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Abstract
In Cognitive Radio Network, after sensing process, the selection and decision for a reliable channel from the list of free

channels is important for assignment to Cognitive Users (CUs) for communication with Quality of Service (QoS). In this

paper a consistent spectrum selection and decision scheme with two-fold neural network has been proposed for selection

and decision process and its performance is compared with the schemes of Genetic algorithm and Back Propagation Neural

Network (BPNN). BPNN- Adaptive Neuro Fuzzy Inference System (ANFIS) is a two-fold spectrum selection and decision

approach which combines both BPNN and ANFIS techniques. A channel with the required QoS is selected based on the

parameters such as Primary User (PU) states, signal strength, spectrum demand, velocity and distance. The simulation

analysis shows that the BPNN–ANFIS technique reduces probability of blocking and dropping and therefore the accuracy

of reliable channel selection obtained for the CUs use is more than 92%. The blocking probability of the proposed

technique ranges from 1 to 3% which is much lower than the Genetic Algorithm (9–50%) and BPNN (8–40%). The

maximum dropping probability of the proposed technique is only 4% and this is lower compared to 20% dropping in the

other two techniques.

Keywords Cognitive radio � Spectrum selection � Spectrum decision � Back propagation neural network �
Adaptive neuro fuzzy inference system

1 Introduction

The existing cellular communication networks are not able

to satisfy the needs of the customers, due to increasing

demand of mobile internet. Every day, new devices have

been included with some means of wireless transmissions

and they exist everywhere with the Internet of Things

(IoT). The diverse wireless networking technologies as

well as the devices are famous infrastructures for accessing

the internet and transmitting the information between the

technologies and the devices. The existing radio access

technique and the mobile infrastructure do not have the

capability to support the users with the existing spectrum

allocation methods and they also lead to congestion in the

network and scarcity in spectrum resources. To satisfy the

customers’ needs and for fast transmission of mobile data,

new generations of mobile networks have been evolved but

still there exist some unused frequency bands in all the

existing generations of mobile networks. To avoid the

spectrum scarcity and to utilize the unused frequency

bands, an emerging network such as CRN cans be used.

The traditional static spectrum allocation methods have

led to inefficient use of valuable wireless telephone tech-

nology spectrum. Also, the growing demand of spectrum

usage, due to massive number of wireless applications,

renders these policies inapplicable. CRN is a kind of

intelligent wireless communication approach that has been

used to receive and identify the channels of communication

abruptly which channel can be engaged or which cannot be

engaged by the users.
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The new emerging CRN [1] has been an intelligent radio

paradigm for efficient sharing of spectrum in a more flex-

ible fashion by a number of operators/users/systems and it

can be configured dynamically. The CRN with intelligent

searching and by efficiently using the idle spectrum

resources helps to use the free spectrum resources. CRN [2]

can exploit vacancies in licensed frequency bands to self-

organize the dynamic spectrum access (DSA) in the net-

works as well as it can operate over a dynamic bandwidth

in both time and space domains. The CRN as an enabling

technology will offer benefits to several types of users

through intelligent communication and networking models

in the whole wireless world and it will also provide better

business opportunities for incumbent operators as well as

new technical dimensions for smaller operators. CRN is

also an efficient approach for spectrum requirements and to

be used in Next Generation Network (NGN).

Mitola has introduced the concept of cognitive radio

which can learn the current radio frequency environment

and its surroundings. Then, autonomously changes the

operational parameters based on the observation to access

the radios which are idle. In general, the CR consists of

different components such as radio, sensors, knowledge

database and two different engines for learning and rea-

soning. The main feature of cognitive radio is that it is able

to reconfigure the transmission parameters such as modu-

lation techniques, transmission power and RF. There are

three different stages such as observe, learn and reason, and

act in cognitive cycle.

In RF environment, during the observing phase, through

spectrum sensing techniques [3], the CR identifies the

channels that are not used by the primary user and with

help of knowledge database, in learning and reasoning

phases; CR optimizes cognitive user objectives for select-

ing the suitable channel for their usage. In case of arrival of

primary user, it leaves the channel immediately and again

senses the next idle channel for cognitive user. Cognitive

user can select the best channel through handoff and

spectrum management techniques. To achieve high spec-

trum utilization in DSA, spectrum allocation and accessing

techniques are very important.

Based on the above-mentioned activities, the CRN will

identify and access the unoccupied channel which is known

as spectrum hole and this process is named as DSA [4]. To

improve the performance and to efficiently utilize the

spectrum, the DSA process has to be strengthened. Many

researchers have been focusing on sensing and sharing the

spectrum for the static environmental condition. Even in

dynamic environment, the time taken for the channel

selection is too high and the channel switching process is

also more complex. Hence, it leads to poor probability of

detection as well as affects the system performance.

During the observe phase, through wrong input statis-

tics, the throughput of the network may be reduced and it

may cause interference to primary users. Knowledge of the

radio can be collected in learning stage by using different

algorithms such as AI, machine learning, etc,. With the

help of knowledge database, CR tries to accumulate all the

objective functions. By varying the input parameters, sig-

nificant changes can be observed in objective functions and

the optimized results can again be stored in knowledge

database.

Still, some issues such as accuracy of spectrum sensing,

uncertainty of primary user interference and primary user

equipment attacks are unresolved in DSA [5, 6]. To address

these issues in DSA, a competent as well as consistent

spectrum selection scheme, using energy detector

approach, which includes EM algorithm with learning

approach and two fold spectrum decision approach by

adopting Artificial Intelligence Neural Network (ANN) and

Adaptive Neuro Fuzzy Inference System (ANFIS) has been

proposed to improve DSA with Quality of Service (QoS) in

dynamic network environment.

Earlier, many spectrum sensing algorithms have been

proposed whereas at the time of accessing the spectrum,

they may be occupied by the primary users and hence, it

leads to poor detection. The proposed technique identifies

the spectrum hole from different spectrum bands by using

the cluster-based approach [7–9] with Expectation Maxi-

mization (EM) algorithm and learning approach. This EM

algorithm provides a list of maximum likelihood channels

based on ranking and as a result, the optimization tech-

niques are adopted to improve the spectrum selection and

decision processes.

The objective of this paper is to list the possible avail-

able channels by adopting EM algorithm with learning

environment. The second objective is to enhance the

accuracy of spectrum selection and decision and to reduce

the error probability ratio by minimizing the occurrence of

misdetection by considering various input parameters

which affect the spectrum sensing decision through opti-

mization techniques as well as to improve the overall

system performance.

The rest of the paper has been outlined as follows: the

background and the related works of dynamic spectrum

access with sensing, sharing and optimization are reviewed

in Sect. 2. In Sect. 3, the system framework for spectrum

selection and decision is described. Section 4 depicts the

proposed optimization techniques, BPNN and ANFIS. The

result of sensing selection and the decision results are

analyzed in Sect. 5 with help of simulated results and

conclusion is given in Sect. 6.
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2 Related work

In CRN, the primary activity is to identify the unoccupied

channels through spectrum sensing. Using the spectrum

sensing task, the CU monitors the spectrum and detects the

spectrum hole. Several spectrum sensing techniques have

been proposed in the past and among them, cooperative

spectrum sensing [10–12] with energy detector approach

has produced optimal result.

The energy-based technique utilized for spectrum

sensing does not demand fundamental data of the signal

that faces under the sub classification of semi blind

detection or transmitter detection technique, and it calcu-

lates the energy of the received signal in a particular band

of frequency. It is called as radiometry which is one of the

most popular and simple methods for detecting the spec-

trum in cognitive radio networks. It is also referred as blind

signal detector since the signal information is not needed.

Energy Detecting (ED) module computes the energy

received from the signal and matches with a known

threshold value that has been attained from the statistics of

noise in order to sense the presence of signal. ED technique

is the most used one because of its simplicity and low

computation as well as implementation complexity [13].

Anand and Chandramouli (2009) [14] have presented a

dynamic spectrum access for the secondary user in

dynamic network environment to select the channel and it

is done based on the flow of the network. In this approach,

L-commodity network flow- based framework has been

considered for network selection. To improve the channel

and network selection of the secondary user in dynamic

network environment, the network re-assignment and

channel re-assignment can be enabled for the secondary

user. Even then the assignment and re-assignment cause

interference to the primary user in the same network and to

improve the quality of service, the secondary user has to

pay for that.

In order to improve the cognitive wireless network

system throughput through reducing the sensing time and

transmission power, Neda Moghimet al. (2018) [15] have

proposed an efficient hybrid spectrum access approach for

wideband OFDM-based uplink model. In the predefined

primary user interference level, the authors have formu-

lated a convex problem by combining the sensing duration

and the controlled power transmission [16]. In order to

reduce the sensing time and to improve the performance of

the system, rate-aware and QoS-aware algorithms have

been used with low computational complexity. The rate-

aware algorithm selects some promising channels for SU

sensing and sensing duration whereas the transmission

power is analyzed in QoS-aware algorithm and optimized

solution is produced to SU. The simulation results prove

that the performance of SU system has been maximized

without causing interference to the PU.

To achieve reliable communication and to enhance the

spectrum utilization of multi-hop cognitive radio network,

Dingde Jiang et al. (2015) [11] have proposed an effective

dynamic spectrum access algorithm. In this approach, to

model the primary user and to learn the traffic of the net-

work, the Pareto distribution model has been built. In

multi-hop cognitive radio network, acknowledgement-

based data packet transmission has been followed to

achieve reliable communication. The authors have used

graph theory techniques for reasonable channel allocation

in both time and frequency divisions to improve the

spectrum utilization. The binary matrix has been framed

for channel availability and primary user interference.

Efficient dynamic spectrum access can be done with the

help of binary matrix to improve the channel allocation and

channel switching conditions. Simulation results prove that

the sensing time is reduced, and the spectrum utilization

percentage is also improved. The performance of SU sys-

tem has also been analyzed with help of discrete-time

model and the occupancy of primary user and the possi-

bility to access a channel can be analyzed by multi-server

access model. Number of connections in a system has been

derived from probability generating function.

Abdul et al. (2016) [17] have quoted that SU traffic is

directly correlated with SU response time with different

scenarios by varying the PU traffic or varying the channel

count. From that, the authors have derived if the mean

response time is closely stable, SU traffic will be moderate

and the mean response time will increase, if the SU traffic

is increased. It shows that the number of channels is

reduced in the system and the PU traffic is increased in the

system.

An investigation has been carried out on cognitive radio

network for performing sensing techniques to achieve

optimal throughput with low complexity whereas the

minimum error rate is achieved through an iterative algo-

rithm. Wenjie Zhang [18] has achieved optimized solution

for multi-variable non convex problems by adopting

sequence of actions such as:

• By using the energy detection threshold approaches, the

spectrum sensing has been carried out in an optimized

manner with optimization variables such as number of

cognitive users, fusion parameter, and sensing time to

get optimum sensing results, less error rate and high

throughput

• Optimum detection threshold has been obtained only in

closed form. The evidence show that the error rate

which occurs in local is convex function in threshold.
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• For cooperative cognitive user, to achieve the maxi-

mum target for the desired optimal throughput with less

error rate, AND rule is optimal fusion rule.

To maximize the desired throughput of the cognitive

user in spectrum sensing and to keep the lower total error

rate, an iterative algorithm has been used to exploit the

hidden convex parameters. The iterative algorithm pro-

cesses high coverage with less complexity. To increase the

throughput of the system with less probability of error rate

and optimized spectrum sensing time, optimized energy

threshold has been computed by this iterative algorithm.

To enhance the sensing results, Context- Aware Net-

work Selection (CANS) has been proposed by Alex Mon-

teiro [19] who has provided the mechanism to the user to

select the optimal available channel in heterogeneous

wireless network by providing interference intelligence

based on the contextual information. CANS have also

adopted the mechanism to collect all the information

related to network, device and user such as bandwidth, user

device information, speed, display status and power level

and it has organized the information as software agent.

Based on the information, the most optimum network

channel has been selected for the users. The mobile devices

adopt these strategies of CANS for selecting and managing

the networks.

Due to continuous information collection process, the

processing cost may be increased. By using CANS mech-

anism, the cost can be decreased and the best channel can

be chosen in dynamic network environment. Saud Althu-

nibat [20] has proposed a system based on the energy

required to get the desired spectrum sensing results. In this

approach, the available limited resources related to time

management have been considered to identify the free

spectrum holes and reporting time. Experimental analysis

shows that energy consumption is high because of a greater

number of cooperative users and hence, the performance of

the system is degraded. The author has also proposed

bisection algorithm to get optimized solution with high

desired throughput from the optimal number of sensing

channel with low error rate by using the predefined energy

detection probability.

Rasheed et al. in (2018) [21] have improved the sensing

results by collecting the results of local spectrum sensing

through the centralized sensing parameters and the relia-

bility factors based fuzzy logic approach has been used to

maximize the accuracy of local spectrum sensing infor-

mation. The cluster-based cooperative compressed spec-

trum sensing has been proposed and in which, the range

discovery calculation has been executed in malicious user

environment. The author has also used machine learning

techniques for enlisting the distance from the cluster to PU.

Li Taifu, [22] and Xue X [23] have suggested back

propagation neural network optimization technique to

achieve the desired output and depicted that the perfor-

mance of BPNN optimization technique is more robust and

better than the genetic algorithms. In general, among all

these optimization techniques, the ANN models are more

proficient.

Many spectrum sensing techniques have been used to

identify the unoccupied spectrum holes and at the time of

accessing the spectrum hole by the CU, it may be occupied

by the PU. It leads to the possibility of misdetection. Due to

this reason, the performance of the system will decrease.

To improve the overall performance of the system, the

decision taken by the CU must be more optimal. To opti-

mize the decision process, many optimization techniques

such as Fuzzy, Artificial Neural Network, Genetic algo-

rithms and Adaptive Neuro Fuzzy Inference System have

been used.

2.1 Problem identification

To improve the performance of DSA in CRN, the selection

and decision of spectrum hole for the CU are very

important. Due to inappropriate selection and sudden

arrival of PU, it may sometime lead to maximum misde-

tection. To best of the researcher’s knowledge, once the

identified idle channel becomes active channel, the cogni-

tive radio starts again from sensing process and it will

reduce the overall performance in DSA.

To overcome these issues, in the present work, a com-

petent as well as consistent spectrum sensing and selection

approach, using energy detector approach, which includes

EM algorithm with learning approach has been proposed.

As a result of this hybrid spectrum sensing technique, the

list of all idle channels for that time interval has been

obtained using maximum likelihood functions. Further by

using spectrum characteristics such as signal strength,

spectrum demand, interference and so on, a two -fold

optimization technique involving BPNN and ANFIS has

been adopted to optimize the spectrum selection and

decision processes. By this approach, the possibility of

misdetection can be reduced, and the input given to CU

will be more accurate and optimized.

3 Hybrid spectrum sensing approach

Figure 1 depicts the proposed hybrid spectrum sensing

approach to optimize the spectrum efficiency in CRN. For

the CU, the cycle of operation has been carried out such as

free spectrum identification, configuring the CU as per the

identified spectrum and then, accessing the spectrum. On
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the arrival of spectrum owners, the next optimal spectrum

has been chosen in that RF environment.

In the Fig. 1 Hybrid spectrum sensing technique pro-

posed by Raja Guru et al. (2020) [24, 25] the cluster

approaches identify the available spectrum holes through

spectrum sensing results. However, at the time of accessing

the spectrum holes identified by the sensing results, mis-

detection may happen, if the bands are occupied by the

PUs. To overcome this issue, the changes in the RF envi-

ronment are also considered in spectrum decision tech-

niques. To learn the RF environment, a Q-learning

technique has been proposed in this work.

The proposed spectrum selection and decision frame-

work BPNN–ANFIS identifies the list of solutions for the

CUs to improve overall performance of the system. While

performing the selection and decision, some of the char-

acteristics of the spectrum such as signal strength, spectrum

demand, signal to noise ratio, traffic priority, access

latency, sensing power, and spectrum efficiency have been

considered and these parameters influence the following

output parameters such as channel selection probability,

bandwidth allocation, collision probability, number of

available channel, spectrum sensing time, percentage of

time slot utilization and channel decision of the CUs.

Fig. 1 Hybrid spectrum sensing approach
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For the desired output, the ‘n’ combinations based on

the input parameters have been derived and from these

combinations by using the two-fold neural network tech-

nique BPNN–ANFIS, the output parameters are derived for

the CUs. The Tables from 1 to 5 show how the input

parameters influence the desired output of the CUs.

Table 1 represents the possibility of bandwidth alloca-

tion-based changes such as traffic priority and access

latency that happen in the input parameters. Similarly, the

possibility of collision occurrence based on the state of PU

and CU detection are shown in Table 2.

Based on collision rate and number of CUs, the possible

sensing time of the CUs is shown in Table 3 and Table 4

presents the possibility of identifying the available channel

based on the combinations of number of CUs, Interference

level and the distance between the PUs and CUs.

The input parameters such as sensing power, velocity,

efficiency of the spectrum and distance between the users

will give the maximum accurate chance to the CUs to avail

the unoccupied channels without harming the PUs as dis-

cussed in Table 5.

4 Optimization techniques

The list of freely available channel selection can be done

by the above proposed spectrum sensing technique and the

various network parameters influencing the spectrum

selection and decision processes discussed in Tables 1, 2, 3,

4 and 5, are considered as input for the two-fold neural

network techniques. To get the accurate results, BPNN

techniques have been adopted in the proposed approach

and the results are derived with some error percentage.

Further to improve accuracy and to reduce the error rate,

the resultant data have been fed to ANFIS technique. In the

proposed approach, the two-fold neural network techniques

have been utilized to maximize the accuracy and to reduce

the error rate.

4.1 Back propagation neural network

In 1986, Lou et al. [26, 27] framed a new supervised

learning procedure known as Back Propagation Neural

Network (BPNN) and it can be used for linear and non-

linear classifications. From the desired output, the network

identifies many inputs. In BPNN the errors are back

propagated to the input layer. Since BPNN is a supervised

algorithm, the error difference between the desired output

and the calculated output has been back propagated. This

back-propagation procedure has been repeated during

learning in order to minimize the error by adjusting the

weights as shown as Fig. 2.

BPNN comprises three layers and they are (1) Input

Layer (2) Hidden Layer and (3) Output Layer. Numbers of

hidden layers, and the hidden units. in each hidden layer

depend on the sorority of the problem as shown in the

Figure 3.

During this process, error has been calculated by the

difference between the targeted output and the actual out-

put of each output unit. This error is back propagated to the

previous layer which is known as hidden layer. In each unit

Table 1 Bandwidth allocation

S. No Input 1 Input 2 Output

Access latency Traffic priority Bandwidth allocation

1 High Absent Low

2 High Present Low

3 Moderate Absent Low

4 Moderate Present Moderate

5 Low Absent Moderate

6 Low Present High

This table represents the position of a particular bandwidth based on

the input parameters such as traffic priority and access latency

Table 2 Collision probability

S. No Input 1 Input 2 Output

State of PU CU detection Collision probability

1 ON ON Moderate

2 ON OFF High

3 OFF ON Moderate

4 OFF OFF Low

Collision probability varies based on the state of PU and the decision

of the CU and it is shown in the table

Table 3 Spectrum sensing time

S. No Input 1 Input 2 Output

No. of CU users Collision probability Sensing time

1 High High High

2 High moderate Moderate

3 High Low High

4 Moderate High Moderate

5 Moderate moderate Moderate

6 Moderate Low Moderate

7 Low High High

8 Low Moderate Low

9 Low Low Low

Spectrum sensing time varies based on the input parameters such as

number of CUs and the collision probability is represented in this

table
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of the hidden layer N, error at that node is computed.

Likewise, error at each node of the previous hidden layer,

that is N-1, is also calculated. These calculated errors are

utilized to adjust the weights. Hence, the error in each

output unit has been minimized. Forward and backward

steps are repeated until the error is minimized as per the

expected level. The training algorithm of back propagation

includes four processes.

1. Initialization of weights

2. Feed forward

3. Back propagation of errors

4. Updating the weights and biases

The bias acts as weights on the connection from the

units whose output is always 1. During the initialization of

weights, some arbitrary values are given initially to get

some outputs by feed forwarding through the layers.

Consequently, the difference between the obtained and the

actual values has been calculated as error and back prop-

agated. High initial weight will result in faster learning

rate. But, the weights may oscillate. If the initial weights

are too small, then the learning rate will be slow. For the

best results, initial weights may be considered between

- 0.5 and 0.5 or - 1 and 1.

In Back Propagation method, initially the output of the

hidden layer is calculated by the formula

Hj ¼ f
Xn

i¼1

xijxi � aj

 !
j ¼ 1; 2 ; . . .; l ð1Þ

where Hj and f denote the output of hidden layer and the

incentive function of neurons, respectively. i represents the

neuron number of hidden layer, n is the neuron number of

input layer, xij is the weight factor between the input-layer

and the hidden layer, and aj is the threshold value. The next

step is to predict the output values by using the formula,

Table 4 Number of available

channel
S. No. Input 1 Input 2 Input 3 Output

No. of CUs Distance between PU and CU Interference Number of available channel

1 high 3 High 3 low 1 High 1

2 high 3 High 3 moderate 2 Low - 1

3 high 3 High 3 high 3 Low - 1

4 moderate 2 High 3 low 1 High 1

5 moderate 2 High 3 moderate 2 Moderate 0

6 moderate 2 High 3 high 3 Low - 1

7 low 1 High 3 low 1 High 1

8 low 1 High 3 moderate 2 Moderate 0

9 low 1 High 3 high 3 Low - 1

10 high 3 Low 1 low 1 Moderate 0

11 high 3 Low 1 moderate 2 Moderate 0

12 high 3 Low 1 high 3 Low - 1

13 moderate 2 Low 1 low 1 High 1

14 moderate 2 Low 1 moderate 2 Moderate 0

15 moderate 2 Low 1 high 3 Low - 1

16 low 1 Low 1 low 1 High 1

17 low 1 Low 1 moderate 2 Moderate 0

18 low 1 Low 1 high 3 Low - 1

19 high 3 Moderate 2 low 1 Moderate 0

20 high 3 Moderate 2 moderate 2 Moderate 0

21 high 3 Moderate 2 high 3 Low - 1

22 moderate 2 Moderate 2 low 1 High 1

23 moderate 2 Moderate 2 moderate 2 moderate 0

24 moderate 2 Moderate 2 high 3 Low - 1

25 low 1 Moderate 2 low 1 moderate 0

26 low 1 Moderate 2 moderate 2 moderate 0

27 low 1 Moderate 2 high 3 moderate 0

Number of available channels depending on interference, distance and the number of CUs is represented in

this table

Wireless Networks (2022) 28:1731–1755 1737

123



Table 5 Spectrum decision

S. No. Input 1 Input 2 Input 3 Input 4 Output

Sensing power Velocity Spectrum efficiency Distance between PU and CU Spectrum decision

1 3 High 3 High 3 High 3 High 1

2 3 High 3 High 3 High 2 Moderate 1

3 3 High 3 High 3 High 1 Low 0

4 3 High 3 High 2 Moderate 3 High 1

5 3 High 3 High 2 Moderate 2 Moderate 0

6 3 High 3 High 2 Moderate 1 Low 0

7 3 High 3 High 1 Low 3 High 1

8 3 High 3 High 1 Low 2 Moderate - 1

9 3 High 3 High 1 Low 1 Low - 1

10 3 High 2 Moderate 3 High 3 High 1

11 3 High 2 Moderate 3 High 2 Moderate 1

12 3 High 2 Moderate 3 High 1 Low 1

13 3 High 2 Moderate 2 Moderate 3 High 1

14 3 High 2 Moderate 2 Moderate 2 Moderate 0

15 3 High 2 Moderate 2 Moderate 1 Low 0

16 3 High 2 Moderate 1 Low 3 High 1

17 3 High 2 Moderate 1 Low 2 Moderate 0

18 3 High 2 Moderate 1 Low 1 Low - 1

19 3 High 1 Low 3 High 3 High 1

20 3 High 1 Low 3 High 2 Moderate 1

21 3 High 1 Low 3 High 1 Low 1

22 3 High 1 Low 2 Moderate 3 High 1

23 3 High 1 Low 2 Moderate 2 Moderate 0

24 3 High 1 Low 2 Moderate 1 Low - 1

25 3 High 1 Low 1 Low 3 High 1

26 3 High 1 Low 1 Low 2 Moderate - 1

27 2 High 1 Low 1 Low 1 Low - 1

28 2 Moderate 3 High 3 High 3 High 1

29 2 Moderate 3 High 3 High 2 Moderate 0

30 2 Moderate 3 High 3 High 1 Low 0

31 2 Moderate 3 High 2 Moderate 3 High 0

32 2 Moderate 3 High 2 Moderate 2 Moderate 0

33 2 Moderate 3 High 2 Moderate 1 Low 0

34 2 Moderate 3 High 1 Low 3 High 0

35 2 Moderate 3 High 1 Low 2 Moderate 0

36 2 Moderate 3 High 1 Low 1 Low - 1

37 2 Moderate 2 Moderate 3 High 3 High 1

38 2 Moderate 2 Moderate 3 High 2 Moderate 0

39 2 Moderate 2 Moderate 3 High 1 Low 0

40 2 Moderate 2 Moderate 2 Moderate 3 High 0

41 2 Moderate 2 Moderate 2 Moderate 2 Moderate 0

42 2 Moderate 2 Moderate 2 Moderate 1 Low 0

43 2 Moderate 2 Moderate 1 Low 3 High 0

44 2 Moderate 2 Moderate 1 Low 2 Moderate 0

45 2 Moderate 2 Moderate 1 Low 1 Low - 1

46 2 Moderate 1 Low 3 High 3 High 1

47 2 Moderate 1 Low 3 High 2 Moderate 0
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Ok¼
Xl

j¼1

Hjxjk � bkk ¼ 1; 2; . . .;m ð2Þ

where bk denotes the threshold value and m represents the

neuron number of the output layer. Then, as per the pre-

diction error ek computed by the difference between the

predicted output and the expected output, the value of

weight factor and the threshold can be updated as given

below

xij ¼ xij þ gHj 1 � Hj

� �
x ið Þ

Xm

k¼1

xjk.ki ¼ 1; 2; . . .; n; j

¼ 1; 2; . . .; l

xjk ¼ xjk þ gHj.k j ¼ 1; 2; . . .; l; k ¼ 1; 2; . . . ;m

ð3Þ

Table 5 (continued)

S. No. Input 1 Input 2 Input 3 Input 4 Output

Sensing power Velocity Spectrum efficiency Distance between PU and CU Spectrum decision

48 2 Moderate 1 Low 3 High 1 Low - 1

49 2 Moderate 1 Low 2 Moderate 3 High 0

50 2 Moderate 1 Low 2 Moderate 2 Moderate 0

51 2 Moderate 1 Low 2 Moderate 1 Low - 1

52 2 Moderate 1 Low 1 Low 3 High 1

53 2 Moderate 1 Low 1 Low 2 Moderate - 1

54 1 Moderate 1 Low 1 Low 1 Low - 1

55 1 Low 3 High 3 High 3 High 1

56 1 Low 3 High 3 High 2 Moderate 1

57 1 Low 3 High 3 High 1 Low - 1

58 1 Low 3 High 2 Moderate 3 High 1

59 1 Low 3 High 2 Moderate 2 Moderate 0

60 1 Low 3 High 2 Moderate 1 Low - 1

61 1 Low 3 High 1 Low 3 High 1

62 1 Low 3 High 1 Low 2 Moderate - 1

63 1 Low 3 High 1 Low 1 Low - 1

64 1 Low 2 Moderate 3 High 3 High 1

65 1 Low 2 Moderate 3 High 2 Moderate 1

66 1 Low 2 Moderate 3 High 1 Low - 1

67 1 Low 2 Moderate 2 Moderate 3 High 1

68 1 Low 2 Moderate 2 Moderate 2 Moderate 0

69 1 Low 2 Moderate 2 Moderate 1 Low - 1

70 1 Low 2 Moderate 1 Low 3 High 1

71 1 Low 2 Moderate 1 Low 2 Moderate 0

72 1 Low 2 Moderate 1 Low 1 Low 0

73 1 Low 1 Low 3 High 3 High 1

74 1 Low 1 Low 3 High 2 Moderate 1

75 1 Low 1 Low 3 High 1 Low 1

76 1 Low 1 Low 2 Moderate 3 High 1

77 1 Low 1 Low 2 Moderate 2 Moderate 0

78 1 Low 1 Low 2 Moderate 1 Low 0

79 1 Low 1 Low 1 Low 3 High 1

80 1 Low 1 Low 1 Low 2 Moderate - 1

81 1 Low 1 Low 1 Low 1 Low - 1

Representing the dependence of spectrum decision based on sensing power, velocity, spectrum efficiency and distance between the PU and CU
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aj ¼ gHj 1 � Hj

� �
x ið Þ

Xm

k¼1

xjk .k j ¼ 1; 2; . . .; l

bk ¼ bk þ .kk ¼ 1; 2; . . .;m

ð4Þ

A popular activation function of back propagation net-

works is the sigmoid, a real function sc: IR ? (0, 1) as

defined by the expression

sc xð Þ ¼ 1

1 þ e�cx
ð5Þ

The constant c may be selected arbitrarily and its

reciprocal 1/c is known as the temperature parameter in

stochastic neural networks. An alternative to the sigmoid is

symmetrical sigmoid S(x) and it can be defined as

S xð Þ ¼ 2s xð Þ � 1 ¼ 1 � e�x

1 þ e�x
ð6Þ

In general, two types of learning methods are available.

1. Sequential learning

2. Batch learning

In the process of sequential learning, the given input

pattern is broadcasted and then, the error is calculated and

back propagated. Further, the weights are reorganized until

the targeted output is obtained. Whereas in the process of

batch learning, the weights are reorganized only after the

entire set of training network has been offered to the net-

work. Thus, the weights are updated after every epoch.

4.2 Adaptive neuro-fuzzy inference system

Due to the changes in network environment, there is a need

for algorithms which learn from the experimental results

and provide optimum solution to the end user. Hence,

several soft computing techniques such as Artificial Neural

Network, Fuzzy Logic System, and Genetic Algorithms

and so on have been evolved [28].

To minimize the output errors in fuzzy modeling sys-

tem, trial steps and auxiliary calculation are needed for

adjusting the fuzzy membership functions. Since there are

no proper methods to convert the human idea into knowl-

edge part of fuzzy system, they lead the system output to

inadaptable nature. In the case of Artificial Neural Net-

work, it has good adaptability of output based on the input

parameters and it also supports the non-linear correlation

between the input and the output parameters as represented

in Fig. 4 In order to improve the performance, the advan-

tages of both FIS and ANN have been combined and it is

called as Adaptive Neuro-Fuzzy Inference System

(ANFIS). This ANFIS supports the knowledge and adap-

tion features.

ANFIS consists of Fuzzification, Rule, Normalization,

Defuzzification and output values as shown in Fig. 5.

Two different types of methods such as Mamdani and

Takagi-Sugeon-Kang (TSK) have been used in FIS. In the

proposed system, TSK approach has been used to derive

optimized results. Here, the rules mainly focus on the

input–output relationship. Simply, if–then rules are used

for correlating the input and the output values.

IF a is X1and b is Y1, THEN f1 ¼ p1a þ q1b þ r1

IF a is X2and b is Y2, THEN f2 ¼ p2a þ q2b þ r2

. . .

IF a is Xnand b is Yn, THEN f1 ¼ pna þ qnb þ rn

The values of p, q and r are constant and they can be

evaluated during the training process based on the training

Fig. 2 Layer approaches of BPNN

Fig. 3 Simulated layers in BPNN for channel selection
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data. Then, the next step is to form fuzzy rules by com-

bining these functions with ANFIS. Simply the fuzzy

inference system has been considered with two inputs v

and d and one output f. In Layer 1 (Fuzzification layer),

each input node is an adaptive node. It produces mem-

bership grade of linguistic label and it is a fuzzy layer.

Here, v and d are the inputs of the system. O1;j is the output

of the ith node of layer l. Each adaptive node is a square

node with square function and it is represented by the

following equations

O1;i ¼ lv;i vð Þ for i ¼ 1; 2 ð7Þ

O1;j ¼ ld;j vð Þ for j ¼ 1; 2 ð8Þ

where O1;i and O1;j represent output functions and lv;i and

ld;j represent membership functions. For example, the tri-

angular membership function, lv;i (v) is offered by

lv;i vð Þ ¼ max min
v � ai

bi � ai

;
ci � v

ðci � bi

� �
; 0

� �
ð9Þ

where {ai,bi; ci,} are the parameters of triangular mem-

bership function and they are the parameter set which

changes accordingly the shapes of member function.

Parameters in this layer are known as ‘‘premise parame-

ters’’. After fuzzification, the weight of member function

must be checked for this purpose. Then, layer 2 has been

implemented. It receives input value vi from the first layer

and acts as a membership function to represent fuzzy sets

of respective input variables. Every node in this layer is

fixed and the node is labelled with M. Then, the output is

calculated via the product of all incoming signals. The

output of this layer can be calculated using the following

equation

O2;i ¼ wi ¼ lv;i vð Þ:ld;i dð Þ ; i ¼ 1; 2 ð10Þ

Fig. 4 Adaptive neuro-fuzzy inference system (ANFIS)

Fig. 5 ANFIS layers
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Generally, in this layer, any T norm operator, which

performs fuzzy AND, can be used as a node function.

Layer 3 is the normalization layer which is implemented

for normalizing the weight function. Every node in this

layer is fixed and it is denoted with circle and labelled with

N. It indicates normalization of firing strength from the

previous layer. This layer performs pre-condition matching

of fuzzy rules, i.e. activation level of each rule is computed

and the number of layers is equal to the number of fuzzy

rules. Further, the ith node calculates the ratio of ith rule’s

strength to the sum of firing strength of all rules. The

output of this layer can be expressed as wi by using the

following equation

O3;i ¼ wi ¼
wi

w1 þ w2ð Þ ; i ¼ 1; 2 ð11Þ

After obtaining the normalized firing strengths, the

relationship between the input and the output of the layer is

carried out in layer4 and it is called as defuzzification layer.

This layer offers output value y, which has resulted from

the inference of rules. The resultant output is simply the

product of normalized firing rule strength and first order

polynomial. Weighted output rule is represented by node

function as:

O4;i ¼ wifi ¼ wi piv þ qid þ rið Þ; i ¼ 1; 2 ð12Þ

where O4;i represents the output of layer 4 and in this layer,

pi, qi and ri are the linear parameters or consequent

parameters. The result obtained from the defuzzification

layer has been taken as input by Layer 5 (Output layer). It

also sums up all the inputs from the layer 4 and converts

fuzzy classification results into crisp values. This layer

comprises single fixed node label as
P

. This node calcu-

lates the summation of all incoming signals and it is cal-

culated by using the Equation,

O5;i ¼ Riwifi ¼
Riwifi

w1 þ w2
; i ¼ 1; 2 ð13Þ

Thus, it is clear when the values of premise parameter

are fixed, the overall output of the adaptive network can be

expressed as linear combination of a consequent parameter.

It can also be observed that ANFIS architecture comprises

two adaptive layers: the first layer and the fourth layer.

There are three modifiable parameters {ai, bi & ci} so-

called premise parameters in the first layer and in the fourth

layer and there are also three modifiable parameters {pi, qi

& ri} which are pertaining to the first order polynomial.

These parameters are known as consequent parameters.

4.3 Optimized channel selection and decision
system

To get accurate results, many neural network techniques

have been widely used and among them, Artificial Intelli-

gence (AI), Adaptive Fuzzy Inference System (AFIS) and

Genetic Algorithms (GA) have been mostly used [29–31].

Computers can understand the abilities of human beings

with some extent such as observe, learn and think, and

decide. To perform such types of tasks, the neural network

will support the behavior of humans to perform matching

algorithms. The neural networks consist of elements as

neurons with some weighted manner and they will process

independently. Back propagation is a special type of neural

network and it is also known as back propagation error

method. It is mostly used in multi layered neural networks.

In the proposed system, BPNN & ANFIS have been

followed to obtain accurate results and to reduce the error

ratio as shown in Fig. 6 for spectrum sensing and decision

of unoccupied channel information. Possible list of unoc-

cupied channel information from the selection and decision

framework is built in the back propagation neural network

based on the input parameters such as signal strength,

spectrum demand, signal to noise ratio, distance between

the users and etc. The results obtained by BPNN predict

error analysis as per the desired output parameters. Here,

the accuracy is up to 92%, which possesses the maximum

possibility of error ratio probability and it leads to misde-

tection and poor performance. To increase the accuracy

result and to minimize the error, the resultant data are

trained in ANFIS system. ANFIS yields up to 98–99% of

accuracy and it shows reduced error rate with tolerable

limit. By adopting this two-fold neural network technique,

the error rate has been reduced and the throughput as well

as the overall performance of the system has been

improved. The simulation results are discussed in detail in

the subsequent section.

5 Result and discussion

5.1 Simulation environment

In this section, simulation results have been depicted to

evaluate the sensing vs throughput to obtain some insights

for the effectiveness of the proposed algorithm. In case, the

fusion centre is at the centre of the region with the radius of

1 km. For example, the fusion centre is situated at 6 km

from the PU.

In the simulations, the transmission time T = 1 s, the

sampling frequency becomes fs = 100 Hz, the presence

probability of the PU is P (H1) = 0.5, the sensing power of
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each sampling node is ps = 0.01 mW, and the noise power

is r2
n = 1 mW.

The number of CUs is M = 5; the number of samples is

N = 300; the PU signal is a zero-mean signal with 6 MHz

bandwidth; the noises at CUs have identical unit variances,

and the mean SNRs at CUs are 16, 14, 12, 10 and 8 dB,

respectively.

All the parameters of BPNN have been selected to

include the number of input parameters, the number of

hidden layers, accuracy, learning rate, number of epochs

and the number of output parameters. In this study, each

output has been simulated individually.

5.2 Channel selection techniques

In the dynamic network environment, the channel selection

for the CU is an important task. After identifying the

available spectrum in dynamic environment, it is an

Fig. 6 Two-fold neural network techniques for spectrum management
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important task for the CU to select the best available

channels from the identified results. It is found that many

techniques such as first identified, maximum residual time,

near to the CUs etc. have been followed by different

researchers to choose the channel. CUs are not satisfied

with these approaches because of less accuracy and mini-

mum system throughput. In the proposed approach,

advanced technique of ANN with BPNN has been used. In

this approach, input parameters such as signal strength,

spectrum demand and signal to noise ratio have been

considered and the results are shown in Fig. 7. From the

Fig. 7, it is found that quality of channel selection proba-

bility has been improved. For 10 different epochs, the

results are discussed in Fig. 8 In training, it is clear that

different combinations of input parameters have achieved

99% error free results where as in validating the input

parameters, 95% results has been achieved. Then in testing

the samples, it is found that 97% result is error free. The

overall result of BPNN is 98%.Based on the simulations

results, it is observed that the channel selection probability

is more accurate and maximum.

Even though the accuracy and performance of the

channel selection by using BPNN are good, it has been

decided to achieve maximum accuracy in channel selection

probability and improve the overall system performance.

Hence, the input parameters are simulated in ANFIS by

applying IF–THEN rules as shown in Fig. 9 The parame-

ters, which are directly associated with channel selection

along with their different values, are listed and IF–THEN

rules are applied to all the values. The list of all possible

combinations of output has been obtained by varying the

values of input parameters. Then, the results have been

derived using ANFIS rules and the results show the surface

view of possible channel selection condition based on the

variations in the input parameters (Table 6).

Fig. 7 Channel selection using BPNN
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The graphs show that the channel selection probability

has been obtained by keeping the spectrum demand as

constant whereas the parameters such as signal strength

and signal to noise ratio are varied. From that, it has been

observed that the channel selection probability is high by

keeping the signal to noise ratio values more than the signal

strength values. The graphs also show that the channel

selection probability is against the input parameters such as

signal strength and spectrum demand and the signal to

noise ratio value is kept as constant. It is also clear that the

spectrum demand is minimum against the signal strength

for getting high channel selection probability as shown in

Fig. 10a & b.

By training the input parameters, it is found that dif-

ferent combinations of input parameters have achieved

99% error free results. While validating the input param-

eters, 97% result has been achieved. Then in testing the

samples; it is found that 99% result is error free. The

overall result of BPNN is 99%. Based on the simulation

results, it is observed that the available channel probability

is more accurate and maximum as shown in Fig. 11.

Fig. 8 ANFIS framework for channel selection

Fig. 9 ANFIS IF–THEN rule
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Figure 12 shows the surface view of number of avail-

able channels against the input parameters such interfer-

ence, number of CUs and the distance between the PU and

CU. In order to get good number of available channels, the

interference value has been kept minimum against the

number of CUs. It is also noted that to achieve the maxi-

mum number of available channels, the distance between

the PU and CU must be high and the value ofinterfence will

be minimum as well as the number of CU is kept as con-

stant. Figure 13 represents that the output number of

available channel varies based on the changes made in the

input paremeters such as interference, distance and the

number of users. Then, the number of available channels is

displayed in Fig. 14.

The Fig. 15 shows that different combinations of input

affect the output spectrum decision. The surface view

diagram shown in Fig. 16 explains that the spectrum

decision is high, when the values of input parameters such

as velocity and spectrum efficiency are high and the

sensing power and the distance between the PU and CU are

kept constant. It is observed that to improve the spectrum

decision accuracy, the distance between the PU and CU

must be maximum against the sensing power. The reason

behind this scenario is that the distance would cause

interference problem because of maximum distance and it

minimizes the interference values. Hence, the spectrum

decisions are improved as shown in Table 7. The spectrum

decision will also be improved with minimum velocity

values against the efficiency of spectrum utilization as

shown in Fig. 16.

5.3 Performances analysis

5.3.1 Blocking probability

Blocking Probability of the system is an event that arises

when primary user or cognitive users cannot be allotted a

channel and consequently blocked the system. The Fig. 17

shows that the blocking probability is reduced in the pro-

posed system when compared to other two approaches. On

the arrival of 0.2% of the CUs, it shows that the blocking

probability is 9% in genetic algorithm, 6% in BPNN

approach whereas only 4% in the proposed work it shows

the blocking probability will be reduced for the proposed

two-fold neural network technique. That is, the proposed

approach is one time minimum than the genetic algorithm

and half the time than the BPNN approach.

Similarly, for the 0.4% of CUs arrival the proposed

work shows only 5% of blocking probability whereas 22%

and 15% for the other approaches. That is, the proposed

approach is three times minimum than the genetic algo-

rithm and two times than the BPNN approach. Likewise,

the blocking probability percentage is increased on the

more percentage of CUs arrival rate.

5.3.2 Dropping probability

Dropping probability of the system is an event that arises

when the primary user arrives and the cognitive users need

to be dropped due to channel unavailability.

The Fig. 18 shows that the dropping probability is

reduced in the proposed system when compared to other

two approaches. On the arrival of 0.2% of the PUs, it shows

that the dropping probability is 20% in genetic algorithm,

20% in BPNN approach whereas only 4% in the proposed

work it shows the dropping probability will be reduced for

the proposed two-fold neural network techniques. That is,

the proposed approach is 400% minimum than the genetic

algorithm and BPNN approach.

Similarly, for the 0.4% of PUs arrival the proposed work

shows only 5% of dropping probability whereas 30% and

45% for the other approaches. Likewise, the dropping

probability percentage is increased on the more percentage

of PUs arrival rate.

But in the proposed system the process of dropping the

hold channel will have minimized when compare to other

two approaches.

5.3.3 Acceptance probability

The Acceptance Probability of the CUs is defined as nei-

ther the channels in the RF Environment may be in the

Blocking State nor Saturation State. The Saturation State

means the channel will be maximum accommodated by the

users. The Fig. 19 displays that the acceptance probability

for the CUs can be increased in the proposed system. This

Table 6 Availability of reliable

channel
Number of CU Distance between PU & CU Interference Number of available channel

High High Low High

Moderate High Low High

Low High Low High

Moderate Low Low High

Low Low Low High

Moderate Moderate Low High
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approach will lead to the maximum utilization of channel

by the users. The acceptance probability shows that it is

increased in the proposed system when compare to other

two approaches. On the arrival of 0.2% of the CUs, it

shows that the acceptance probability is 25% in genetic

algorithm, 40% in BPNN approach whereas 60% for the

proposed work it shows the acceptance probability will be

better in proposed two-fold neural network techniques.

That is, the proposed approach is 58% higher than the

genetic algorithm and 58% than the BPNN approach.

Similarly, for the 0.4% of CUs arrival the proposed

work shows 65% of acceptance probability whereas 45% in

other approaches. Likewise, when increase in CUs arrival

rate gradually the acceptance probability also increased for

the proposed approach when compare to other approaches.

5.3.4 Probability of successful transmission

In the CRN, the probability of successful transmission will

play a vital role in maximizing the utilization of scared

spectrum resources. The successful transmission means the

user can successfully have completed their task with the

Fig. 11 BPNN techniques for available channel

Fig. 10 a Graphical analysis of channel selection probability (z-axis)

based on the inputs snr (x-axis) and signal strength (y-axis) and

b Graphical analysis of channel selection probability (z-axis) based

on the inputs snr (x-axis) and spectrum demand (y-axis)

b
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Fig. 12 a Surface view of available channel based on no. of cu & interference, b Surface view of available channel based on interference &

distance and c Surface view of available channel based on interference and no. of Cu

Fig. 13 Combination of I/P & O/P parameters for available channels
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allocated channels. The Fig. 20 shows that the probability

of successful transmission is increased for the proposed

system when compare to other two approaches. On the

arrival of 0.2% of the CUs, it shows that the successful

transmission probability is 30% for genetic algorithm, 40%

for BPNN approach whereas only 60% for the proposed

work it shows the successful transmission probability will

be increased for the proposed two-fold neural network

techniques. That is, the proposed approach is 50% higher

than the genetic algorithm and 33% than the BPNN

approach.

Similarly, for the 0.4% of CUs arrival the proposed

work shows 70% of successful transmission probability

whereas 40% and 50% for the other approaches. Likewise,

the successful transmission probability percentage is

increased on the more percentage of CUs arrival rate. It

explains that the proposed work has maximum probability

of successful transmission when compare to other

approaches.

6 Conclusion

The accuracy in channel selection and decision process

improves the performance of dynamic spectrum access. A

twofold spectrum decision approach by combining both

BPNN and ANFIS techniques is proposed and analysed in

this chapter. The BPNN is trained with the parameters such

as PU states, signal strength, spectrum demand, velocity

and distance. On learning, the BPNN provides about

92–98% accurate channel selection for the use of CUs. The

error of 2–8% occurs due to misdetections or false alarms.

The use of ANFIS has resulted in the reduction of error and

improved the accuracy of the selection and decision of the

free spectrum assignment. The results showed that the error

Fig. 14 ANFIS testing output

parameters

Fig. 15 Combination of I/P & O/P parameters for spectrum decision
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of selection reduces to 1–3% and improves accuracy of

selection up to 99%.

Performance of the proposed technique is also compared

with the techniques of Genetic algorithm and BPNN in

terms of blocking probability, dropping probability,

acceptance probability and probability of successful

transmission. The blocking probability of the proposed

technique ranges from 3 to 8% for the increasing rate of

CUs, whereas it ranges from 9 to 50% and 8 to 40% in the

case of Genetic algorithm and BPNN respectively. The

maximum dropping probability of the proposed technique

is only 4% and this is lower compared to 20% dropping in

Fig. 16 a Pictorial representation of spectrum decision based on inputs sensing power & distance, b based on inputs spectrum efficiency &

velocity, c based on inputs sensing power & velocity and d based on inputs distance and efficiency

Table 7 Reliable spectrum

decision
Sensing power Velocity Spectrum efficiency Distance between PU and CU Spectrum decision

High High High High High

High High Moderate High High

High Moderate Low High High

High Low High High High

Moderate High High High High

Moderate Moderate High High High

Moderate Low High High High

Low High Moderate High High

Low High Low High High

Low Low High High High
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the other two techniques. The proposed technique shows

58% improvement in terms of acceptance probability and

more than 33% improvement in terms of probability of

successful transmission.

Use of cloud infrastructure may be investigated in future

for reducing the delay in spectrum selection and decision.

The cloud infrastructure may be utilized to store the

transmission and reception parameters, availability of free

channels of the locations; etc. dynamically to reduce the

accessing time of the channels for the cognitive users.

Activities of the cognitive users also can be modelled and

included for more accurate analysis of the cognitive

networks.

Fig. 17 Blocking probability

Fig. 18 Dropping probability
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Fig. 19 Acceptance probability

Fig. 20 Probability of

successful transmission
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