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Abstract
Mobile devices (MDs), represented by smartphones, have been widely used in various industries. However, MDs are

constrained by their limited resources and cannot execute computation-intensive applications. Mobile cloud computing

(MCC), which provides MDs with a rich pool of resources that can be accessed through wireless networks, is proposed to

extend MDs’ capacity by computation offloading. MCC helps MDs breakthrough their resource constraints, frees them

from heavy local workloads, and allows them to take more responsibility for connecting mobile users (MUs) and the

information domain. MCC computation offloading has attracted wide attention because of its tremendous potential, and a

lot of related research has been done. In this paper, we provide a survey of the research on computation offloading in MCC

so that readers can spend less time to have a comprehensive understanding of this field, and know its key technologies and

future directions. We first summarize the MCC architecture and offloading granularity, which are the most fundamental

concepts of MCC. The computation offloading system is decomposed into three basic components: MUs, application

service operators, and cloud operators. We then conducted a comprehensive literature review on offloading decision,

admission control, resource management, and edge equipment deployment, which are four key technologies for these

components. Wireless network connection and heterogeneity are the basic features of MCC, which increase the possibility

of failure and privacy leakage during the computation offloading process. We also review the auxiliary technologies for

computation offloading in terms of fault tolerance and privacy protection. Finally, we present the research outlook of the

systematic prototype and other technologies from the perspective of ‘‘device-pipe-cloud’’.
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1 Introduction

With the rapid development of wireless network and

computer technologies, using mobile devices (MDs) has

become highly popular in many industries. Cisco predicted

that the number of MDs worldwide will grow from 8.8

billion in 2018 to 13.1 billion in 2023 [1]. At the same

time, due to the progress of the Internet of Things (IoT), a

large number of devices are connected to mobile Internet,

making the MD concept further expand. With the popu-

larity of MDs, mobile Internet has entered a high-speed

development stage. For instance, according to Internet

Trend Report 2019, the number of mobile users (MUs) in

China has exceeded 817 million with a year-on-year

growth rate of 9%, and their mobile data traffic con-

sumption increased by 189% [2]. Benefiting from the

continuous improvement of chip manufacturing tech-

niques, MDs are equipped with more powerful CPUs and

larger memories, enabling MDs to handle more business

for MUs. However, the faster CPU has the greater energy

consumption since CPU power increases super-linearly

with its frequency [3]. MDs are usually powered by bat-

teries, and the battery volume and capacity are limited to

support MDs’ portability. As one of the most intuitive

feelings, compared with feature phones of the previous

generation, although today’s smartphones have more

functions, they have shorter working hours after one

charge. Different from the semiconductor technology fol-

lowing by Moore’s Law, the battery technology has not

made breakthroughs in the short term, and the annual

growth rate of the battery capacity is only 5% [4]. Fur-

thermore, due to a series of factors such as CPU architec-

ture and heat dissipation, regardless of the fact that MD

processing capacity has been improved, it is still weak to

execute some computation-sensitive applications. MDs’

limited resources cannot satisfy the increasingly complex

MU requirements.

Computation offloading migrates computing tasks to the

external platform to extend available MD resources, which

is an effective way to solve the problem of limited MD

resources [5]. Cloud computing, as the foundation of future

information industry, is a business computing model,

which can provide rich resources to MDs. Cloud comput-

ing is a pay-per-use model that supplies available, conve-

nient, on-demand network access to a shared pool of

configurable computing and storage resources [6]. The

concept of cloud computing was first proposed by Google

CEO Schmidt in 2006, and remarkable technological pro-

gresses have been achieved after more than 10 years of

development. At present, there are many mature commer-

cial cloud computing services, such as Amazon Web Ser-

vices, Microsoft Azure, Alibaba Cloud, Tencent Cloud, etc.

Based on cloud computing and computation offloading,

mobile cloud computing (MCC), which provides MDs with

a rich pool of resources that can be accessed through

wireless networks, is proposed to address the problem that

MDs’ resources are limited. MCC is an association of

cloud computing, mobile computing, and wireless network

and can migrate offloading units (OUs) to the cloud via

computation offloading [7–9]. MCC helps MDs break-

through their resource constraints, frees them from heavy

local workloads, allows them to take more responsibility

for connecting MUs and the information domain, and

makes them become a simple modem that connects humans

to the electromagnetic signal-based network. Benefiting

from MDs’ portability, MUs can connect with the resource-

rich cloud anytime and anywhere in MCC, and enjoy the

convenience of informatization better. MCC has attracted

wide attention from industry and academia because of its

tremendous potential. According to the assessment of

Allied Analytics LLP, the mobile cloud market is valued at

$12.07 billion in 2016 and is expected to reach $72.55

billion by 2023, with a compound annual growth rate of

30.1% from 2017 to 2023 [10]. It can be inferred that the

mobile cloud market will become more prosperous with the

progress of MCC.

Computation offloading is the core of MCC and deter-

mines the ultimate MCC effect. Researchers have studied

computation offloading from different perspectives and

provided numerous research results. Wu presented a survey

of current research work on multi-objective decision

making for time-aware and energy-aware computation

offloading in MCC [11]. Mach and Becvar surveyed the

work on computation offloading from the perspective of

offloading decision, computing resource allocation, and

mobility management [12]. Bhattacharya and De focused

on the variability and unpredictability of MCC environ-

ment in offloading decision [13]. They categorized the

parameters that influence computation offloading as

applications characteristics, network properties, and exe-

cution platform features, and then surveyed adaptation

techniques utilized for computation offloading. Kumar

et al. investigated different types of offloading decision

algorithms and classified the application types that have

been used to demonstrate [14]. Khan performed a survey of

the computation offloading strategies impacting the per-

formance of offloaded applications and categorized

offloading decision approaches into static and dynamic

[15]. Chen and Cheng reviewed the offloading decision

algorithms and classified them into three categories based

on three decision scenarios (i.e., single user, multiple users,

and enhanced server) [16]. Shakarami et al. surveyed the

offloading decision approaches from the perspective of

game theory and classified these approaches into four main

fields based on the game mechanisms (i.e., classical game
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mechanisms, auction theory, evolutionary game mecha-

nisms, and hybrid-base game mechanisms) they used [17].

Nevertheless, these surveys ignored the systematicness

of computation offloading in MCC and mainly focused on

offloading decision approaches. Instead of reviewing one

or more discrete technologies, this paper considers the

interaction among components of the MCC computation

offloading system and summarizes their key technologies.

Our work aims at providing a comprehensive survey of

research on computation offloading in MCC so that readers

can spend less time to have a more comprehensive

understanding of this field, and know its key technologies

and existing problems. Architecture is the foundation of

MCC, and different architectures lead to different compu-

tation offloading patterns. The offloading granularity

determines the OU in the computation offloading system.

Therefore, we first summarize the MCC architecture and

offloading granularity. To promote MCC and computation

offloading on a large scale, all the transactions should not

be coupled together but decomposed into separate com-

ponents that are responsible for their transactions under

principles of high cohesion and low coupling. The com-

putation offloading system has three basic components, i.e.,

MUs, application service operators (ASOs), and cloud

operators (COs) [18]. Offloading decision, admission con-

trol, resource management, and equipment deployment are

their technical challenges. We then summarize the key

technologies used to solve these four challenges. In the

theoretical research, it is usually assumed that there will be

no failures in the computation offloading process, and the

MU data will not be stolen. However, in the real-life MCC

computation offloading system, it is prone to fail in the

process of data transmission or/and distributed OU exe-

cution since MDs are connected to the cloud through

wireless networks, and MDs are heterogeneous with cloud

data centers. MDs usually store MUs’ high-privacy per-

sonal information. Privacy leakages and malicious attacks

may occur in the process of data transmission or/and OU

execution. Fault tolerance and privacy protection, which

are two critical auxiliary technologies for computation

offloading, are also summarized. Finally, we present a

research outlook for MCC computation offloading from the

perspective of systematic prototype and ‘‘device-pipe-

cloud’’. Our contributions can be summarized as follows:

(1) We consider the interaction among components of

the MCC computation offloading system and conduct a

comprehensive literature review on four technologies

involved in computation offloading from the perspective of

system by giving an explicit comparison and feature

analysis of them. Besides, we summarize the MCC archi-

tecture and offloading granularity, which are the funda-

mental concepts of MCC.

(2) In MCC, MDs are connected to the cloud through

wireless networks, and MDs are heterogeneous with cloud

data centers. These two characteristics make failures and

privacy leakages inevitable in the real-life process of data

transmission or/and distributed OU execution. We sum-

marize fault tolerance and privacy protection for compu-

tation offloading, and analyze their internal technical

theories.

(3) We discuss the future research trend in systematic

MCC prototype and analyze technologies that need to be

paid attention to in the future from the perspective of

‘‘device-pipe-cloud’’.

The remainder of this paper is organized as follows.

Section 2 summarizes the MCC architecture and offloading

granularity. Section 3 summarizes four technologies of

offloading decision, admission control, resource manage-

ment, and equipment deployment. Section 4 summarizes

fault tolerance and privacy protection for computation

offloading. Section 5 discusses the future research direc-

tions. Section 6 concludes this paper. Table 1 shows the

abbreviations used throughout this paper.

2 MCC architecture and offloading
granularity

2.1 MCC architecture

After the concept of MCC was proposed, researchers have

given many definitions [8, 18, 19]. These definitions are

different due to various research contents and scenarios,

but their core ideas are the same, that is, MCC offloads

OUs from the MD to external platforms for execution,

thereby enhancing the MD capability. According to the

available external platforms, MCC architectures can be

classified into four categories: one-layer architecture, two-

layer architecture, three-layer architecture, and hybrid

architecture [20], which are shown in Fig. 1. These MCC

architectures are compared in Table 2.

(1) One-layer Architecture

In the one-layer architecture, several neighboring MDs

form a network, in which these MDs make up the external

platform to provide their idle resources to each other. The

formed network is a self-organizing dynamic network that

allows MDs to join and to leave at any time. This archi-

tecture, which uses MDs as the cloud servers to complete

computing tasks through cooperation among MDs, is a

variant of traditional cloud computing. A typical example

is Hyrax [21], which applied Hadoop in MCC. Hyrax uses

a group of smartphones to execute computing tasks in

parallel and implements large-scale distributed applications

through the cooperation among these smartphones. The

one-layer architecture has advantages of short distance and
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fast data transmission, which solves the problem of MD

resource limitation to a certain extent. However, the

external platform in this architecture is composed of MDs,

which have few resources and are difficult to provide

sufficient resources. Moreover, MDs are owned by differ-

ent MUs so that problems of permission and privacy are

prone to occur in real life. How to persuade MUs to con-

tribute their precious MD resources will be a major

challenge.

(2) Two-layer Architecture

In the two-layer architecture, MDs are in the first layer,

and the external platform is in the second layer. The

external platform can be the server nearby MDs or the

remote cloud. The two-layer architecture can be classified

into two subclasses according to the external platforms.

A nearby server named cloudlet, which refers to the

resource pool composed of small-scale data center clusters

at the Internet edge and aims to bring cloud services around

MUs, was proposed by Satyanarayanan et al. in 2009 [27].

In [27], Satyanarayanan et al. implemented a cloudlet

prototype based on the dynamic virtual machine (VM)

synthesis. In this prototype, when the MD wants to use the

cloudlet, it first generates the parameters required to

override the VM and then sends them to the cloudlet. After

receiving these parameters, the cloudlet combines these

parameters with its basic VM to generate the same VM as

the MD, then executes the MD applications using its VM,

and finally returns results to the MD. After the concept of

cloudlet was proposed, some researchers are committed to

improving it. For example, Hua et al. proposed a

scheduling mechanism based on statistical prediction to

solve the problem of a long time consuming for cloudlet

synthesizing VM [28]. According to the prediction infor-

mation, the service application VM on cloudlet is pre-

synthesized to reduce the MU’s waiting time. Cloudlets can

be composed of PCs, workstations, or small servers, which

are deployed around wireless network access points (APs),

such as Wi-Fi hotspots in libraries or coffee shops, to

provide cloud service for MDs connected to APs. Also, in

the disaster relief or war scenario, temporary cloudlets

(e.g., unmanned aerial vehicles) can be deployed [31–33].

Compared with the one-layer architecture, using nearby

servers can alleviate the shortage of external platform

resources while retaining the advantage of low delay.

Table 1 The abbreviation list

Abbreviation Definition Abbreviation Definition

MD Mobile Device B2B Business to Business

IoT Internet of Things B2C Business to Consumer

MU Mobile User QoS Quality of Service

MDP Markov Decision Process MCOP Min-Cost Offloading Partitioning

MCC Mobile Cloud Computing GCS Global Cloud Server

OU Offloading Unit LISPS Local Internet Service Provider Server

ASO Application Service Operator GS Gateway Server

CO Cloud Operator TOPSIS Technique for Order of Preference by Similarity to Ideal

Solution

AP Access Point ITU International Telecommunications Union

ETSI European Telecommunications Standards

Institute

WLAN Wireless Local Area Network

MEC Multi-access/Mobile Edge Computing CMT Concurrent Multiple Transfer

3GPP 3rd Generation Partnership Project SCTP Stream Control Transmission Protocol

VM Virtual Machine MPTCP Multi-path Transmission Control Protocol

OS Operating System ILP Integer Linear Programming

Fig. 1 Categories of the MCC architectures
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The architecture, in which the remote cloud is the

external platform, is the classical MCC architecture. The

remote cloud is rich in resources and has many commercial

products, which is convenient for the practical construction

of MCC. In traditional cloud computing, the user device

(e.g., desktop computer) is connected to the cloud via

wired networks and is electrified by plugs and sockets,

which suppress the need for energy-efficient data trans-

mission techniques. In this MCC architecture, MDs con-

nect to the remote cloud via wireless networks, which

consume MD energy and have limited bandwidth. If the

energy and time saved by computation offloading are less

than those consumed by data transmission through wireless

networks, computation offloading is invalid. Wireless net-

works have a serious impact on the energy- and time-

saving effects of computation offloading in MCC. The

question of whether it is worth the effort to offload the

computation to the remote cloud must be answered first.

Kumar and Lu answered this question through theoretical

analysis and experiment in [34]. They found that MCC can

potentially save energy for MDs but not all computations

are energy-efficient when offloaded to the remote cloud.

They take energy-saving as the optimization goal and

illustrated that offloading is beneficial when large amounts

of computation are needed with relatively small amounts of

communication. This MCC architecture completely solves

the problem of limited resources and can be considered as

providing unlimited resources. However, it is troubled by

the problems of high delay and consumption caused by

wireless networks.

(3) Three-layer Architecture

The two-layer architecture, which uses the nearby server

as the external platform, can alleviate the resource shortage

of one-layer architecture while retaining the advantage of

low delay. The classical MCC architecture, which is the

other two-layer architecture and uses the remote cloud as

the external platform, can provide sufficient resources.

However, the classical MCC architecture is not suitable for

delay-sensitive scenarios (e.g., real-time control, real-time

data processing, augmented/virtual reality, etc.) because of

its high delay. Through the above analysis, it can be seen

that the two-layer architecture that uses the nearby server

as the external platform has limited resources but low

delay, while the classical MCC architecture has rich

resources but high delay. If they are combined, their

advantages can be used to overcome each other’s short-

comings, and the resources and delay can be balanced

perfectly.

Compared with the remote cloud, the nearby server is

closer to MDs, and the layer it locates is also called ‘‘edge

layer’’. Adding the edge layer to classical two-layer MCC

architecture forms a new architecture named multi-ac-

cess/mobile edge computing (MEC). It is worth noting that

MEC refers to mobile edge computing in the previous

concept. In 2017, the European Telecommunications

Standards Institute (ETSI) extended the MEC concept from

initially supporting only the 3GPP mobile network to also

supporting the non-3GPP networks (including multiple

types of wireless networks and even wired networks), and

its name is also modified from mobile edge computing to

multi-access edge computing [52]. MEC is an enhancement

and extension of MCC and still belongs to the MCC

Table 2 Comparison of the MCC architectures

Work Architecture Characteristics

[21–26] One-layer architecture 1. Low delay

2. Low-level resources

3. Self-organizing dynamic network

4. Low construction cost

[27–33] Two-layer architecture (nearby server) 1. Low delay

2. Medium-level resources

3. Deploy nearby server and has a high construction cost

[34–39] Two-layer architecture (remote cloud) 1. High delay

2. High-level resources

3. Use the existing public cloud and has a low construction cost

[40–46] Three-layer architecture 1. Low delay

2. High-level resources

3. Use the existing public cloud partly and has a high construction cost

[47–51] Hybrid architecture 1. High flexibility

2. Construct for specific application scenarios
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category. Because this architecture takes advantage of the

collaboration between edge cloud and remote cloud, it is

also called ‘‘cloud-edge collaboration’’ architecture. Com-

pared with classical MCC, MEC has more advantages. On

the one hand, MEC can transfer delay-sensitive OUs to the

edge layer to reduce the response time. For example, in

industrial manufacturing, some information requires real-

time analysis to deal with emergencies timely, and this

work can be done at the edge layer. Big data generated in

the manufacturing process can be analyzed by machine

learning technologies in the remote cloud. Wu et al.

introduced a three-layer architecture for data-driven

machine health and process monitoring in cyber-manu-

facturing [42]. The training datasets are streamed into the

remote public cloud, in which the diagnostic and prog-

nostic models are built using parallel machine learning

algorithms. The predictive models are downloaded to the

local private edge cloud and applied to the real-time

datasets streamed to the edge cloud for online diagnosis

and prognosis. On the other hand, MD data is transmitted

to the edge layer through local/private network for pro-

cessing or preprocessing instead of directly being trans-

mitted to the remote cloud through the public core network,

which greatly relieves the pressure of core network and

enhances the data security. Just as every coin has two sides,

classical MCC also has its advantages. Classical MCC uses

the mature commercial cloud computing platform, which

helps it to provide low-cost mobile cloud services quickly.

Many traditional cloud services can be transplanted to MDs

with minor modifications. MEC needs to deploy a large

number of edge equipment additionally, which will bring

great economic pressure, hinder the development speed and

increase the service cost. On the contrary, classical MCC

has no pressure to deploy the edge equipment.

(4) Hybrid Architecture

The hybrid architecture combines several different

architectures to build MCC suitable for specific application

scenarios. Sanaei et al. proposed a hybrid MCC architec-

ture integrating the above three architectures, analyzed the

key problems and solutions to achieve it, and demonstrated

the application of hybrid MCC through a medical treatment

case [47]. Alonso-Monsalve et al. proposed a hybrid MCC

architecture, which combines the classical MCC architec-

ture with the utilization of volunteer platforms as resource

providers [48]. Their proposed architecture is an inexpen-

sive solution, which highlights benefits in cost savings,

elasticity, scalability, load balancing, and efficiency. Zhou

et al. proposed a hybrid MCC architecture integrating the

above three architectures, in which MDs, cloudlets, and

remote cloud form a shared resource network for compu-

tation offloading [49]. To incentivize MUs to provide their

MD resources, they designed an auction-based computa-

tion offloading market, in which MUs can sell and buy MD

resources. Feng et al. proposed a hybrid MCC architecture

to improve the computational capability of vehicles by

using resources from the remote cloud, roadside units, and

neighboring vehicles [50]. Their architecture also inte-

grates the above three architectures, in which the roadside

units are nearby servers, and the vehicles can offload their

OUs to each other. Flores et al. proposed a social-aware

hybrid computation offloading system, which integrates

cloudlet, remote cloud, and device-to-device networks, and

increases the spectrum of offloading opportunities [51].

They designed an credit- and reputation-based incentive

mechanism to foster MUs to lease their MD resources as

open commodities that may be acquired by others.

2.2 Offloading granularity

Offloading granularity determines the OU in the compu-

tation offloading process. At present, there has been some

research on the MCC computation offloading prototype,

which mainly focuses on the design and implementation of

the software system. Researchers used different offloading

granularity in their prototype, such as method, class,

thread, VM, web service, etc. The offloading granularities

in these prototypes are compared in Table 3. Besides these

prototypes, more research studied MCC from the theoret-

ical perspective, and there are two commonly used task/

application models, which also indicate their offloading

granularities. Fig. 2 shows categories of the offloading

granularity.

(1) The independent task model

[26, 30–34, 36, 40, 43, 45, 46, 49, 50, 57–63]. This model

abstracts the task into an independent computing module,

which has no interaction with other computing modules

and arrives following a stochastic process (e.g., the Poisson

process). The computing module is usually defined as a

3-tuple, in which one item represents the size of input data,

one item represents the necessary CPU cycles to accom-

plish the computing module, and one item represents the

maximum tolerable delay. In this model, the computing

module is the OU and represents the offloading granularity.

(2) The graph model [35, 64–72]. A real-life mobile

application is composed of many components (e.g., classes,

threads, or methods), which are the OUs. A component can

call other components for execution and needs the output

data from other components. Therefore, a mobile applica-

tion can be abstracted as a graph, in which vertexes rep-

resent the components, and the edge represents the

interactive relationship between two components. In this

model, the vertex represents the offloading granularity. An

example of the graph-based application model is illustrated

in [72]. The vertex is modeled as a 3-tuple, in which one

item represents the CPU cycles, one item represents the

indicator of whether it is offloadable, and one item

1568 Wireless Networks (2022) 28:1563–1585
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represents the execution sequence. Some components of

the mobile application are unoffloadable because they have

to operate MD hardware (e.g., sensors or screen), and the

corresponding vertexes need to be marked as unoffload-

able. The indicator is a binary, which can be set as 1/0 if

the vertex is unoffloadable and can be set as 0/1 if the

vertex is offloadable. The edge represents the interactive

relationship between two vertexes, and its weight denotes

the amount of interactive data.

3 Key technologies in the computation
offloading system

To promote the large-scale development of computation

offloading in MCC, all the transactions should not be

coupled together but decomposed into components. These

components are operated in the form of system under

principles of high cohesion and low coupling. The com-

putation offloading system has three basic components:

MUs, ASOs, and COs [18], and their relationship is shown

in Fig. 3. MUs purchase cloud application services pro-

vided by ASOs and offload their OUs to ASOs. ASOs rent

virtual resources from COs and develop various cloud

application services. ASOs do not need to purchase and

maintain their computing hardware equipments but rent the

required resources from COs. This mode saves the cost of

equipment purchase and maintenance for ASOs, and helps

them pay more attention to develop the cloud application

service and to improve the quality of service (QoS). Only

when ASOs continuously develop high-quality cloud

application services can they attract more MUs and

improve the system viscosity. COs are responsible for

infrastructure construction and physical resource operation.

COs need to manage the physical resources efficiently to

optimize their profits or reduce their energy consumption.

In MCC architectures that have the edge layer, COs face

the edge equipment deployment problem, which involves

Table 3 Comparison of the offloading granularity in MCC computation offloading prototypes

Work Architecture Granularity MD OS Target

Hyrax [21] One-layer Class Android Port Hadoop to run on MDs

MDCloud [22] One-layer Method Android Minimize the energy consumption and execution time

Serendipity [23] One-layer Class Android Minimize the energy consumption or execution time

Honeybee [24] One-layer Method Android Minimize the energy consumption

Cloudlet [27] Two-layer VM Maemo 4.0 Linux Minimize the execution time

Cloudlet [28] Two-layer VM Android Minimize the execution time

Cloudlet [29] Two-layer VM Not mentioned Minimize the execution time and improve the accuracy

Noname [37] Two-layer Method Android Minimize the execution time

Noname [38] Two-layer Web service Not mentioned Minimize the energy consumption and execution time

CloneCloud [53] Two-layer Thread Android Minimize the energy consumption and execution time

MAUI [54] Two-layer Method Windows Mobile 6.5 Minimize the energy consumption

ThinkAir [55] Two-layer Method Android Minimize the energy consumption

Cuckoo [56] Two-layer Method Android Minimize the energy consumption or execution time

EAB [41] Three-layer Web service Android Minimize the execution time

NoName [42] Three-layer Task module Not mentioned Apply MCC in the industrial manufacturing

NoName [44] Three-layer Task module Sensor node without OS Apply MCC in the air quality monitoring

NoName [48] Hybrid Task module Android Implement the MCC prototype

HyMobi [51] Hybrid Method Android Implement the MCC prototype and improve the

spectrum of offloading opportunities

Fig. 2 Categories of the offloading granularity
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how to place edge equipments efficiently. These two

operators are not completely independent, and they can

overlap with each other. For example, a CO can use its

resources to develop cloud application services and then

becomes an ASO. Offloading decision, admission control,

resource management, and edge equipment deployment are

these components’ technical challenges. In this section, we

present a comprehensive review of the existing work that

aims to solve these challenges.

3.1 Offloading decision

In the computation offloading system, MUs face the

offloading decision problem. Unreasonable offloading

decision can not improve the MD performance but results

in more energy and time consumption due to additional

data transmission on wireless networks. Different from the

traditional ‘‘client-server’’ mode, which offloads all OUs to

the server, MUs need to decide whether to offload an OU

according to their optimization targets [34]. At the same

time, the offloading decision in MCC is different from that

in grid computing and multiprocessor, in which its opti-

mization goal is to balance the load and to minimize the

edge cut and the offloading volume [73]. MD is much

weaker than the cloud, and MDs are connected to the cloud

via wireless networks, which force MUs to take time and

energy consumption from data transmission on wireless

networks into account when making offloading decisions.

Existing research can be classified according to the cloud

application service site (mono-site or multi-site) and

decision mode (static or dynamic). The work on offloading

decision is compared in Table 4.

(1) Mono-site Offloading Decision versus Multi-site

Offloading Decision

In the mono-site offloading decision, there is only one

ASO that provides cloud application service to MDs. The

OUs are divided into two parts, i.e., the local MD part and

the ASO part. These divided OUs are executed locally on

the MD or offloaded to the single ASO. Many ASOs offer

the same services for MUs in the cloud application service

market [74], and a MU can pay multiple ASOs to offload

OUs to these ASOs. In the multi-site offloading decision,

OUs are divided into ðk þ 1Þ parts, i.e., the local MD part

and k (k� 2) ASO parts. The solution space of the multi-

site offloading decision is larger than that of the mono-site

offloading decision, which increases rapidly with the

number of ASOs and improves the complexity of finding

the offloading strategy. ASOs are connected through the

high-speed wired networks. For MDs, the communication

energy consumption among ASOs is negligible, and the

communication time is very short. Therefore, compared

with mono-site offloading, the communication consump-

tion of multi-site offloading is less. Besides, multiple ASOs

provide MUs with more choices and more reliable services.

MUs can continue to offload their OUs to other ASOs when

some ASOs crash or disconnect. For example, as one

extreme, if one of two ASOs in the multi-site computation

offloading crashes or disconnects, OUs can continue to be

offloaded to the ASO that works normally. Also, as the

other extreme, if the only one ASO in the mono-site

computation offloading crashes or disconnects, the com-

putation offloading stops working.

(2) Static Offloading Decision versus Dynamic

Offloading Decision

The static offloading decision is made through program

analysis in the application development stage, and the

offloading strategies do not change. The problem of how to

make static offloading decisions is usually converted to the

static application partitioning problem, in which a mobile

application is abstracted as a graph, and then the graph is

partitioned into several parts. The dynamic offloading

decision works at runtime, and its offloading strategies

change constantly. MUs connect with ASOs via wireless

networks, which are not stable and vary for many reasons,

such as the wireless channel fading and channel interfer-

ence [75]. Moreover, MUs move among different envi-

ronments, and wireless network conditions change

constantly. Spatiotemporally varying wireless networks

bring uncertainty to MCC, and the dynamic offloading

decision is required to adapt to the varying environments.

During the execution of mobile applications, MDs require

real-time offloading strategies to indicate whether to off-

load their OUs. The key to making a dynamic offloading

decision is to balance the decision time and strategy

accuracy [70]. The accuracy of strategies found by

offloading decision algorithms is positively correlated with

their execution time. Offloading decision algorithms need

to consume much time to find the accurate result, which

makes them unable to adapt to dynamic mobile cloud

environment, especially the fast changing environment.

They may be effective when the size of offloading decision

problem is small or the environment changes slowly. If the

problem size is large or the environment changes fast, their

performance will become bad. Therefore, it is important to

balance the decision time to adapt to dynamic mobile cloud

Fig. 3 The basic components and key technologies in the MCC

computation offloading system
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environment and the strategy accuracy to optimize the

offloading target.

3.2 Admission control

After the offloading decision is made, an OU request will

be sent to the ASO if the offloading strategy indicate that

Table 4 Comparison of the work on offloading decision

Work Mono-

site

Multi-

site

Static Dyna-

mic

Target Contribution

[59] U U Minimize the energy consumption and

execution time

Establish a cost solving model and design a decision

algorithm based on the consumption weight

[60] U U Minimize the average energy

consumption, time and cost while

satisfying the constraint of bandwidth

Establish a multi-objective optimization model and

present a decision algorithm called D-NSGA-II-ELS

[76] U U Minimize the energy consumption and

execution time

Construct a weighted call graph of different topologies

for software applications and propose a Min-Cost

Offloading Partitioning (MCOP) algorithm

[61] U U Maximize energy saving while

maintaining the latency requirement

Establish a constrained optimization model and propose a

decision algorithm based on the Lagrange multiplier

[64] U U Minimize the energy consumption and

execution time

Establish a weighted cost model and propose a decision

algorithm based on the genetic algorithm

[65] U U Minimize the energy consumption Propose a decision algorithm based on cyclic random

movement genetic algorithm

[62] U U Maximize the task utility while satisfying

the budget constraint

Establish a constrained optimization model and propose a

decision algorithm based on the greedy algorithm

[63] U U Minimize the energy consumption and

execution time

Formulate the problem using a non-cooperative

theoretical game with N players and three pure

strategies. Propose a comprehensive proof for the

existence of a Nash equilibrium and implement a

distributed algorithm

[66] U U Minimize the computation and

communication costs

Establish a constrained 0-1 integer linear programming

(ILP) model and propose a heuristic decision algorithm

[67] U U Minimize the energy consumption and

execution time

Establish a constrained 0-1 ILP model and propose an

energy-efficient offloading decision algorithm

[68] U U Minimize the energy consumption,

execution time, and service cost

Establish a weighted combinatorial optimization model

and propose a heuristic decision algorithm

[57] U U Minimize the execution time Establish a context-aware mixed integer programming

model and propose an online decision algorithm based

on the rent/buy problem

[58] U U Minimize the energy consumption Establish a weighted ILP model and design a middleware

named MACS, which resolves the model when

environments change

[77] U U Minimize the execution time Propose a framework for runtime computation

repartitioning and design a decision solver that updates

offloading strategies according to the network states

[69] U U Minimize the energy consumption Establish a constrained 0-1 ILP model, use the Markov

chain to describe wireless channels, and propose a

MDP-based decision algorithm

[70] U U Minimize the energy consumption and

execution time

Establish a weighted combinatorial optimization model

and propose a runtime offloading decision algorithm

based on the memory-based immigrant adaptive genetic

algorithm

[71] U U Minimize the energy consumption and

execution time

Establish a cooperative runtime decision model and

propose a runtime offloading decision algorithm based

on the cooperation of online machine learning and

genetic algorithm
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the OU should be executed on the cloud. ASOs rent virtual

resources from COs and provide cloud application services

for MUs using these virtual resources. ASOs are motivated

to develop various attractive cloud application service for

MUs to achieve more revenues. ASOs also expect to pro-

vide services for more OUs as much as possible to increase

their revenues. However, ASOs usually rent finite virtual

resources from COs to reduce the costs. If ASOs accept and

provide services for all OUs, it may lead to resource

overload and then affect the QoS. Therefore, the ASO

needs admission control to determine whether to accept a

new OU according to its load conditions. If an OU is

accepted, the ASO allocates resources and then executes it.

Admission control couples virtual resource allocation and

locates on the side of ASOs, making it different from the

hardware resource management of COs. Since many ASOs

offer same services for MUs in the cloud application ser-

vice market [74], a MU can pay any ASOs to offload OUs

to these ASOs. ASOs are allowed to reject OU requests

when accepting the OU is not revenue effective. If an OU

request is rejected, it can be sent to other ASOs that pro-

vide the same service. Much existing related work studied

the admission control problem with the aim of maximizing

the revenue. For example, Jin et al. studied the admission

control problem with the goal of maximizing the ASO’s

revenues while guaranteeing the QoS [78]. They consid-

ered three features of two-dimensional resources, uncer-

tainty, and incomplete information in model establishment

and algorithm design. These work can also be classified by

the type of cloud application services. ASOs only provide

one type of cloud application service in some work (e.g.,

[81, 87, 88]) and provide two or more types of cloud

application service in other work(e.g., [78–80, 82–86]). In

comparison, admission control in the latter work has higher

complexity, but it is closer to the real-life computation

offloading system and is more universal. The work on

admission control is compared in Table 5.

3.3 Resource management and edge equipment
deployment

(1) Resource Management

In the computation offloading system, COs are respon-

sible for the operation and maintenance of physical

resources and provide on-demand virtual resource leasing

services. COs have a large number of computing equip-

ments, and it takes a lot of energy to maintain their normal

operation. The increasing demand for large-scale comput-

ing and construction of cloud computing facilities has

resulted in annual growth in energy consumption. Data

centers are one of the most energy-intensive building types,

consuming 10 to 50 times energy per floor space of a

typical commercial office building [89]. For COs,

unreasonable resource management wastes a lot of finan-

cial and material resources, and also leads to environmental

problems, which will reduce the CO revenues and is not

conducive to the benign operation of MCC. Wireless net-

works have a serious impact on MCC performance [34],

and resource management in MCC has to consider both

computing and radio resources. Furthermore, changing

wireless networks bring uncertainty to resource manage-

ment in MCC [7]. Si et al. established a stochastic restless

bandits-based resource management model, and used a

hierarchy of increasingly stronger LP relaxations to solve

the resource management strategy [97]. Jin et al. studied

the energy-efficient resource management by two steps

[94]. They first studied the deterministic resource man-

agement and then studied the stochastic resource manage-

ment with the consideration of uncertainty caused by

wireless networks. They established two models of deter-

ministic and stochastic resource management based on the

bin packing model, and proposed two algorithms to solve

the resource management strategy. The work on resource

management is compared in Table 6.

(2) Edge Equipment Deployment

When MCC architecture has the edge layer, the

deployment of edge equipment is the most basic technical

challenge and the key of ‘‘how to build MCC’’. Edge

equipment is more geographically distributed and more

numerous. How to deploy edge equipment reasonably is

the first problem to be solved when building MCC. COs are

responsible for the operation of physical equipment and

provide virtual resource rental services. Unreasonable edge

equipment deployment not only increases the deployment

cost but also increases the complexity of other problems in

MCC. In the Juniper white paper, Brown analyzed the

importance of edge equipment deployment and pointed out

that correct deployment is critical because capabilities

deployed at the edge have a higher operational overhead

than centralized deployments [98]. Mao et al. reviewed the

research about edge equipment deployment, content cach-

ing and mobility management [99]. They analyzed the

difference between edge equipment deployment and base

station deployment. They pointed out that the former is

coupled with computing resources and wireless resources

and is strictly subjected to the budget. A simple but inef-

ficient approach is to deploy the edge equipment in full.

Although this approach can satisfy the resource require-

ment and is simple enough, it leads to excessive deploy-

ment cost and operation cost to COs. The key point to

deploy edge equipment is to make a tradeoff between

performance requirements and cost. The work on edge

equipment deployment is compared in Table 7.
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4 Fault tolerance and privacy protection
for computation offloading

4.1 Fault tolerance for computation offloading

In MCC, MDs are connected to the cloud through wireless

networks, and MDs are heterogeneous with cloud data

centers, making it prone to fail in the process of data

transmission or/and distributed OU execution. Fault toler-

ance is critical to ensure the robustness of computation

offloading in MCC. We summarize the work on fault tol-

erance into three categories according to the technology on

which it is based. The work on fault tolerance is compared

in Table 8.

(1) Checkpoint-based Fault Tolerance

In the computation offloading process without fault

tolerance, when a failure occurs, it is required to re-execute

the OU or re-transfer the data from the beginning, which

leads to more energy consumption and execution time,

reduces MCC performance, and even makes MCC invalid.

Checkpoint, which stores the parameters needed to restore

the OU execution periodically, is usually used to support

the fault tolerance. When a failure occurs, the OU restarts

its execution from a previously saved checkpoint. The

computation offloading process with checkpoint is illus-

trated in Fig. 4 [112]. Checkpoint needs to send messages

periodically to synchronize its parameters, leading to extra

data transmission for MCC. The amount of synchronization

message and the number of checkpoints determine the

consumption of fault tolerance. However, the classical

checkpoint technology, which is not specifically designed

for MCC, does not optimize the consumption caused by

saving checkpoints. Deng et al. found that although the

classical checkpoint technology can avoid re-executing

OUs from the beginning, it cannot guarantee to save the

total execution time and energy consumption [113]. They

proposed a fault-tolerant mechanism that makes a trade-off

between waiting for reconnection by the fault tolerance and

directly restarting an OU from the beginning. Some

researchers improved the classical checkpoint technology

to make it suitable for MCC. For example, Houssem et al.

proposed an efficient collaborative checkpointing algo-

rithm that minimizes the number of checkpoints and avoids

blocking MDs [114]. Cao and Singhal proposed the con-

cept of mutable checkpoint to solve the problem that tra-

ditional checkpointing algorithms suffer from high extra

overhead [115]. They designed an efficient checkpointing

algorithm that can save checkpoints anywhere to avoid the

Table 5 Comparison of the work on admission control

Work Service

type

Target Contribution

[78] Multi-

type

Maximize the revenues while

guaranteeing the QoS

Establish a semi-MDP-based model that considers radio resource variations,

computing, and radio resources, and propose a reinforcement learning-based

strategy algorithm

[79] Multi-

type

Maximize the revenues Establish a constrained optimization model and propose a convex linear matrix

inequality relaxations-based admission algorithm

[80] Two-

type

Reduce the latency and improve the

throughput

Establish a MDP-based model and use the simulation-based optimization

algorithm to solve the admission strategy

[81] Mono-

type

Minimize the total energy consumption of

MDs under latency constraints

Establish a mixed integer programming model and propose a quantized dynamic

programming algorithm to solve the admission strategy

[82] Multi-

type

Maximize the revenues Establish a semi-MDP-based model and use the policy iteration algorithm to

solve the admission strategy

[83] Multi-

type

Maximize the revenues while

guaranteeing the QoS

Establish a semi-MDP-based model and use the LP to solve the admission

strategy

[84] Mono-

type

Minimize the energy consumption of

MDs

Establish a multiple-choice integer programming model and use Ben’s genetic

algorithm to solve the admission strategy

[85] Multi-

type

Maximize the system-wide performance Establish a constrained optimization model and use a user ranking criteria-based

algorithm to solve the admission strategy

[86] Multi-

type

Maximize the total throughput of all MUs Establish a constrained optimization model, then convert it as a mixed integer

programming model, and propose a two-stage admission algorithm to solve the

admission strategy

[87] Mono-

type

Keep the system in the stable operating

region

Establish a birth-death process-based model and propose two admission

algorithms that are suitable for different scenarios

[88] Mono-

type

Maximize the revenues while

guaranteeing the QoS

Establish a non-cooperative and non-zero-sum game model and propose a genetic

algorithm-based algorithm to solve the admission strategy
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overhead of transferring large amounts of data on the

wireless network.

(2) Replication-based Fault Tolerance

Replication, which replicates multiple OU replicas to

support fault tolerance, is usually used when the offloading

granularity is coarse (e.g., VM and class). Chen et al.

developed an energy-optimized fault-tolerant MCC

framework based on the ‘‘k-out-of-n’’ system, which

ensures that a system of n components operates correctly as

long as k or more components work [116]. That is to say,

their framework ensures MCC work well as long as k out of

n nodes are accessible. Li et al. proposed an energy-effi-

cient fault-tolerant replica management policy with the

deadline and budget constraints to solve the management

and overhead issues caused by replication [117]. Stahl et al.

designed a platform, which supports fault tolerance to

stream services by replicating processing, to provide

excellent flexibility at the cost of performing large-scale

OUs [118].

(3) Other Fault-tolerant Technologies

There are some other technologies used in fault toler-

ance for MCC. Zhou and Buyya thought only using one

fault-tolerant technology is not suitable in computation

offloading due to MCC’s heterogeneity [119]. They com-

bined checkpoint and replication technologies to provide

more efficient fault tolerance for computation offloading.

They proposed a group-based fault-tolerant algorithm that

considers the properties of different machine groups and

adaptively selects either checkpoint or replication as the

fault-tolerant policy. Park et al. combined checkpoint and

replication technologies to provide more efficient fault

tolerance for resource management [95]. They classified

MDs into groups according to the availability and mobility,

and selected either checkpoint or replication according to

the group characteristics. Lakhan and Li combined

offloading decision with fault tolerance and proposed an

offloading decision algorithm that determines application

partitioning at runtime and adopts the fault-aware policy

that merges detection and retries strategy to deal with any

kind of failures [120]. Raju and Saritha proposed a disease

resistance-based fault-tolerant framework named DRFT,

which consists of four main modules as the monitoring

module, response module, knowledge module, and mem-

ory module [121]. DRFT regards the VM failure as the

virus in human body and uses the human anti-virus

mechanism to repair it.

4.2 Privacy protection for computation
offloading

Compared with traditional cloud computing, which is

accessed through the wired network, MCC is connected

through the wireless network and is more vulnerable. MDs

usually contain MUs’ high-privacy personal information.

Table 6 Comparison of the work on resource management

Work Target Contribution

[90] Maximize the revenues while satisfying the

QoS

Establish a restless bandits-based model and use the heuristic algorithm to develop the

resource management strategy

[91] Increase the MD battery life Establish an adaptive model and use an artificial neural network to predict future

required resources

[75] Maximize the revenues while meeting MUs’

demands

Establish three optimization models based on LP, stochastic programming, and robust

optimization, respectively. Use LP to solve the management strategy

[92] Enable efficient selection of cloud

participants and provide a stable cloud

Propose a collaborative autonomic resource management system to allocate resources

according to the changing MCC environments

[93] Manage the QoS assurance Establish a QoS-aware resource management system based on the fuzzy cognitive map

and use a prediction algorithm to predict CO’s mode, which should satisfy the basic

QoS threshold and have the lowest cost

[94] Minimize the energy consumption Establish the deterministic and stochastic resource management optimization models.

Propose two algorithms based on the adaptive group genetic algorithm and Monte

Carlo simulation

[95] Fault tolerance Propose an entropy-based grouping technique for resource management

[96] Minimize the delay and energy consumption Propose an efficient hierarchical resource sharing management architecture comprised

of three domains include Global Cloud Server (GCS), Local Internet Service Provider

Server (LISPS), and Gateway Server (GS). Proposed a fuzzy rule-based scheme and a

Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)-based

foglet selection scheme

[97] Minimize the cloud-based video adaptation

and transmission distortion

Establish a stochastic restless bandits-based optimization model and use a hierarchy of

increasingly stronger LP relaxations to solve the management strategy
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Privacy leakages and malicious attacks may occur in the

process of data transmission or/and OU execution. Privacy

protection is needed to ensure the security of computation

offloading in MCC. We classify the privacy protection

technologies into two categories: passive protection and

active protection. The work on privacy protection is com-

pared in Table 9.

(1) Passive Protection

Passive protection avoids or reduces the loss caused by

privacy leakages but does not actively eliminate the pri-

vacy leakage. Offloading decision with passive protection

takes the cost caused by privacy leakages into the total cost

or sets privacy as the constraints. For example, Wu and

Huang established a multi-factor multi-site risk-based

offloading model based on a comprehensive offloading risk

evaluation and proposed an ant-based offloading decision

algorithm [122]. They took two risk factors (privacy risk

and reliability risk) and two benefit factors (execution time

and energy consumption) into the offloading decision

process. He et al. established a privacy-aware constrained

MDP-based offloading decision model, which optimizes

delay and energy consumption while considering the

location privacy and usage pattern privacy as constraints

[123]. They used Q-learning to solve the offloading strat-

egy and used the Lagrange multiplier to handle the con-

straints. Ma and Mashayekhy studied the offloading

decision problem to minimize the delay and energy con-

sumption while considering data protection [124]. They

formulated the offloading decision problem as an integer

program model in which privacy protection is set as a

constraint. Dhanya and Kousalya established a secure

offloading decision model that minimizes the transmission

cost and security cost [125]. They took the security as an

optimization target and proposed a genetic algorithm-based

offloading decision algorithm.

(2) Active Protection

Table 7 Comparison of the work on edge equipment deployment

Work Scenario Target Contribution

[100] Large-scale IoT Minimize the number of edge nodes and

provide real-time processing service for

IoT

Propose an edge equipment deployment approach that considers both

data flow differences and wireless network differences

[101] Cellular

network

Minimize the energy consumption with the

delay constraint

Establish a constrained optimization model and propose an energy-

efficient deployment approach based on the particle swarm

optimization algorithm

[102] Cellular

network

Minimize the access delay while balancing

the load

Establish a constrained optimization model and use mixed ILP to solve

the deployment strategy

[103] Cellular

network

Optimize the tradeoff between the

deployment cost and end-to-end delay

Establish a constrained optimization model and use mixed ILP to solve

the deployment strategy

[104] Cellular

network

Minimize the deployment cost and end-to-

end delay

Establish a constrained optimization deployment model and an integer

programming-based resource allocation model. Propose a Lagrangian

heuristic algorithm to solve the deployment strategy and a heuristic

algorithm to solve the allocation strategy

[105] General

scenarios

Reduce the data link congestion Propose an AP sorting approach, and then deploy cloudlets regarding

the sorting results

[106] IoT Minimize the access delay Establish a constrained optimization model. Propose an enumeration-

based optimal deployment algorithm and a ranking-based near-

optimal deployment algorithm

[107] Smart

manufacturing

Minimize the delay and deployment cost Establish a weighted constrained optimization model and propose an

improved K-means clustering algorithm-based deployment algorithm

[108] Smart

manufacturing

Minimize the computing response time and

realize the load balancing

Establish a weighted constrained optimization deployment model and

propose a deployment algorithm based on the space-time

characteristics

[109] Intelligent

logistics

Minimize the deployment cost Establish an integer programming-based model and propose a meta-

heuristic algorithm that incorporates discrete monkey algorithm to

solve the deployment strategy

[110] General

scenarios

Minimize the deployment cost and delay Establish a multi-objective integer programming-based model and

propose a genetic algorithm-based algorithm to solve the deployment

strategy

[111] Cellular

network

Maximize the profit under the constrained

budget

Establish a 0-1 knapsack-based deployment model and propose a

dynamic programming-based deployment algorithm
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Active protection eliminates privacy leakages through

encryption or non-offloading. For example, Liu and Lu

established an energy model for privacy-preserving com-

putation offloading and used homomorphic encryption to

protect data in image retrieval before sending data to ser-

vers [126]. Wu et al. proposed a trust-aware computation

offloading framework that consists of trust evaluation

module, filtering module, and selection module [127]. They

filtered out resource providers that are untrusted through

trust evaluation to ensure that the services provided to MUs

are trustworthy. Wang et al. applied deep learning appli-

cations on MDs with the help of MCC and proposed a

lightweight privacy-preserving mechanism consisting of

arbitrary data nullification and random noise addition to

protect the sensitive information [128]. Yue et al. imple-

mented a computation offloading system that automatically

performs fine-grained privacy-preserving Android appli-

cation offloading by using static analysis and bytecode

Table 8 Comparison of the work on fault tolerance

Work Fault-tolerant technology Contribution

[112] Classical checkpoint Analyze and verify the performance of fault-tolerant computation offloading systems in mobile wireless

environments

[113] Classical checkpoint Design a robust computation offloading with a trade-off fault-tolerant mechanism to optimize the MD

execution time and energy consumption

[114] Improved checkpoint Propose an efficient collaborative checkpointing algorithm that minimizes the number of checkpoints

and avoids blocking the MDs

[115] Improved checkpoint Design an efficient checkpointing algorithm that saves checkpoints anywhere to avoid the overhead of

transferring large amounts of data on wireless networks

[116] Replication Develop an energy-efficient framework that ensures nodes retrieve or processes data stored in MCC as

long as k out of n storage/processing nodes are accessible

[117] Replication Propose an energy-efficient fault-tolerant replica management policy with the deadline and budget

constraints to solve the management and overhead issues caused by replication

[118] Replication Design a platform that supports fault tolerance to streaming services by replicating processing

[119] Group-based Propose a group-based fault-tolerant algorithm that considers the properties of different machine groups

and adaptively selects either checkpoint or replication as the fault-tolerant policy

[95] Group-based Propose an entropy-based grouping technique for resource management

[120] Transient failure application

partitioning

Propose an offloading decision algorithm that determines application partitioning at runtime and adopts

the fault-aware policy that merges detection and retries strategy to deal with any kind of failures

[121] Disease resistance-based Propose a disease resistance-based fault-tolerant framework that regards the VM failure as a virus in

human body and use human anti-virus mechanism to repair the failure

Fig. 4 Computation offloading

process with the checkpoint

1576 Wireless Networks (2022) 28:1563–1585

123



instrumentation techniques [129]. They marked the private

data manipulation statements that retrieve and manipulate

private OUs as unoffloadable. Saab et al. proposed a

minimum-cut algorithm-based runtime offloading decision

algorithm that adds the computation cost of performing

encryption and decryption to application cost and takes

security measures into account [130]. Zhang et al. proposed

a privacy protection method named match-then-decrypt,

which has a matching operation before decryption opera-

tion [131]. They proposed a basic anonymous attribute-

based encryption (ABE) construction and then obtained a

security-enhanced extension based on strongly existentially

unforgeable one-time signatures.

5 Future directions

5.1 Systematic and scaled prototype

For a new technology to have longer vitality, it must be

integrated into people’s daily life and change people’s life

or work styles. To promote MCC computation offloading,

it is necessary to systematize MCC and to decouple the

transactions involved during the computation offloading

process. We review four key technologies for MUs, ASOs,

and COs, which are three basic components of the com-

putation offloading system in MCC. Most of these tech-

nologies are theoretical, and the goal is to optimize some

system indicators (e.g., minimizing the energy consump-

tion, minimizing the execution time, maximizing the rev-

enues, etc.). As mentioned in Sect. 2.2, current MCC

prototypes are small-scale, and their goals are mainly to

verify that MCC can indeed save energy or time. MCC is a

combination of many well-known technologies, which

cannot make a deep impression on people. Just as cloud

computing, which was controversial in the early days, the

feasibility and practicality of MCC are also controversial

now. A systematic and large-scale prototype of MCC

computation offloading is needed to show its feasibility.

Only when people actually touch and use MCC can they

really accept it. Traditional cloud computing is more like

the B2B mode, in which its users are enterprise users, and

have less impact and requirements on MUs. MCC is more

like the B2C mode and requires deep MU participation

(e.g., refactoring the mobile applications or changing the

MD OS). Therefore, although it can bring greater changes

to people’s life and work, it is still a challenge to achieve

systematic and large-scale MCC prototype.

MCC will eventually become an infrastructure, just like

the power system. Whether it can become the essential

infrastructure for people’s life depends on its user viscos-

ity. The ability of MCC to provide MUs with various

applications is the basis to maintain the user viscosity. The

current goal of MCC computation offloading is simply to

save energy or time, just as the electricity was used to light

up incandescent lamps in the early eras. To promote the

large-scale development of MCC, it is necessary to provide

MUs with more MCC applications like electricity-based

‘‘refrigerators’’, ‘‘air conditioners’’ and ‘‘washing machi-

nes’’ in the power system. Therefore, in the construction

process of systematic and large-scale MCC prototype, the

development of MCC-based applications is also a very

important research and business direction.

5.2 Other technologies

This section gives an outlook on technologies that need to

be paid attention to in the future. We discuss these tech-

nologies from the perspective of ‘‘device-pipe-cloud’’.

(1) Technologies for the ‘‘Device’’

For MDs, two technologies need to be paid more

attention to in the future:

Table 9 Comparison of the work on privacy protection

Work Protection type Approach

[122] Passive protection Take the privacy risk and reliability risks into the optimization target when making the offloading decision

[123] Passive protection Take location privacy and usage pattern privacy as the constraints of the optimization target

[124] Passive protection Take privacy protection as a constraint

[125] Passive protection Take the security as one optimization target

[126] Active protection Encrypt using the homomorphic encryption

[127] Active protection Filter out resource providers that are not trusted by MUs

[128] Active protection Perturb the local data transformation based on the differential privacy mechanism

[129] Active protection Mark the OUs to be protected as unoffloadable OUs

[130] Active protection Encrypt using the advanced encryption standard

[131] Active protection Encrypt using the anonymous attribute-based encryption
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(1.1) Portability MCC aims to free MDs from heavy

local workloads and to make MD a simple modem con-

necting human and electromagnetic signal-based network.

The portability of MDs must be strengthened further to

achieve the purpose of helping humans access the infor-

mation network anytime and anywhere. One of the most

direct ways to improve portability is to reduce the MD

volume. However, in the existing touch-based interaction

mode, too small a volume is not conducive to human-

computer interaction. Therefore, it is necessary to study

portable MDs with a new human-computer interaction

mode. Wearable devices, such as smart glasses (e.g.,

Google Glass), are portable MDs that can be used as the

carriers for MCC in the future. At present, there has been

some research (e.g., [132–136]) attempts to combine MCC

and smart glasses. Furthermore, the brain-computer inter-

face, as an interactive way to create a connection between

the brain and external platforms, provides more possibili-

ties for the miniaturization and portability of MD. There

are also related studies (e.g., [137, 138]) that combine

brain-computer interface with MCC.

(1.2) Distributed computation offloading platform MCC

computation offloading belongs to the category of dis-

tributed computing. However, existing mobile OSs, such as

Android and iOS, are weak to support MCC, and most of

the current MCC prototypes implement computation

offloading by refactoring mobile applications. For exam-

ple, to automate the refactoring process, Zhang et al.

implemented a refactoring tool, named DPartner[134], to

automatically transform the Android application bytecode

into MD and cloud patterns. Although refactoring mobile

applications can implement MCC computation offloading

functionally, it is inefficient. It is necessary to design a

distributed computation offloading platform for MCC. The

difficulty lies in the heterogeneity, that is, the computing

devices in MCC are quite different, especially in the CPU

architecture and computing power of MD and cloud.

Therefore, how to design a distributed computation

offloading platform that satisfies the MCC requirements is

an important research direction in the future. At present,

there is some related work (e.g., KubeEdge [140], K3s

[141], MicroK8s [142], and FLEDGE [143]) in this

direction.

(2) Technologies for the ‘‘Pipe’’

As the ‘‘pipe’’ connecting MD and cloud, wireless net-

works have a great impact on MCC computation offloading

and even can make computation offloading invalid. There

are two characteristics of the wireless network that affect

the computation offloading. One is that the wireless net-

work consumes MD energy when transmitting data, and the

other is that the wireless network takes more time in data

transmission due to its limited bandwidth. The future

research on ‘‘pipe’’ should be towards the wireless network

technology with low energy consumption and large band-

width. There are two research directions worthy of

attention:

(2.1) New generation of wireless network technology

For example, 5G is the new generation of cellular mobile

communication technology, which aims at improving data

rate, reducing delay, saving energy, reducing cost, and

improving system capacity. According to the key 5G

characteristics defined by International Telecommunica-

tions Union (ITU), the peak data rate (the maximum data

rate the MU can achieve under ideal conditions) is 20Gbit/

s, the MU experience data rate (the lowest ubiquitous data

rate in coverage) is 100Mbit/s, the over-the-air delay is

1ms, and the energy efficiency (both the network side and

MD side ) will increase 100 times [144]. Wi-Fi 6, also

known as ‘‘802.11ax Wi-Fi’’, is the new generation of

WLAN technology. Compared with previous generations

of Wi-Fi technology, Wi-Fi 6 has a faster data rate (the

peak data rate is 9.6Gbit/s), lower delay, and more power

saving. Wi-Fi 6 applies the target wake time technology,

which allows the active planning of communication time

between the MD and wireless router to reduce the wireless

network antenna usage and signal search time, to reduce

the MD energy consumption [145].

(2.2) Integrating existing technologies to improve the

wireless network performance Concurrent multiple transfer

(CMT) provides a solution to integrate existing wireless

networks. At present, most MDs are equipped with multi-

ple wireless network interfaces (e.g., smartphones are

equipped with the cellular network interface and Wi-Fi

interface), but traditional network protocols can only use

one network interface to transmit data at the same time. To

solve this problem, CMT, which uses multiple wireless

network interfaces to transmit data at the same time, is

proposed. There have been some CMT protocols, such as

stream control transmission protocol (SCTP) [146] and

multi-path transmission control protocol (MPTCP) [147].

These technologies provide a realistic basis for the appli-

cation of CMT in MCC. MD energy consumption can be

reduced, and network bandwidth can be increased by rea-

sonably data scheduling or path selection with CMT

[148–151]. Jin et al. explored the usage of CMT in MCC

computation offloading to combat the challenges caused by

wireless communication, and the results show that using

CMT can further save energy and time [70]. CMT utilizes

the idle wireless network bandwidth and increases its

bandwidth by simultaneously using these bandwidths.

Large bandwidth can reduce the delay caused by wireless

network data transmission. Different wireless networks

have different energy characteristics, and MD energy

consumption can be reduced by optimizing data scheduling

according to these characteristics. Besides enhancing

MCC’s efficiency, CMT can also improve MCC’s
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reliability. In MCC, MDs are connected to the cloud

through unreliable wireless networks, which is easily

influenced by the outside environment. The failed wireless

network will disable MCC. MCC can use multiple wireless

networks with the help of CMT and switch to good net-

works when some wireless networks fail.

(3) Technologies for the ‘‘Cloud’’

As the external resource platform, the bottom layer of

the cloud is composed of a large number of data centers.

Running current data centers requires a lot of power. For

example, data centers have used approximately 2% of the

total electricity in America [89]. As mentioned in Sect. 1,

the number of MDs will be huger in the future. To provide

cloud resources for these MDs, more data centers need to

be built, which in turn will lead to more energy con-

sumption and cause more serious environmental problems.

Therefore, energy-saving for the cloud will be an important

and urgent problem to be solved. In addition to using the

resource management and edge equipment deployment

technologies described in Sect. 3.3 to save energy, some

other technologies should be noted. Renewable energy,

such as solar energy and wind energy, can be used to

supply power for the more dispersed edge equipment

[152–154]. The centralized remote cloud data center can

save its energy consumption by optimizing the cooling

technology [155–157].

6 Conclusion

With people’s life and work more and more dependent on

MD, the limited resources of MD cause a lot of inconve-

niences. MCC computation offloading is an efficient way to

solve the problem that MD resources are limited. It aims to

offload OUs from MDs to the external platforms and to free

MDs from heavy local workloads. MCC has attracted wide

attention because of its tremendous potential, and a lot of

research on it has been done. In this survey, we presented a

comprehensive overview and outlook of research on

computation offloading in MCC. Researchers have given

different definitions of MCC based on their research sce-

narios. We summarized the MCC architecture and

offloading granularity, which are fundamental concepts of

MCC, to classify these definitions. The MCC computation

offloading system is decomposed into three basic compo-

nents: MUs, ASOs, and COs. Offloading decision, admis-

sion control, resource management, and equipment

deployment are their technical challenges. We conducted a

comprehensive literature review on four key technologies

used to solve these challenges. The wireless network con-

nection and heterogeneity are the most important features

of MCC, making failures and privacy leakages occur

easier. We reviewed fault tolerance and privacy protection,

which are two important technologies to support compu-

tation offloading. Finally, we presented the research out-

look of the systematic prototype and other technologies

from the perspective of ‘‘device-pipe-cloud’’.
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