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Abstract
K-nearest neighbors searching (KNNS) is to find K-nearest neighbors for query points. It is a primary problem in clustering

analysis, classification, outlier detection and pattern recognition, and has been widely used in various applications. The

exact searching algorithms, like KD-tree, M-tree, are not suitable for high-dimensional data. Approximate KNNS algo-

rithms for high-dimensional data based on locality sensitive hashing (LSH) is becoming popular. However, the existing

searching strategies are sensitive to the parameters of constructing LSH index. To solve this problem, a robust strategy for

KNNS, called Robust-LSH, is proposed. It makes full use of points that frequently appear together with the query points to

improve the diversity of candidates, so that it can use fewer hash tables to obtain more valuable candidates for KNNS. We

do experiments on synthetic and real data. The results show that in terms of searching accuracy and running time, Robust-

LSH has better performance than the p-stable LSH, RLSH and KD-tree algorithms.

Keywords Locality sensitive hashing � K-nearest neighbors searching � Approximate method � Candidate seeds

1 Introduction

K-nearest neighbors searching (KNNS) is to find the

K closest objects to an object. It is a primary problem in

clustering analysis [5, 8–10], classification [35, 36], outlier

detection [15]. It has widely applications in text informa-

tion retrieval, search engine, content-based information

query, duplication detection, etc.

The brute-force method for KNNS first computes the

distances between the query point and every other point

and then selects K points with the minimum distance.

However, it has high computational cost especially for big

data.

In order to overcome this shortcoming, some tree-based

indexes such as KD-tree [29], M-tree [11] cover tree [2] are

used to accelerate KNNS. In [6], the authors propose a fast

exact KNNS method on the basis of semi-convex hull tree

and GPU. Nevertheless, these tree-based methods employ

bisection techniques to construct the tree structure and the

partition method may not be suitable for high-dimensional

data. The reason is that the internal nodes in high-dimen-

sional data [22, 23] have high overlap with other nodes.

Some researchers construct flat-indexes instead of tree-

structure by using clustering algorithms to search K-nearest

neighbors. In [32], the authors propose KMKNN algorithm

for KNNS. It first divides the data into different clusters

with k-means algorithm, then selects K-nearest neighbors

from the closest cluster to the query object and avoids

unnecessary distance computations by using triangle

inequality. However, the clusters produced by K-means

may be undesired, so that the KNNS result of KMKNN is

undesired. In [1], the authors present a novel KNNS
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method on the basis of various-widths clustering, called

kNNVWC. It produces compact and well separated clusters

for high-dimensional data by using a novel partitioning

clustering algorithm, improving the performance of KNNS.

Since the dimensionality curse makes the exact nearest

neighbors searching nearly infeasible to achieve, some

approximate nearest neighbor searching algorithms [24]

are proposed by researchers. Approximate strategy is a

good way to balance accuracy and efficiency. In [7],

FLANN with the priority k-means tree, an approximate

KNNS method, is introduced to improve DBSCAN.

Locality sensitive hashing (LSH)-based method is also an

approximate KNNS algorithm that is often used for high-

dimensional data. LSH constructs hash tables by employ-

ing a family of hash functions to project similar objects into

the same bucket and different objects into different buck-

ets. When searching K-nearest neighbors of a query point,

LSH-based method only needs to compare the distances

between the query point and the points in the same bucket

with the query point, which greatly reduces the search

range. The distance between objects determines the hash

functions, which makes the problem of ‘‘curse of dimen-

sionality’’ easy to solve.

Among the existing LSH-based KNNS methods, the

p-stable LSH [13] is a popular one. It can directly work on

points in Euclidean space. The authors have proved that if

the data satisfies the ‘‘bounded growth’’, the p-stable LSH

will find its exact K-nearest neighbors in O(log n) time.

However, to maintain high accuracy of p-stable LSH, large

memory are required for storing hash tables. To solve this

problem, Lu et al. [21] present a randomness-based LSH

for KNNS, called RLSH. When searching K-nearest

neighbors, it only selects a hash table, instead of all the

hash tables, to project the query object. Then, it selects

candidate objects from the same bucket that the query

object belongs to. It has been proved that RLSH promotes

the quality of the candidates even if a few hash tables are

used. However, for these methods, the parameters of con-

structing LSH index, such as the number of hash

tables L and the number of hash functions in each hash

table k, will affect the result of KNNS.

To solve the above mentioned problem, we propose a

robust LSH algorithm for KNNS, called Robust-LSH. It is

inspired by the idea that objects closer to the query object

have a higher collision probability in many hash tables, that

is, the query object and its nearest neighbors appear fre-

quently in many hash tables. We find the objects frequently

appear with the query object, which is called candidate

seed. Then, objects frequently collide with objects in the

candidate seed are added to the candidate set. Robust-LSH

can use less hash tables to search K-nearest neighbors with

high quality and less query time. The experiments by

comparing with KD-tree, p-stable LSH and RLSH illustrate

the advantage of the proposed algorithm.

The rest of this paper is organized as follows. Section 2

reviews the related work about LSH. Section 3 introduces

the p-stable LSH. After that, we present the proposed

algorithm Robust-LSH in Sect. 4. Experiments and analy-

sis are shown in Section 5. Section 6 concludes this work

and discusses the future work.

2 Related work

In this section, we will introduce KNNS methods based on

data structures and LSH.

To search K-nearest neighbors, several indexing data

structures are proposed, such as KD-tree, M-tree, cover

tree, to name a few. These tree-based algorithms build the

tree by employing binary partition strategy and the similar

objects are in the same leaf node. The tree-based indexes is

built by recursively partitioning the data space until all the

data are contained in a node. However, the binary parti-

tioning method may not be appropriate for data whose

dimensionality is high [1]. Then, these tree-based KNNS

methods fail to process high-dimensional data, because

they do not scale well with the increase of the dimension

[33].

In order to quickly obtain the K-nearest neighbors of

high-dimensional and large-scale data, approximate KNNS

methods are proposed. LSH is the most notable method

[19]. It was first proposed by Indyk et al.[16, 17]. Its main

idea is to use hash functions to map the data into hash

buckets so that similar objects have a high probability of

being in the same bucket. The hash functions are dependent

on different distance measures, such as l1 distance [17], lp

distance [13], the Jaccard similarity [3] and the kernel

functions [19]. An LSH for angles (i.e. cosine similarity in

Euclidean space) is presented by Charikar [4], which is

called SIMHASH. The authors in [25] propose an entropy-

based LSH to reduce the space consumption of SIMHASH.

In [12], the authors use randomized Hadamard transforms

in a non-linear setting to quickly estimate the Euclidean

distance for high-dimensional data. Although the space

requirement is reduced, its query time is increased. On the

basis of stable distribution for lp norms, Datar et al. [13]

developed the p-stable LSH.

In order to maintain high recall and precision for KNNS,

LSH-based method must store enough hash tables. How-

ever, as the scale of data grows, hash tables take up more

space, which will influence the efficiency of searching

K-nearest neighbors. Therefore, some improved methods,

like the multi-probe strategy, the binary code’s storage

form, and the distributed LSH methods, are proposed.
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The multi-probe LSH [26] is one of the methods

employing multi-probe strategy. It increases the number of

candidate points for a query point by looking up multiple

hashing buckets that more likely contains K-nearest

neighbors, so that the recall of K-nearest neighbors

searching is improved, and the space and time cost is

reduced. Gu et al. [14] improve the probe sequence by

using a new probability model and a query-adaptive algo-

rithm. Entropy-based LSH [25] is also a method to utilize

multi-probe strategy. RLSH (Randomness-based locality-

sensitive hashing) [21] randomly selects a hash table,

instead of all the hash tables, to project the query object

and reconstructs the candidate points for searching

K-nearest neighbors. The multi-probe strategy-based

algorithms reduce the memory consumption and keep

comparable recall and precision.

There are also some methods convert each point into a

compact binary code to reduce memory consumption, such

as spectral hashing [20, 34], semi-supervised hashing [30]

and self-supervised hashing [31]. Spectral hashing uses

spectral graph partitioning method to learn the binary

codes, which shows promising performance. Wang et al.

[30] propose semi-supervised hashing method. It tries to

minimize empirical error over the labeled data, and maxi-

mize variance and independence of hash bits over the

labeled and unlabeled data, so that efficient hash codes are

obtained. In [31], the authors greatly reduce the memory

demand with a self-supervised hashing method.

Some researchers focus on developing distributed or

parallel LSH algorithms. Koga et al. [18] implement LSH

in distributed way. In [37], the authors propose a hadoop

and collision counting based KNN algorithm, called

H-c2KNN. The algorithm uses MapReduce framework to

realize KNNS for high-dimensional data. It fully exploits

the occurrence information of the LSH. some algorithms

are proposed to solve the problems of parameters setting in

constructing LSH index. Slaney et al. [28] use two his-

tograms to optimize the parameters.

Locality-sensitive hashing methods provide LSH index

for searching K-nearest neighbors of large scale and high-

dimensional data. However, it requires huge space and time

cost when searching nearest neighbors in candidate points,

and the difficulty of setting appropriate parameters has

impact on their performance. We propose a robust LSH

algorithm for KNNS, which is robust to the parameters

setting, and reduces the space requirement and time cost.

3 The p-stable LSH method

LSH transforms points from the original space to a new

space. If two points are close to each other in the original

space, it has large probability that they are mapped into the

same bucket, while two points that are far from each other

have a small probability of being mapped to the same

bucket. LSH is used to map the original data to a new

space, and nearest neighbors are often in the same bucket.

Then, searching K-nearest neighbors on the whole data is

transformed into searching K-nearest neighbors on a small

data that is in the same bucket with the query object after

mapping. The p-stable LSH [13] is a widely used LSH

method. It can be directly used for data in Euclidean space

without any embedding.

This section introduces p-stable LSH in detail. First, it

constructs multiple hash functions from a certain hash

family based on p-stable distribution. Then, only the

objects that is projected into the same hash buckets as the

query object are considered for inclusion in the query

range. Finally, it computes the distances between the

objects in the query range and the query object and obtains

K-nearest neighbors of the query object by sorting the

distances.

In statistics, if the linear combination of two random

variables from independently and identically distribution

has the same distribution as themselves, then, the random

variables obey a stable distribution. Next, we will introduce

p-stable distribution.

Definition 1 (p-stable distribution). For any n real data, r1,

r2, ..., rn and n variables, X1, X2, ..., Xn following the

independent and identically distribution D, if there exists

p� 0 such that the random variables
P

i riXi and

ð
P

i jrijpÞ1=pX are from the same distribution, then the

distribution D is called p-stable distribution.

It has been proved that for any p 2 ð0; 2�, the

stable distribution exists. A Gaussian distribution DG with

the density function gðxÞ ¼ 1ffiffiffiffi
2p

p e
�x2

2 is a 2-stable distribu-

tion. Therefore, p-stable LSH often uses Gaussian distri-

bution to generate the hash functions.

Definition 2 (Locality sensitive hash). Any two points p, q

are in the d-dimensional real data space. A function family

F ¼ ff : S ! Ug is ðd1; d2; p1; p2Þ-sensitive hash family if

it satisfies the conditions that when the distance between a

and b in original space S is less than d1, the probability of

collision between a and b in new space U (i.e. f ðpÞ ¼ f ðqÞ)
is larger than p1, and when the distance between a and b in

the original space S is larger than d2, the probability of

collision between p and q (i.e. f ðpÞ ¼ f ðqÞ) is less than p2.

Where f(p) is the hash value of p after being mapped by

f 2 F.

It should be noted that the hash family F can be used if it

satisfies that p1 [ p2 and d1\d2. It means that two points

whose distance is less than d1 are more likely to collide.
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LSH often concatenates multiple hash functions generated

from a certain hash family to avoid false detection.

For a given integer k, we obtain the concatenating

function gðpÞ ¼ ðf1ðpÞ; f2ðpÞ; ; fkðpÞÞ. The k hash functions

are from the hash family F ¼ ff : S ! Ukg, where fi 2 F.

Therefore, when the distance between p and q is less than

d1, the probability of collision between p and q in new

space U (i.e. gðpÞ ¼ gðqÞ) is larger than p1
k, and when the

distance between p and q is larger than d2, the probability

of collision between p and q (i.e. gðpÞ ¼ gðqÞ) is less than
p2

k.

Concatenating multiple hash functions decreases the

collision probability of two points far apart, but at the same

time it may reduce the collision probability of two close

points. Therefore, multiple hash tables are required for

solving this problem. We use L functions g, i.e., g1, g2, ...,

gL, and each function gi is the concatenating of k hash

functions. Each hash function is computed as:

fa;bðvÞ¼ba � v þ b

W
c ð1Þ

In Eq. 1, v is the object in a d-dimension real data space,

a and b are the parameters of a hash function, and W is the

width of projection. a is a vector having the same dimen-

sions as v and it is generated from Gaussian distribution.

b is a real number, representing offset value, and it is

generated from uniform distribution [0, W].

The steps of searching K-nearest neighbors based on

p-stable LSH mainly include constructing hash tables and

searching nearest neighbors for the query point. When

constructing one hash table, it first randomly generates

k vectors a and offset b. After that, each point is projected

with Eq. 1 and obtained k hash values. Then, the k hash

values are concatenated and converted to one integer. In a

hash table, the points that are close to each other are

assigned to the same bucket. Then it repeats the above

steps L times to build L hash tables. The detailed process of

constructing LSH index is shown in Algorithm 1.

Figure 1 gives an example of the hash table. Fig-

ure 1(a) is the original data and Figure 1(b) is a hash

table obtained by mapping the original data. We can learn

from the figure that points 1, 6, 7, 3, etc are mapped to the

same bucket because their distance is relatively close.

Similarly, points 10, 13, 22 and 19 are assigned to the same

bucket. However, there are no other points who are

assigned to the same bucket with points 26, 27 and 28.

When searching nearest neighbors, p-stable LSH

method uses the same hash functions in each hash table to

compute the hash value of the query point and obtains the

candidates by finding the union of points having the same

hash value as the query point in L hash tables. Then, the

distances between the candidates and the query point are

calculated and sorted to get K-nearest neighbors of the

query point. The detailed procedure of searching K-nearest

neighbors is described in Algorithm 2.

From the above algorithms, we can learn that the

influence of p-stable LSH for searching K-nearest neigh-

bors is influenced by three parameters: k, W, and L. A

larger value of k requires more time of calculating hash

values and decreases the probability that points who are far

apart are assigned into the same bucket. The value of

W affects the probability of collision for any two points and

a bigger value will increase the probability, while a smaller

value will reduce the probability. The bigger the value of

L is, the higher the accuracy of K-nearest neighbors

searching is, but it takes a longer time to construct the hash

tables.

Fig. 1 An example of hash table. a The original data; b The corresponding hash table
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The time consumption of p-stable LSH mainly contains

the time of constructing hash tables, obtaining candidates

and computing the distances. Let Tp denote the time con-

sumption of a single projection operation, Tu denote the time

of an union operation, and Td denote the time for calculating

the distance between each pair of points. The time cost of

constructing hash tables is n � k � L � Tp, where n is the data

size. In the process of obtaining candidates, it includes

mapping the query point and finding the union of points

having the same hash value as the query point. Its running

time is k � L � Tp þ L � Tu. Assuming the number of can-

didates is nc, then the time cost of computing distances is

nc � Td. Thus, the time consumption of p-stable LSH is

n � k � L � Tp þ k � L � Tp þ L � Tu þ nc � Td. The space

consumption of p-stable LSH is mainly for storing the hash

tables, and it is n � L.
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4 The proposed method

The p-stable LSH algorithm has to set three parameters k,

L and W to construct LSH index. To keep high accuracy of

searching K-nearest neighbors, it has to construct multiple

hash tables to obtain enough candidates, which requires

huge space consumption. Besides, the p-stable LSH always

selects points that having the same hash value with the

query point which limits the diversity of the candidates. To

solve these problems, we propose a robust LSH algorithm,

called Robust-LSH. It is inspired by the idea that points

close to the query point have more collisions in different

hash tables. Based on this idea, we improve the strategy for

KNNS. The proposed algorithm can obtain the same

accuracy with fewer hash tables, which reduces the space

consumption.

4.1 Robust-LSH method

The proposed method first constructs hash tables like

p-stable LSH, and then uses a different strategy for KNNS.

In the process of KNNS, p-stable LSH method only takes

advantage of the points that having the same hash value as

the query point. Considering that points that frequently

appear together with the query point in multiple hash

tables have high value in searching K-nearest neighbors,

we improved the diversity of candidates by employing

these points, which is called candidate seeds in this paper,

and uses these candidate seeds to obtain a high quality

candidate set for searching K-nearest neighbors.

Definition 3 (Candidate seeds). For a query point q, its

candidate seeds are points that having the same hash value

as q in multiple hash tables.

To find the candidate seeds of the query point, we

repeatedly randomly select several hash tables to compute

the hash value of the query point, and points that having the

same hash value with the query point are chosen for

intersection operation. When the number of points in the

intersection is less than K (K is the number of nearest

neighbors), it terminates. The detailed algorithm of finding

the candidate seeds is shown in Algorithm 3.

After obtaining the candidate seeds, we find the neigh-

bors of each candidate seed. Then, these neighbors are

combined into a candidate set for searching K-nearest

neighbors of the query point. Next, we give the definitions

of the neighbors of a candidate seed and candidates of a

query point.

Definition 4 (The neighbors of a candidate seed). For a

candidate seed Si, its neighbors are the points having the

same hash value as Si in a random hash table Hr, which is

denoted as SCSi.

Definition 5 (Candidates of a query point). For a query

point q, its candidates are the union of the neighbors of
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every candidate seed, which is denoted as CandidatesðqÞ ¼

[
ns

i¼1
SCSi , where ns is the number of candidate seeds.

The proposed algorithm includes two steps: constructing

hash tables and searching K-nearest neighbors for query

points. Our work is mainly to improve the second step.

Candidate seeds are points frequently appear together with

the query points, and it is valuable for obtaining K-nearest

neighbors of the query point. Therefore, making full use of

candidate seeds will improve the diversity of candidates, so

that we can use fewer hash tables to obtain more valuable

candidates for KNNS. The process of Robust-LSH for

KNNS is detailed in Algorithm 4.

4.2 Complexity analysis

For the proposed algorithm, its running time is mainly

spent on constructing hash tables, obtaining the candidates,

and computing the distances between the query point and

the candidates. Let Tp denote the time consumption of a

single projection operation, Ti denote the upper bound of

the cost for an intersection operation, Tu denote the cost for

an union operation, and Td denote the time for calculating

the distance between each pair of points. When con-

structing hash tables, each point needs to be projected k � L

times, then the time consumption of constructing hash

tables is n � k � L � Tp (n is the number of objects in a data).

To obtain the candidates of the query point, we need to

randomly select several hash tables to project the query

point and obtain candidate seeds through the intersection

operation. If the number of selected hash tables is L0

(L0\L), the time consumption for obtaining candidate

seeds is k � L0 � Tp þ L0 � Ti. If the number of candidate

seeds is ns (ns � n), then the upper bound time required for

the union operation is ns � Tu. Thus the running time of

obtaining the candidates of the query point is

k � L0 � Tp þ L0 � Ti þ ns � Tu. The time for calculating the

distances is nc � Td, where nc (nc � n) is the number of

candidates. Thus, Robust-LSH’s time consumption is

n � k � L � Tp þ k � L0 � Tp þ L0 � Ti þ ns � Tu þ nc � Td.

The space of the proposed algorithm is mainly used for

storing hash tables, therefore its space complexity is n � L.

Compared with the p-stable LSH, although Robust-LSH

requires more time to find candidate seeds, it only needs to

build a few hash tables to keep the accuracy of K-nearest

neighbors searching.

5 Experiments and analysis

The performance of the proposed algorithm Robust-LSH is

evaluated by comparing with KD-tree, p-stable LSH and

RLSH on synthetic and real datasets1. KD-tree method is a

typical tree-based nearest neighbors searching algorithm. It

constructs tree structure for exact nearest neighbors

searching. The p-stable LSH is a popular LSH method.

RLSH is an improved p-stable LSH algorithm.

First, we prove the robustness of our method to the

parameters when constructing LSH hash tables. Then, we

explore the influence of data size and dimension on the

algorithms. Finally, we use two real datasets to illustrate

the robustness of Robust-LSH.

1 Data will be available on reasonable request.
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We quantitatively evaluate the quality of KNNS by

using accuracy (ACC). Given a query point q, A(i) repre-

sents the actual i-th nearest neighbor of q and R(i) repre-

sents the i-th nearest neighbor of q obtained by the

algorithm. ACC is calculated Eq. 2.

ACCðqÞ ¼
PK

i¼1 vðAðiÞ � RðiÞÞ
K

ð2Þ

In the above equation,

vðxÞ ¼ 1; x ¼ 0

0; x 6¼ 0

�

:

ACC means the proportion of correct neighbors to actual

neighbors. The range of ACC is [0, 1]. When ACC equals

to 1, it tells that all the correct K nearest neighbors are

found by the algorithm. We do experiments on a PC with

Intel Core i7 1.8GHz, 8GB RAM, Windows 10 and

MATLAB R2013a.

5.1 The influence of hash tables L

A Gaussian distribution is used to randomly generate a

dataset containing 20000 objects and each object has 100

dimensions. 20 objects are selected as the query points and

the 100-nearest neighbors of each query point are used to

compute ACC of algorithms.

When constructing LSH index, we have to set three

parameters: k, W, and L. To explore the influence of L for

p-stable LSH, RLSH and Robuts-LSH, we fix k and W, and

range the number of hash tables L form 5 to 50. According

to [13], W is fixed as 4 and k is set to 5.

The ACC and running time are used to evaluate the

performance of the algorithms. Since RLSH and Robust-

LSH randomly select hash tables to construct candidates

for the query point, each query (containing 20 query points)

is repeated 10 times. Table 1 shows the mean and standard

deviation of ACC and running time of 10 experiments. The

average ACC and running time are shown in Figure 2.

The standard deviations in Table 1 illustrate that the

ACC and running time of p-stable LSH and Robust-LSH

are stable. From Figure 2(a), we can learn that as for

p-stable LSH, its ACC score increases with hash

tables when the number of hash tables is less than 25.

Especially, when there are only a few hash tables, its ACC

score is far less than that of RLSH and Robust-LSH. For

RLSH and Robust-LSH, even though a few hash tables are

used, their ACC scores are higher than 0.9. When the hash

tables is greater than 10, the ACC score of Robust-LSH

always maintains 1, which shows that Robust-LSH is

robust to the parameter L. Besides, it means that we can use

fewer hash tables to get good results and fewer hash

tables means less storage space. From Figure 2(b), we can

learn that Robust-LSH takes a little longer time than

p-stable LSH and far less time than RLSH. Therefore, our

algorithm Robust-LSH is much better than p-stable LSH

and RLSH in terms of the storage space, query accuracy

and running time.

Table 1 The ACC and running time of algorithms with different L settings

5 10 15 20 25

Mean Std Mean Std Mean Std Mean Std Mean Std

p-stable LSH ACC 0.046 0.000 0.175 0.000 0.525 0.000 0.916 0.000 1.000 0.000

time 0.334 0.003 0.472 0.003 0.571 0.007 0.621 0.004 0.645 0.003

RLSH ACC 0.975 0.027 0.995 0.015 0.981 0.025 0.991 0.020 0.995 0.015

time 16.730 2.155 16.267 3.339 17.429 3.504 20.010 3.479 21.734 3.841

Robust-LSH ACC 0.814 0.066 0.994 0.013 1.000 0.000 1.000 0.000 1.000 0.000

time 1.542 0.190 1.330 0.081 1.328 0.075 1.431 0.082 1.403 0.104

30 35 40 45 50

Mean Std Mean Std Mean Std Mean Std Mean Std

p-stable LSH ACC 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000

time 0.667 0.003 0.692 0.018 0.731 0.023 0.744 0.003 0.771 0.019

RLSH ACC 1.000 0.000 1.000 0.000 0.990 0.031 0.997 0.008 0.995 0.016

time 23.119 4.434 25.936 3.822 27.750 4.218 25.900 2.229 25.130 5.815

Robust-LSH ACC 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000

time 1.443 0.080 1.480 0.052 1.525 0.102 1.527 0.052 1.584 0.084
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5.2 The influence of data size and dimension

We also compare our algorithm with KD-tree and

p-stable LSH on Gaussian distribute datasets to illustrate

the robustness of the proposed algorithm to the dimension

and size of data. KD-tree algorithm is a typical tree-based

method for searching K-nearest neighbors. When doing

experiment on large-scale data, since RLSH algorithm

takes a lot of time to obtain the result, we only select

p-stable LSH method for comparison. Like the first

experiment, we repeat each query for 10 times, and each

time we try to find 20 query points’ 100 nearest neighbors,

and use the average ACC and running time of 10 times as

the evaluation index for the performance of algorithms.

First, we randomly generate 100000-sized Gaussian

distribution data, and the dimension gradually increases

from 100 to 1000. According to the first experiment, we

can learn that when L is set to 10, it not only saves the

space storage, but also achieve a higher ACC value for the

proposed method. Therefore, in this experiment, we fixed

L as 10. The parameter k is also set to 5. Since the data

scale is much larger than that of the first experiment, we

increase W to 10. Table 2 lists the mean and standard

deviation of ACC and running time. Besides. Figure 3

shows the average ACC and running time as the dimension

of data increases.

The standard deviations of Robust-LSH in Table 2 are

small, which tells that the results of the proposed algorithm

is stable. From Figure 3(a), we find that as the dimension

increases, the ACC scores of KD-tree and our method are

close to 1, but the ACC of p-stable LSH decrease from

0.996 to 0.0667. KD-tree is an exact method for searching

K-nearest neighbors, and our method is an approximate

method. From this result, our method almost obtains the

same accurate K-nearest neighbor as KD-tree. Fig-

ure 3(b) tells that the running time of KD-tree increases

much faster than p-stable LSH and our method with the

increase of dimension. Therefore, considering ACC and

running time, Robust-LSH is rarely affected by the

dimensions.

Then, we randomly generate 1000-dimensional Gaus-

sian distribution data, and the size of data ranges from

10000 to 100000. Like the above experiment, three

parameters L, k and W are set to 10, 5, and 10, respectively.

Table 3 shows the mean and standard deviation of ACC

and running time with different sizes. Figure 4 shows the

average ACC and running time as the size of data

increases.

Figure 4(a) displays the ACC scores of the algorithms

with the increase the data size and Figure 4(b) displays the

running time of the algorithms. It can be seen that the ACC

scores of p-stable LSH are kept lower than 0.1, which

proves that p-stable LSH is not effective for these data.

Since KD-tree is an exact method, its ACC scores maintain

1. The ACC scores of Robust-LSH are always higher than

0.97 and close to 1, which illustrates its effectiveness when

searching K-nearest neighbors. The running time shown in

Figure 4(b) tells that the running time of the three algo-

rithms increases as the data size grows. However, the

growth rate of KD-tree is much faster than p-stable LSH

and Robust-LSH. Although Robust-LSH takes a little

longer time than p-stable LSH, its ACC scores are much

higher than p-stable LSH. Hence, combining these two

Fig. 2 The impact of hash tables on ACC and running time for p-stable LSH, RLSH and Robust-LSH. a The ACC with the increase of hash

tables. b The running time with the increase of hash tables
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indicators, Robust-LSH outperforms KD-tree and

p-stable LSH.

5.3 The experiment on real datasets

We further use two real datasets Patches and MNIST,

which are from [27], to illustrate the effectiveness of

Robust-SLH. Patches consists of 59500 points and each has

400 dimensions. MNIST contains 60000 points and each

has 784 dimensions. The compared algorithms include

p-stable LSH, RLSH and KD-tree. When constructing LSH

index for p-stable LSH, RLSH and Robust-LSH, we set

L to 10 like the previous setting, then roughly estimate W

by divide the range of the data by 4, and range the number

of hash functions k from 4 to 10. We still use 20 query

points’ 100 neighbors to compute ACC scores of algo-

rithms. The average ACC and running time of 10 experi-

ments are used as the evaluate indexes. The running time of

p-stable LSH, RLSH and Robust-LSH includes that of

Table 2 The ACC and time of

algorithms with different

dimensions

100 200 300 400 500

Mean Std Mean Std Mean Std Mean Std Mean Std

KD-tree ACC 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000

time 8.526 0.172 14.962 0.084 21.572 0.147 28.780 0.130 35.782 0.083

p-stable LSH ACC 0.996 0.012 0.940 0.111 0.816 0.152 0.657 0.171 0.406 0.163

time 2.928 0.327 4.794 0.069 6.241 0.146 7.613 0.140 9.009 0.258

Robuts-LSH ACC 1.000 0.000 1.000 0.000 1.000 0.000 0.996 0.011 0.998 0.005

time 7.639 0.965 10.350 0.863 11.154 0.550 12.584 0.614 13.657 0.614

600 700 800 900 1000

Mean Std Mean Std Mean Std Mean Std Mean Std

KD-tree ACC 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000

time 44.138 1.206 53.716 1.521 65.481 2.591 81.273 3.125 97.830 4.821

p-

stable LSH

ACC 0.166 0.066 0.177 0.099 0.149 0.101 0.093 0.060 0.066 0.015

time 9.774 0.444 10.897 0.732 12.812 0.856 12.550 1.021 13.737 0.902

Robuts-LSH ACC 0.999 0.004 0.996 0.012 0.991 0.018 0.990 0.016 0.971 0.044

time 14.527 0.527 17.191 0.675 16.738 0.708 18.755 0.421 19.944 0.777

Fig. 3 The impact of dimensions on ACC and running time for KD-tree, p-stable LSH and Robust-LSH. a The ACC with the increase of

dimensions. b The running time with the increase of dimensions
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building the hash tables and searching K-nearest neighbors.

Table 4 lists the mean and standard deviations of ACC and

running time for Patches and Table 5 lists the mean and

standard deviations of ACC and running time for MINIST.

The results in Table 4 and 5 tell that smaller k value

takes longer time and obtains higher ACC score. The

reason is that smaller k value produces more candidates for

searching K-nearest neighbors. With the increase of k,

ACC scores of three LSH methods decrease. Specifically,

for Patches, p-stable LSH decreases from 1 to 0.565, RLSH

decreases from 1 to 0.926, and Robust-LSH decrease from

1 to 0.941; for MINIST, p-stable LSH decreases from

0.975 to 0.310, RLSH decreases from 1 to 0.825, and

Robust-LSH decrease from 1 to 0.864. Obviously, the ACC

scores of Robust-LSH drop the slowest compared with

p-stable LSH and RLSH, which demonstrates that Robust-

LSH is robust to the parameter k. Besides, no matter what

the value of k is, the proposed method obtains higher ACC

scores than p-stable LSH and RLSH, and Robust-LSH’s

running time is far less than RLSH. For KD-tree, its ACC

scores are always 1, because it is an exact K-nearest

neighbors searching method. However, its running time for

Table 3 The ACC and time of algorithms with different sizes

10000 20000 30000 40000 50000

Mean Std Mean Std Mean Std Mean Std Mean Std

KD-tree ACC 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000

time 5.523 0.048 11.794 0.106 17.894 0.121 25.775 0.123 33.120 0.394

p-stable LSH ACC 0.051 0.019 0.063 0.017 0.065 0.034 0.059 0.023 0.057 0.022

time 1.943 0.105 3.215 0.130 4.205 0.377 5.324 0.316 6.390 0.436

Robuts-LSH ACC 0.948 0.046 0.982 0.020 0.974 0.023 0.978 0.029 0.971 0.034

time 2.979 0.052 5.071 0.133 6.511 0.176 8.371 0.187 9.991 0.318

60000 70000 80000 90000 100000

Mean Std Mean Std Mean Std Mean Std Mean Std

KD-tree ACC 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000

time 40.378 0.337 54.929 1.090 65.841 2.078 80.950 1.258 95.364 2.356

p-stable LSH ACC 0.066 0.027 0.044 0.009 0.069 0.021 0.057 0.017 0.058 0.015

time 7.817 0.570 7.674 1.012 10.460 0.919 11.423 0.879 12.604 0.508

Robuts-LSH ACC 0.989 0.014 0.984 0.016 0.979 0.024 0.987 0.020 0.981 0.026

time 12.071 0.571 12.853 1.233 15.964 0.323 18.477 0.417 20.274 1.079

Fig. 4 The impact of dimensions on ACC and running time for KD-tree, p-stable LSH and Robust-LSH. a The ACC with the increase of data

size. b The running time with the increase of data size
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these two real data sets is longer than Robust-LSH.

Therefore, in terms of ACC and running time, the proposed

method Robust-LSH is more effective than other KNNS

algorithms.

6 Conclusions and future work

LSH is a popular approximate KNNS method for high-

dimensional data. However, the searching strategy of

p-stable LSH is sensitive to the parameters in constructing

LSH index. RLSH improves the query strategy by ran-

domly selecting hash tables to project the query point, but

it has to take much longer time to obtain a desired result. In

this paper, we propose a novel strategy to search K-nearest

neighbors, called Robust-LSH, which is robust to the

parameters of constructing LSH index. It makes full use of

points that frequently appear together with the query points

to improve the diversity of candidates, so that it can use

fewer hash tables to obtain more valuable candidates for

searching K-nearest neighbors. The experimental results

illustrate the robustness and effectiveness of our proposed

algorithm.

The proposed algorithm is robust to the number of hash

tables and we can use fewer hash tables to obtain high-

quality of candidates for KNNS. However, the number of

candidates obtained by Robust-LSH is larger than that of

p-stable LSH, thus it takes a little longer time than

p-stable LSH.

In the future, we will explore the parallel implementa-

tion of the algorithm to further improve the efficiency of

Robust-LSH. At the same time, we will also explore its

application in clustering analysis.
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