-lab client github. https://github.com/iot-lab/iot-lab-client.

29. Iot-lab github. https://github.com/iot-lab.

30. Iot-lab website. https://www.iot-lab.info.

31. Kerckhof, S., Durvaux, F., Hocquet, C., Bol, D., & Standaert, F.-

X. (2012). Towards green cryptography: a comparison of light-

weight ciphers from the energy viewpoint. In International
Workshop on Cryptographic Hardware and Embedded Systems,
pages 390–407. Springer.

32. Knežević, M., Nikov, V., & Rombouts, P. (2012). Low-latency

encryption–is ‘‘lightweight= light? wait’’? In International
Workshop on Cryptographic Hardware and Embedded Systems,
pages 426–446. Springer.

33. Law, Y. W., Doumen, J., & Hartel, P. (2006). Survey and

benchmark of block ciphers for wireless sensor networks. ACM
Transactions on Sensor Networks (TOSN), 2(1), 65–93.

34. Le Gouguec, K., & Huynh, P. (2019). Felics-ae: a framework to

benchmark lightweight autheticated block ciphers. In Proceed-
ings of the 2019 NIST Lightweight Cryptography Workshop.

35. Matsui, M., & Murakami, Y. (2013). Minimalism of software

implementation. In International Workshop on Fast Software
Encryption, pages 393–409. Springer,.

36. National Institute of Standards and Technology (NIST). sha-3-

project. [Online; 2007].

37. NIST Fips Pub. (2001). 197: Advanced encryption standard (aes).

Federal information processing standards publication,197(441),
0311.

38. Onelab website. https://onelab.eu.

39. RIOT. The friendly operating system for the internet of things.

40. Texas Instruments. Msp430f1611 datasheet. https://www.ti.com/

lit/ds/symlink/msp430f1611.pdf.

41. Wenzel-Benner, C., & Gräf, J. (2010). Xbx: external bench-

marking extension for the supercop crypto benchmarking

framework. In International Workshop on Cryptographic Hard-
ware and Embedded Systems, pages 294–305. Springer.

42. Wenzel-Benner, C., Gräf, J., Pham, J., & Kaps, J.-P. (2012). Xbx

benchmarking results january 2012. In Third SHA-3 Candidate
Conference (2012), http://xbx.das-labor.org/trac/wiki.

43. Winter, T., Thubert, P., Brandt, A., Hui, J. W., Kelsey, R., Levis,

P., et al. (2012). Rpl: Ipv6 routing protocol for low-power and

lossy networks. RFC, 6550, 1–157.
44. Wu, H., & Huang, T. (2019). Tinyjambu: A family of lightweight

authenticated encryption algorithms. Submission to the NIST

Lightweight Cryptography Competition, https://csrc.nist.gov/

CSRC/media/Projects/Lightweight-Cryptography/documents/

round-1/spec-doc/TinyJAMBU-spec. pdf.

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Soline Blanc received the mas-

ter’s degree in computer science

from TELECOM Nancy Engi-

neering School, France, in 2015.

She was a research engineer in

the RESIST team of Inria Nancy

and the CARBONE team of

Loria, France; and is currently

part of the Innovation, Devel-

opment and Technologies team

of Mila, Canada, where she

contributes to the development

of tools for machine learning

researchers.

Abdelkader Lahmadi is Associ-

ate Professor of Computer Sci-

ence at University of Lorraine,

France. He is a permanent

member of the RESIST research

team at LORIA - INRIA Nancy

Grand Est, working on security

monitoring and management.

He received a PhD degree in

Computer Science (2007). He

published in all major confer-

ences in Network and Service

Management. His research

interests are mainly focusing on

the securitin monitoring of net-

worked systems including Software Defined Networks, IoT and

SCADA systems by applying machine learning techniques.

Kévin Le Gouguec is software

engineer previously employed

by Airbus CyberSecurity, for-

merly specialized in network

security and cryptography

implementation. Now employed

by AdaCore and focused on

cross-environment toolchains &

debugging environments.

Wireless Networks (2022) 28:3453–3476 3475

123

https://github.com/iot-lab/iot-lab-client/blob/master/iotlabclient/client_README.md
https://github.com/iot-lab/iot-lab-client/blob/master/iotlabclient/client_README.md
https://github.com/iot-lab/iot-lab/wiki/CLI-Tools
https://github.com/iot-lab/iot-lab/wiki/CLI-Tools
https://pypi.org/project/iotlabcli/
https://github.com/iot-lab/iot-lab-client
https://github.com/iot-lab
https://www.iot-lab.info
https://onelab.eu
https://www.ti.com/lit/ds/symlink/msp430f1611.pdf
https://www.ti.com/lit/ds/symlink/msp430f1611.pdf
http://xbx.das-labor.org/trac/wiki
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/TinyJAMBU-spec.%20pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/TinyJAMBU-spec.%20pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/TinyJAMBU-spec.%20pdf

Marine Minier received the

Ph.D. degree in 2002, from the

Université de Limoges and the

French Habilitation from the

Université de Lyon in 2012. In

2005, she joined the INSA de

Lyon and the CITI Laboratory,

as an Assistant Professor. Since

2016, she is professor at

Université de Lorraine and at

the LORIA Lab. Her research

interests include Symmetric

Key Cryptography and Security

in WSNs.

Lama Sleem is a Doctor in cyber

security. She works as a post-

doctoral researcher at the

University of Lorraine with the

RESIST team. She graduated

from University of Franche-

Comté in 2020. Her research is

mainly about lightweight cryp-

tography and developing cyber

content for security training.

3476 Wireless Networks (2022) 28:3453–3476

123

	Benchmarking of lightweight cryptographic algorithms for wireless IoT networks
	Abstract
	Introduction
	Motivation and contribution
	Organization

	Related work
	Preliminaries
	IoT-LAB: platform description
	Overview
	Nodes, components and topologies
	Profile and experiment

	Selected cryptographic algorithms
	Discussion

	Our benchmarking framework with IoT-LAB
	Architecture
	External components
	Internal components

	Overall description of an experiment
	Configuration
	How it works
	Retrieving the data

	Performance metrics
	Bytes per second
	Latency
	Limit of packets per second
	Packet delivery ratio (PDR)
	Packets per second
	Mean of the power consumption

	Obtained results
	Conclusion and future works
	Appendix A: performance results for the NIST competition finalists on an ARM Cortex-M3
	Appendix B: detailed view of the python scripts
	Libraries
	Classes
	Modules
	Overview of the modules
	Data handling modules
	Process handling modules

	Acknowledgements
	References

