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Abstract
Wireless Sensor Network (WSN) comprises several sensor nodes that are spatially distributed in a network environment.

The sensor nodes are connected over a wireless medium for monitoring the physical data from the environment. As the

nodes are considered battery-powered, the nodes lose their energy after a certain period, this degrades the lifespan of the

network. To enhance the lifespan of the network by balancing the path reliability and energy efficiency results a chal-

lenging tasks in WSN. To solve these issues and to provide an efficient data communication process, an effective method

named Tunicate Swarm Butterfly Optimization Algorithm (TSBOA) is developed for selecting CH to accomplish effective

data transmission between the sensor nodes. The proposed TSBOA is derived by the incorporation of the Tunicate Swarm

Algorithm and Butterfly Optimization Algorithm, respectively. Accordingly, the selection of CH is made by considering

the objective factors, like inter-cluster distance, intra-cluster distance, and the energy consumption of nodes, predicted

energy, link lifetime, and delay. The energy prediction is done using the Deep Long Short Term Memory classifier by

considering the initial energy of nodes. The proposed TSBOA achieved higher performance using metrics, like residual

energy and throughput of 0.1118J, and 82.101%, respectively.

Keywords Wireless sensor network (WSN) � Cluster head selection � Route maintenance � Deep long short term memory

(Deep LSTM) � Tunicate swarm algorithm (TSA)

1 Introduction

WSN signifies a major facilitating environment for perva-

sive computing and emergencies. The growth of WSN is

gained by the fusion of communication and the data

sensing model. However, it is widely deployed in different

appliances, like threat detection, health monitoring [1, 2],

environmental tracking, and object monitoring. In general,

the WSN comprises several nodes such that the nodes are

placed statically with limited energy [3, 4], less commu-

nication [5], and processing amid a limited range of radio

links. As, the nodes contain less storage facility, multiple

function sensors, and batteries are enable for reading

humidity recordings, and the temperature values. In most

of the scenarios, the nodes in this network are placed in an

ad hoc manner such that the nodes are allowed to com-

municate with the neighboring nodes for generating the

network [6]. Because of less communication range, single-

hop transmission is employed for sending the data packets

[7]. The nodes situated in the sensor network have the

capability of data processing, capturing the unit, and

communication. The nodes fetch the data, record it and

forward the data through wireless channels [8, 9]. The

WSN comprised number of nodes such that they are

powered by the batteries such that they are specifically

designed to capture, track and broadcast the data to sink.

Energy management is a major serious concern in the WSN

environment. The two different routing protocols are flat

routing and hierarchical routing in the sensor network. The
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flat routing mechanism allows the nodes to perform direct

communication of data packets to the base station (BS),

whereas hierarchical routing divides the nodes into groups

called clusters. According to the unique tasks, the nodes are

categorized in the cluster. The low-level nodes in the

structure forward the data from clusters to CH, while high-

level nodes have the responsibility to send the captured

data to BS [10–13].

Each cluster group in the network contains one header

called CH that effectively contacts other members of CH

in the network [14]. Since the nodes required a high

amount of energy for transferring the data directly to BS,

it is required to used routing protocol in clustered WSN

for finding the best path among CH to BS to minimize

the consumption of energy [15]. The features of the

routing mechanism comprise reliability, scalability,

information accumulation, and fault tolerance [16, 17].

During the process of clustering number of nodes are

placed in the group termed cluster concerning a set of

common attributes. The nodes with high quality are

chosen as CH and its responsibility is to capture the

information from the group members and forward it to

the higher level nodes or BS based on the category of

transmission, like single or multi-hop. In the single-hop

data transmission, the CH directly transmits the infor-

mation to BS, whereas in the multi-hop transmission, CH

sends the data to higher-level CHs that send the infor-

mation to BS. The multi-hop data transmission is com-

monly utilized in a large-scale network. The group

members are partitioned into two different groups termed

as CHs and common nodes [18]. The energy of the

nodes is quickly exhausted due to direct interaction

among nodes and BS [19]. Hence, optimal energy is

needed in the sensor network for achieving improved

lifetime and performance enhancement [16, 20]. Because

of considering the energy efficiency, the researchers are

concentrated on developing various cluster-based routing

methods [21] for increasing scalability, load balancing,

and lifespan of the network [22]. The hierarchical routing

models offer multi-hop routing through the generation of

several clusters by considering CH in the network. The

single-hop routing mechanism reduced the utilization of

energy for short distances, whereas it uses more energy

for the longer distance that causes degradation in per-

formance [23]. It is a complex task in WS for creating

the energy-efficient routing protocol for optimizing life-

time and resource utilization [24, 25].

In [26], Gravitational Search Algorithm (GSA) is

modeled to determine the best CH among several sensor

nodes. However, the chosen CH is made by observing the

energy of the nodes as an important factor. Accordingly,

the objective function considered for the selection of CH

includes intra-cluster distance and energy efficiency.

Moreover, the cost function of the multi-hop mechanism

[9] considered residual energy of further hop as well as the

distance from BS. In [27], the Harmony search algorithm

(HSA) is designed for grouping the nodes and to generate

the path in the WSN. Accordingly, fitness factors employed

in the process of clustering include energy, inter-cluster,

and intra-cluster distance, and the degree of the node.

However, energy inspired by the node is reduced through a

selection of nodes with limited distance for the data com-

munication process [16]. In [28], evolutionary methods,

such as the strength Pareto evolutionary model, genetic

algorithm is developed for optimizing performance [29],

temperature, and energy. However, this model developed a

precise Pareto optimal front with higher precision and

higher quality [24]. In [30], a balanced and energy-efficient

multi-hop algorithm (BEEMH) is modeled for the multi-

hop routing process in the WSN based on the Dijkstra

algorithm. In [31], a balanced multipath routing mecha-

nism is modeled by employing the energy of nodes to find

the optimal route. However, the performance of the method

is based on the selection of optimal routes and a limited

number of hops [32].

1.1 Problem definition and motivation

Clustering is an important process to prolong the network

lifetime in WSN. Cluster head is a node, which collects

data from the cluster sensors and passes it to the base

station. Thus, it should be energy efficient. Many methods

are in practice for cluster head selection however they

limits due to various reasons like.

• Selecting an appropriate cluster head

• Complexity of forming clusters in multiple levels

• Reliability in routing path

• Better residual energy and throughput

• Link breakage

This made a motivation to design a method, which is

better and efficient when compared to the existing

methods.

This research is designed to develop an effective CH

selection method using the proposed TSBOA. The pro-

posed TSBOA is derived by the incorporation of Tuni-

cate Swarm Algorithm (TSA) and Butterfly Optimization

Algorithm (BOA), which effectively generates the opti-

mal solution by incorporating the swarming behavior of

the optimization algorithm. The initial energy of the node
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is fed as input to the Deep LSTM classifier to compute

the predicted energy. Accordingly, the process of

selecting CH is done using the proposed TSBOA such

that it depends on the fitness constraints, such as intra

and inter-cluster distance, node initial energy, predicted

energy, delay, and the LLT factor. Moreover, the energy

consumption of nodes is computed by considering nodes

transmitting energy and receiving energy. Finally, the

route maintenance procedure is done by checking the

reliability of the link.

The major contribution of the research is explained as

follows:

• The proposed Tunicate Swarm Butterfly Optimization

Algorithm (TSBOA) is developed by combining Tuni-

cate Swarm Algorithm (TSA) and Butterfly Optimiza-

tion Algorithm (BOA) for CH selection.

• The CH is selected by considering the objective factors,

such as inter-cluster distance, intra-cluster distance,

energy consumption of nodes, predicted energy, link

lifetime (LLT), and delay.

The paper is organized as follows: Sect. 2 explains the

review of different methods of selecting the CH in WSN,

Sect. 3 explains the system model of WSN, and Sect. 4

presents the energy computation. Section 5 presents the

proposed method, Sect. 6 discussed the results of the pro-

posed method, and Sect. 6 concludes the research.

2 Motivation

In this section, different existing CH selection-based

approaches are explained along with their merits and

demerits that motivate the researchers to design a TSBOA

model for selecting CH in WSN.

2.1 Literature survey

Various CH selection-based methods are explained in

this section. Maheshwari et al. [16] developed a butterfly

optimization algorithm (BOA) for choosing CH among

the count of nodes in the network. The selection of CH

was done with factors, like neighboring distance, the

distance between nodes and BS, node centrality, node

degree, and the energy of nodes. Here, ant colony opti-

mization (ACO) was employed for transmitting the

information among CH and BS. Accordingly, the routing

procedure was done with the parameters, like degree of

anode, distance, and energy. Here, the performance was

measured with different parameters. It increased the

network lifespan but failed to increase the performance

in WSN. Doostali and Babamir [33] developed a clus-

tering model based on the topology control mechanism in

the sensor network. Here, the selection of CH was made

by determining the near-optimal probability such that it

reached higher efficiency in the consumption of energy.

Here, the probability value was specified using the count

of nodes as well as the distance among the neighboring

nodes in the network. The clustering mechanism adopted

here was based on the sleep awake and learning auto-

mata model for increasing performance. It showed better

consumption in energy but failed to solve optimization

issues in a distributed manner. Baradaran and Navi [18]

developed a high-quality clustering algorithm (HQCA) to

compute the clusters with high quality. This method used

the criteria to measure the quality of the cluster that

increased the intra-cluster and inter-cluster distances and

reduced the error rate while clustering. However, the

optimal CH was chosen using fuzzy logic depends on the

parameters, like energy and distance. It increased the

lifespan of the network but failed to analyze the per-

formance. Vinitha and Rukmini [32] developed a Taylor-

based cat salp swarm algorithm (C-SSA) for offering

energy-efficient routing in the sensor network. At first,

the CH was chosen with the LEACH model to make

efficient data communication process. The nodes transmit

the data to BS through CH. This method considered

different trust factors, such as direct trust, integrity fac-

tor, indirect trust, and data forwarding rate. This method

increased the performance concerning throughput and

delay.

Nivedhitha et al. [7] developed an energy-efficient

model for balancing energy consumption and the path

reliability ratio. Initially, cluster creation was performed

and then the route was determined for transmitting the

data between the nodes. Here, a super CH was selected

that was responsible to maintain all the records of the

CH as well as cluster members. The path reliability

factor was used for the packet routing. It reduced the

overhead and does not provide a security mechanism.

Soundaram and Arumugam [10] developed an energy-

efficient genetic spider monkey-based routing protocol

(EGSMRP) for improving the lifespan of the network.

This method considered two phases, like the setup phase

and the steady-state phase. The process of selecting CH

was made at the setup phase, whereas the load balancing

issues were solved at the steady-state phase. Here, the

control overhead was reduced by employing energy-

based broadcasting. Rambabu et al. [34] developed a

hybrid artificial bee colony and the monarch butterfly
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optimization algorithm (HABC-MBOA) for selecting the

CH. The process of data transmission was done after the

selection of CH. The developed method increased the

performance in terms of throughput but failed to stabilize

energy in selecting the CH. Mehta and Saxena [24]

developed an energy-aware optimized routing algorithm

for effective routing in WSN. The process of selecting

CH was done by the multi-objective function. It reduced

the count of dead nodes and reduced the consumption of

energy. Accordingly, the selection of optimal path was

done using a sailfish optimizer (SFO) that in turn made

effective data communication. It increased the energy

efficiency but failed to consider the mobility factor.

2.2 Challenges

Some of the issues faced by the traditional CH selection

methods are discussed as follows:

• In [18], the HQCA method is designed to generate

clusters of high quality. However, this approach failed

to include the factors, like optimal cluster estimation

and an energy model based on the peripheral density of

nodes to increase the performance.

• A major challenge lies in the clustering method is in

resolving distributed convex optimization issues in

computing optimal global sub-graph [33].

• In [7], DMEERP model is developed to improve the

performance of WSN. This method failed to incorporate

a secure routing process with a data availability model

for balancing the security constraint with the elliptic

curve cryptography model.

• The methods named EGSMRP developed in [10]

increase the lifespan of the network but failed to

optimize Quality-of-Service (QoS) factors to increase

the routing performance.

• In [34], the HABC-MBOA method is modeled to

choose the CH in WSN. It failed to consider the

bacterial foraging algorithm (BFA) for handling energy

efficiency issues while selecting CH.

In the proposed work, CH is selected based on the

objective constraints, like delay, distance, LLT, and energy

thus the proposed method selects CH without any issues

and the path between nodes are monitored for breakage

thus routing is performed efficiently.

3 System model

The system model of WSN is comprised of the energy

model, mobility model, LLT model, and free space model.

The energy loss while communicating the data between the

nodes follows the free space model and is explained in the

energy model. Let us assume the WSN with n number of

nodes with a single sink node or BS as X. The wireless

links between the nodes specify direct communication

within the transmission range. Accordingly, each node is

distributed uniformly in the network environment. Each

node contains its ID and the nodes are formed in a group

called clusters. The sink node is placed at the near-optimal

location for getting the data packets from the sensor nodes

linked in the network. The data communication from a

cluster member to BS is done through CH. The count of

nodes availableat the network is represented as,

Base station

Cluster head

Sensor node

Internet 
User

Fig. 1 A system model of WSN
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v ¼ L1; L1; :::; La; ::::; Lnf g ð1Þ

Here, Ln denotes a total number of sensor nodes. Fig-

ure 1 signifies the system model of WSN.

3.1 Energy model

Each node in the network has initial energy of G0 such that

the energy of the node is not rechargeable [35]. The energy

loss while traversing the packets from ath normal node to

bth CH follows the multipath fading as well as free space

mechanism based on the distance between the sender as

well as the receiver. However, the transmitter contains a

power amplifier as well as the radio electronics for dissi-

pating the energy, while the receiver contains only the

radio electronics for dissipation of energy. When a node

sends q byte of data, the energy dissipation of the nodes is

represented as,

Gdisi Lað Þ ¼ Gelec � qþ Gamp � q
� La � Vbk k4 ; if La � Vbk k4 � c0 ð2Þ

Gdisi Lað Þ ¼ Gelec � qþ Gfs � q
� La � Vbk k2 ; if La � Vbk k2\c0 ð3Þ

where Gelec denotes electronic energy that depends on the

factors, such as modulation, spreading, filtering, amplifier,

and digital coding.

Gelec ¼ Gtrans þ Gagg ð4Þ

where Gtrans indicates transmitter energy, Gagg specifies

energy of data aggregation, Gamp signifies the energy of

power amplifier, and La � Vbk k indicates the distance

between ath node and bth CH. However, the energy dissi-

pation by the receiver while receiving q bytes of data by

CH is represented as,

Gdisi Vbð Þ ¼ Gelec � q ð5Þ

After sending or receiving q bytes of data, energy value

of each node gets updated.

Gdþ1 Lað Þ ¼ Gd Lað Þ � Gdisi Lað Þ ð6Þ
Gdþ1 Vbð Þ ¼ Gd Vbð Þ � Gdisi Vbð Þ ð7Þ

The above process of data transmission is repeated until

all the node becomes dead nodes. A node becomes dead

only when its energy goes to less than zero.

3.2 Mobility model

The mobility model [36] is used to define the movement of

sensor nodes and to specify their acceleration, location, and

velocity changes concerning time. The mobility pattern is

more important in determining network performance. Let

us consider the initial location of the node a and k as

u1; v1ð Þ and u2; v2ð Þ. However, the nodes a and k moves

with the varying velocity at a unique direction using the

angle h1 and h2, respectively. The Euclidean distance

between the node a and k is represented as,

D ak;0ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u1 � u2j j2þ v1 � v2j j2
q

ð8Þ

Here, D denotes the Euclidean distance among the

nodes.

3.3 LLT model

Due to the dynamic topology of network structure, it is

needed to dynamically find route reliability [37]. Let us

consider the two sensor nodes a and k are lie in the

transmission range. The LLT is computed at each hop

during the traversing of the route request packet. How-

ever, an individual node calculates the lifetime of the

link between the current and previous hop. Let us con-

sider the coordinate of the node a as Ma;Nað Þ and the

coordinate of the node k as Mk;Nkð Þ, respectively. The
mobility speed of node a and node k is represented as, Sa
and Sk. However, the distance of movement of sensor

node a and node k is given as, ha and hk. The LLT is

computed as,

LLT ¼
� xkþ rqð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ r2ð Þs2 � xq� krð Þ2
q

x2 þ r2ð Þ ð9Þ

where; x ¼ Sa cos ha � Sk cos hk

k ¼ Ma �Mk

r ¼ Sa sin ha � Sk sin hk

q ¼ Na � Nk

4 Energy prediction based on deep long
short term memory classifier

The Deep LSTM is employed to compute the predicted

energy by considering the initial energy of the node G0 as

input. Deep LSTM [38, 39] is considered to compute the

predicted energy based on the initial energy G0 of sensor

nodes in a network environment. The Deep LSTM classi-

fier gained the merits from both the deep network structure

and LSTM model for solving the vanishing gradient issues

by considering the memory cells. It comprises contextual
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state cells that work as long-term and short-term memory

cells. Here, the predicted energy depends on the state of

memory cells. The input node Ym associated with the

classifier receives the initial energy value from the input

layer of the deep network as well as the previous hidden

states xm�1. The data prediction process performed is non-

linear. The method used for predicting the output has a

non-linear element. The function employed in the compu-

tation process includes a non-linear function as it increases

the prediction accuracy. The initial energy and the result of

xm�1 fed to tanh function is represented as,

Ym ¼ tanh G0 � gYG0
þ xm�1gYx þ Iinð Þ ð10Þ

where gYG0
denotes weight matrix among input layer and

the input node of the memory cell, xm�1 indicates the input

of hidden state at the time m� 1, specifies weight matrix

among the hidden states at a diverse time interval, and Iin
signifies bias to the input node.

The input gate IGmð Þ is the same as that of the input

node as it gets the same input as that of the input node. This

unit considers the sigmoidal activation function and it

blocks the flow of input from other nodes to current nodes

and so it is specified as input gate. The operation of the

input gate is represented as,

IGm ¼ a G0 � gYG0
þ xm�1gYx þ Iig

� �

ð11Þ

where IGm specifies the input gate at a time m, a denotes

sigmoidal activation function, and Iig indicates bias to the

input gate. Accordingly, the internal state w is a node with

the self-loop recurrent edge of the unit weight and the

linear activation function such that it is computed as,

w ¼ IGmHYm þ wm�1 ð12Þ

where wm specifies internal state at the time m, and wm�1

indicates the internal state at the time m� 1. Accordingly,

the forget gate FG is utilized to reinitiate the internal state

of the memory cell such that it is computed as,

FGm ¼ a G0 � gFG�G0
þ xm�1gFGx þ Ifg

� �

ð13Þ

where FG indicates forget state at the time m, H signifies

the pointwise linear operator, gFG:G0
signifies weight matrix

of forgetting gate and input layer, gFGx denotes weight

matrix of forgetting gate and the hidden state, and Ifg sig-

nifies bias of forgetting gate.

Accordingly, the output gate Tm is computed as,

Fig. 2 The architecture of the

Deep LSTM classifier
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Tm ¼ a G0 � gxG0
þ xm�1gTx þ Iog

� �

ð14Þ

where gxG0
indicates weight matrix among output gate and

input layer, gTx portrays weight matrix among output gate

and hidden state and Iog signifies bias for output gate.

Moreover, the final output of the memory cell is repre-

sented as,

xm ¼ tanh wmð ÞHTm ð15Þ

where wm ¼ YmHIGm þ wm�1HFGm. The energy predicted

by the Deep LSTM classifier is represented as Gp,

respectively. Figure 2 portrays the structure of the Deep

LSTM classifier.

5 Proposed tunicate swarm butterfly
optimization algorithm for CH selection

It is more significant in the WSN environment for the

selection of CH to make an efficient data transmission

process. To reduce the communication delay and to enhance

the routing performance, it is required to choose CH among

the number of sensor nodes. By selecting CH, the cluster

members cannot directly communicate with BS instead of

that, the nodes can directly interact with CH, which sends

the data packets to BS. The selection of CH is made by

considering the objective factors, such as intra-cluster and

inter-cluster distance, the energy consumption of nodes,

delay, predicted energy, and LLT such that the minimum

objective function is assumed as the best solution. Here, the

process of selecting CH is done using the proposed TSBOA,

which is derived by the integration of TSA [40], and BOA

[41]. TSA is bio-inspired algorithm that mimics swarm

behavior and the jet propulsion of tunicates. It considers two

processes, namely foraging and the navigation process. The

tunicate is the swarm that generates blue-green light. This

swarm is cylindrical that is open at one end and is closed at

another end. Each tunicate contains a gelatinous tunic that

helps to group all the individuals. The tunicate draws water

from neighboring and generates jet propulsion at the open

end by the atrial siphons. The jet-like propulsion is more

powerful for migrating tunicates at the vertical direction in

the ocean. The swarming behavior of tunicates helps them to

successfully survive in the ocean. BOA is the nature-in-

spired algorithm that considers the mating and the food

searching behavior of butterflies. The foraging mechanism

of butterflies uses the sense of smell for finding the location

of mating or nectar partner. Figure 3 portrays the schematic

view of the proposed TSBOA for CH selection.

Solution encoding: It is the representation of the solution

vector that determines the optimal nodeas CH by consid-

ering the objective parameters. The node with maximal

distance, energy and minimum delay is selected as the CH.

Figure 4 portrays solution encoding.

Fitness function: The fitness value is computed by

employing parameters, like intra-cluster distance, inter-

cluster distance, delay, energy of the nodes, LLT, and the

predicted energy as the objective factors. The fitness

function is computed as,

F ¼ 1

6
Dintra þ 1� Dinter

� �

þ Gcons þ Bþ 1� LLTð Þ þ Gp
� �

ð16Þ

where Dintra denotes intra-cluster distance, Dinter signifies

inter-cluster distance, Gcons specifies energy consumption

of the nodes, B denotes delay, LLT denotes link lifetime,

Fig. 3 Schematic view of proposed TSBOA for CH selection

1 2 . . .

ϑ1 2

n

Number of CHs

Number of nodes

. . . ϑ

n

Fig. 4 Solution encoding
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and Gp specifies predicted energy of nodes computed by

Deep LSTM classifier. The intra-cluster distance is speci-

fied as,

Dintra ¼ 1

K1 � n � #
X

n

a¼1

X

#

b¼1
a 6¼b

Dab ð17Þ

Here, Dab denotes the distance between ath node and bth

CH, n specifies the number of nodes, # represents the

number of CHs, and K indicates normalizing factor. The

inter-cluster distance is computed as,

Dinter ¼ 1

K2 � #
X

#

b¼1

X

#

i¼1

Dbi ð18Þ

where K2 denotes normalizing factor, and Dbi signifies

distance between bth CH and ith CH. The energy con-

sumption of nodes is represented as,

Gcons ¼
X

n

a¼1

Gtrans
a � Grcvr

a

K
ð19Þ

where Gtrans indicates transmitter energy, Grcvr indicates

receiver energy and K denotes normalizing factor. The

delay is represented as,

B ¼
X

#

b¼1

Lb
n

ð20Þ

Here, Lb denotes the number of nodes in bth CH.

5.1 Algorithmic procedure of proposed TSBOA

The algorithmic steps involved in the proposed TSBOA are

explained as follows:

i) Initialization: Let us initialize the population of z

butterflies in the solution space as,

Aj j ¼ 1; 2; :::; zð Þ. The sensory is used to measure

the energy form, whereas modality represents raw

input utilized by sensors. The stimulus is correlated

with the fitness of the solution.

ii) Compute objective function: The fitness measure is

computed to select the node as CH by considering

the objective factors, such as inter-cluster distance,

intra-cluster distance, delay, LLT, the energy

consumption of nodes, and predicted energy. The

fitness function computed for selecting CH is

specified in Eq. (16).

iii) Update solution: The sensing concept, as well as

the modality processing, is based on factors, like

sensory modality Mð Þ, stimulus intensity Wð Þ, and
the power exponent Cð Þ, respectively.

The standard equation of BOA is expressed as,

Arþ1
j ¼ Ar

j þ h2 � s� � Ar
j

� �

� yj ð21Þ

where Ar
j denotes the solution of jth butterfly at rth iteration,

s� indicates current best solution, yj indicates fragrance of

jth butterfly and h specifies random number with the range

of 0; 1½ �.The standard equation of TSA that satisfies the

condition rand� 0:5ð Þ is expressed as,

Ar
j ¼ J~þ R~ � Q~ ð22Þ

J~¼ Ar
j � R~ � Q~ ð23Þ

where J~ indicates the best search agent, and Q~ specifies

prey density. As, J~ is best search agent in TSA, J~¼ s�. By
substituting the Eq. (23) in Eq. (21) is represented as,

Arþ1
j ¼ Ar

j þ h2 � Ar
j � R~ � Q~

� �

� Ar
j

� �

� yj ð24Þ

Arþ1
j ¼ Ar

j þ h2Ar
j yj � h2R~ � Q~yj � Ar

j yj ð25Þ

Arþ1
j ¼ Ar

j 1þ h2yj � yj
� �

� h2R~ � Q~yj ð26Þ

where Ar
j denotes the solution of jth butterfly at rth iteration,

h specifies random number with the range of 0; 1½ �, and yj
indicates fragrance of jth butterfly. Here,

R~¼ H~

Z~
ð27Þ

H~ ¼ h2h3 � p~ ð28Þ
p~¼ 2 � h1 ð29Þ

Here, R~ specifies the vector, h1, h2, and h3 represents the

random number with the range of 0; 1½ �.

iv) Evaluating feasibility: The optimal solution is com-

puted by determining the best fitness value such that

a node with minimum fitness value is accepted as

CH.

v) Termination: The above steps are repeated until the

best solution is obtained. Algorithm 1 portrays the

pseudo-code of the proposed TSBOA.
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5.2 Route maintenance

The route maintenance phase examines the path and reports

the failure of a link to the source node. The path between

the cluster member and CH is required to be more optimal

to make efficient data transmission. Moreover, it is nec-

essary to find the link breakage in the network based on the

rate of link failure [42]. Accordingly, link reliability is

represented as,

probability lð Þ ¼ e�l l ð30Þ

where l denotes average link failure rate that is computed

as 1
LLT

� �

, and l indicates the time at which the link is active.

If link reliability is greater than the threshold value, then

the routing process can be effectively accomplished

between the nodes in the network.

6 Results and discussion

This section describes the results and discussion of the

proposed TSBOA for the performance measures.

6.1 Experimental setup

The implementation of the proposed method is carried out

in the MATLAB tool with windows 10 OS, Intel processor,

and 4 GB RAM. The simulation parameter used for the

experimentation is shown in Table 1.

6.2 Evaluation metrics

The performance of developed TSBOA is progressedby

employing parameters, like alive nodes, residual energy,

and throughput.

Throughput: It is termed as the measure that shows the

number of packets transmitted from source to destination at

unit second. It is represented as,

Tp ¼ d
t

ð31Þ

where, d specifies successfully transmitted packets, and t

represents time.

Wireless Networks (2021) 27:5245–5262 5253

123



Alive nodes: It defined the number of nodes that are

alive in network with higher energy for routing the data

packets.

Residual energy: It is the energy that remained in nodes

that is the summation of the remaining energy of all the

nodes.

Gres ¼
G0 � Gcons

G0

ð32Þ

6.3 Experimental results

Figure 5 portrays the samples simulated result by consid-

ering 50 and 100 nodes. Figure 5a represents the simulated

result with 50 nodes, and the simulated result with 100

nodes is shown in Fig. 5b.

6.4 Performance analysis

This section elaborates the performance analysis of the

developed TSBOA model based on the number of rounds.

6.4.1 Analysis based on 50 nodes

Figure 6 shows an analysis based on 50 nodes. The anal-

ysis made to show the number of nodes alive with 50 nodes

is represented in Fig. 6a. By considering 500 rounds, the

nodes alive by considering the proposed TSBOA with

epoch 20 is 41, epoch 40 is 40, epoch 60 is 45, epoch 80 is

47.5, and epoch 100 is 50, respectively. When rounds =

1000, the nodes that are considered as alive by the pro-

posed TSBOA with epoch 20 is 40.59, epoch 40 is 39.6,

epoch 60 is 44.55, epoch 80 is 47.025, and epoch 100 is

49.5. For 1500 rounds, nodes alive in the proposed TSBOA

with epoch 20 are 26.24, epoch 40 is 25.6, epoch 60 is 28.8,

epoch 80 is 30.4, and epoch 100 is 32. By increasing the

rounds to 2000, the number of nodes alive by proposed

TSBOA with epoch 20 is 2.05, epoch 40 is 2, epoch 60 is

2.25, epoch 80 is 2.375, and epoch 100 is 2.5.Thus, from

the analysis, when number of round increases the number

of alive nodes in proposed TSBOA with different epoch

values is minimized.

Figure 6b depicts the analysis based on the residual

energy. At 500 rounds, the energy remained by the nodes

using the proposed TSBOA with epoch 20 is 0.2358J,

epoch 40 is 0.2489J, epoch 60 is 0.4072J, epoch 80 is

Table 1 Simulation parameter
Number of nodes 100

Optimal election probability of a node to become CH P = 0.1

Initial energy 0.6J

Transmission energy 1000*0.0000000001J

Receiving energy 1000*0.0000000001J

Energy of free space 1000*0.000000000001J

Energy of power amplifier 13*0.000000000001J

Data aggregation energy 1000*0.000000001J

Maximum number of rounds 2000

X and Y coordinates of sink 0.5

Fig. 5 Simulated result, a with 50 nodes, b with 100 nodes
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0.2620J, and epoch 100 is 0.4286J, respectively. For 1000

rounds, the residual energy obtained using proposed

TSBOA with epoch 20 is 0.0742J, epoch 40 is 0.0783J,

epoch 60 is 0.2062J, epoch 80 is 0.0824J, and epoch 100 is

0.2171J. When considering 1500 rounds, residual energy

computed using the proposed TSBOA with epoch 20 are

0.0056J, epoch 40 is 0.0059J, epoch 60 is 0.0516J, epoch

80 is 0.0062J, and epoch 100 is 0.0543J. When the number

of rounds is considered as 2000 rounds, the energy

remained in the nodes using proposed TSBOA with epoch

20 is 0.0026J, epoch 40 is 0.0028J, epoch 60 is 0.0030J,

epoch 80 is 0.0029J, and epoch 100 is 0.0031J.

The analysis made by the throughput measure is illus-

trated in Fig. 6c. When the number of rounds is considered

as 500 rounds, the throughput achieved by the proposed

TSBOA with epoch 20 is 68.879%, with epoch 40 is

71.310%, epoch 60 is 72.931%, epoch 80 is 76.172%, and

with epoch 100 is 81.034%, respectively. By considering

1000 rounds, the throughput obtained using proposed

TSBOA with epoch 20 is 66.328%, epoch 40 is 68.669%,

epoch 60 is 70.230%, epoch 80 is 73.351%, and epoch 100

is 78.033%. The throughput measured by the proposed

TSBOA at 1500 rounds epoch 20 is 48.139%, epoch 40 is

49.838%, epoch 60 is 50.970%, epoch 80 is 53.236%, and

epoch 100 is 56.634%. For 2000 rounds, throughput of

proposed TSBOA with epoch 20 is 13.331%, epoch 40 is

13.802%, epoch 60 is 14.115%, epoch 80 is 14.743%, and

epoch 100 is 15.684%.

Fig. 6 Analysis based on 50 nodes, a alive nodes, b residual energy, c throughput
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6.4.2 Analysis with 100 nodes

Figure 7 portrays the performance analysis made by con-

sidering 100 nodes. Figure 7a portrays the analysis by con-

sidering alive nodes. When it is considered 500 rounds, the

nodes alive by the proposed TSBOA with epoch 20 are 82,

epoch 40 is 80, epoch 60 is 90, epoch 80 is 95, and epoch 100

is 100, respectively.When increasing the rounds to 1000, the

nodes that are considered as alive nodes using proposed

TSBOAwith epoch 20 is 81.18, epoch 40 is 79.2, epoch 60 is

89.1, epoch 80 is 94.05, and epoch 100 is 99. For 1500

rounds, nodes alive using the proposed TSBOA with epoch

20 are 52.48, epoch 40 is 51.2, epoch 60 is 57.6, epoch 80 is

60.8, and epoch 100 is 64. When increasing the rounds to

2000 rounds, the total number of nodes alive in the network

using proposed TSBOA with epoch 20 is 4.1, epoch 40 is 4,

epoch 60 is 4.5, epoch 80 is 4.75, and epoch 100 is 5.

The analysis showed by considering the residual energy

of nodes is depicted in Fig. 7b. When considering 500

rounds, the residual energy computed by the proposed

TSBOA with epoch 20 is 0.2344J, epoch 40 is 0.2474J,

epoch 60 is 0.4048J, epoch 80 is 0.2604J, and epoch 100 is

0.4261J, respectively. At 1000 rounds, energy remained in

nodes with proposed TSBOA with epoch 20 is 0.0737J,

epoch 40 is 0.0778J, epoch 60 is 0.2050J, epoch 80 is

0.0819J, and epoch 100 is 0.2158J. When increasing the

rounds to 1500 rounds, residual energy computed using the

proposed TSBOA with epoch 20 are 0.0055J, epoch 40 is

0.0059J, epoch 60 is 0.0512J, epoch 80 is 0.0062J, and

epoch 100 is 0.0539J. By considering 1800 rounds, the

remaining energy of the nodes using proposed TSBOA

with epoch 20 is 0.0035J, epoch 40 is 0.0037J, epoch 60 is

0.0136J, epoch 80 is 0.0039J, and epoch 100 is 0.0144J.

Fig. 7 Analysis based on 100 nodes, a alive nodes, b residual energy, c throughput
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Figure 7c represents the analysis made with the

throughput metric by 100 nodes. For 500 rounds, the

throughput computed by the proposed TSBOA with epoch

20 is 68.879%, epoch 40 is 71.310%, epoch 60 is 72.931%,

epoch 80 is 76.172%, and epoch 100 is 81.034%, respec-

tively. At rounds = 1000, throughput measured by the

proposed TSBOA with epoch 20 is 66.328%, epoch 40 is

68.669%, epoch 60 is 70.230%, epoch 80 is 73.351%, and

epoch 100 is 78.033%. When considering the rounds as

1500 rounds, throughput achieved using the proposed

TSBOA with epoch 20 are 48.139%, epoch 40 is 49.838%,

epoch 60 is 50.970%, epoch 80 is 53.236%, and epoch 100

is 56.634%. When the rounds are improved to 1800 rounds,

the throughput achieved using proposed TSBOA with

epoch 20 is 13.331%, epoch 40 is 13.802%, epoch 60 is

14.115%, epoch 80 is 14.743%, and epoch 100 is 15.684%.

6.5 Comparative methods

The performance of the proposed method is analyzed by

considering the traditional method, such as Butterfly

Optimization Algorithm (BOA) ? Ant Colony Optimiza-

tion (ACO) [16], Taylor based Cat Salp Swarm Algorithm

(Taylor C-SSA) [32], Genetic Spider Monkey Optimiza-

tion (GSMO) [10], and Hybrid Artificial Bee Colony and

Monarchy Butterfly Optimization Algorithm (HABC-

MBOA) [34].

6.6 Comparative analysis

This section explains the comparative analysis of the

developed TSMOA based on the rounds with the variation

of nodes.

6.6.1 Analysis with 50 nodes

Figure 8 illustrates the comparative analysis of the

TSMOA scheme by varying the rounds with 50 nodes.

Figure 8a portrays analysis based on the number of alive

nodes. For 100 rounds, the number of nodes alive in the

network using BOA ? ACO, Taylor C-SSA, GSMO,

HABC-MBOA, proposed TSBOA is 39.6, 35.1,36, 41.4,

and 45, respectively. Here, the performance of the pro-

posed algorithm is 12% better than BOA ? ACO, 8%

better than Taylor C-SSA, 20% better than GSMO, and

22% better than HABC-MBOA. When increasing the

rounds to 200, the alive nodes measured by BOA ? ACO,

Taylor C-SSA, GSMO, HABC-MBOA, proposed TSBOA

is 38.808, 34.398, 35.28, 40.572, and 44.1, respectively.

The number of alive nodes is more for HABC-MBOA next

to the proposed method and next to HABC-MBOA,

BOA ? ACO has more alive nodes and BOA ? ACO has

minimum alive nodes.

The analysis made by the residual energy metric is

shown in Fig. 8b. At 80 rounds, the residual energy of

existing BOA ? ACO, Taylor C-SSA, GSMO, and

HABC-MBOA is 0.4727J, 0.4521J, 0.4778J, and 0.5035J,

whereas the proposed TSBOA has acquired higher energy

of 0.5293J such that the developed method shows the

performance improvement of 11%, 15%, 10%, and 5%

with traditional BOA ? ACO, Taylor C-SSA, GSMO, and

HABC-MBOA, respectively. When considering the rounds

of 100, residual energy of BOA ? ACO, Taylor C-SSA,

GSMO, HABC-MBOA, and proposed TSBOA is 0.4569J,

0.4371J, 0.4619J, 0.4867J, and 0.5116J, respectively. The

performance improvement of the proposed algorithm with

BOA ? ACO is 11%, Taylor C-SSA is 15%, GSMO is

10%, and HABC-MBOA is 5%. When increasing the

rounds to 130, residual energy computed by BOA ? ACO,

Taylor C-SSA, GSMO, HABC-MBOA, and proposed

TSBOA is 0.4421J, 0.4229J, 0.4469J, 0.4709J, and

0.4949J, respectively. Here, the performance enhancement

of the proposed algorithm while comparing with that of

traditional BOA ? ACO is 11%, Taylor C-SSA is 15%,

GSMO is 10%, and HABC-MBOA is 5%.

Figure 8c represents the analysis of throughput using 50

nodes. At 300 rounds, throughput computed by existing

methods, like BOA ? ACO, Taylor C-SSA, GSMO, and

HABC-MBOA is 58.593%, 71.705%, 74.266%, and

78.534%, whereas proposed TSBOA achieved higher

throughput of 85.363% that results in the performance

improvement while comparing with the existing BOA ?

ACO is 31%, Taylor C-SSA is 16%, GSMO is 13%, and

HABC-MBOA is 8%. When increasing to 400 rounds,

throughput measured by BOA ? ACO, Taylor C-SSA,

GSMO, HABC-MBOA, and proposed TSBOA is 58.593%,

71.705%, 74.266%, 78.534%, and 85.363%, respectively.

Here, the proposed algorithm has the performance

improvement with that of BOA ? ACO is 31%, Taylor

C-SSA is 16%, GSMO is 13%, and HABC-MBOA is 8%.

For 500 rounds, throughput obtained by the traditional

techniques, like BOA ? ACO, Taylor C-SSA, GSMO,

HABC-MBOA, and proposed TSBOA is 58.593%,

71.705%, 74.266%, 78.534%, and 85.363%, respectively.

6.6.2 Analysis with 100 nodes

Figure 9 portrays the comparative analysis of the proposed

TSMOA method with varying the rounds with 100 nodes.

Figure 9a illustrates the analysis by considering the num-

ber of alive nodes. For 100 rounds, nodes alive in the

network using BOA ? ACO, Taylor C-SSA, GSMO,

HABC-MBOA, proposed TSBOA is 44, 39, 40, 46, and 50,

respectively. Here, the performance of the proposed algo-

rithm is 12% better than BOA ? ACO, 22% better than

Taylor C-SSA, 20% better than GSMO, 8% better than
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HABC-MBOA. When increasing the rounds to 200, the

alive nodes measured by BOA ? ACO, Taylor C-SSA,

GSMO, HABC-MBOA, proposed TSBOA is 43.12, 38.22,

39.2, 45.08, and 49, respectively.

The analysis made with the residual energy measure is

portrayed in Fig. 9b. When considering 800 rounds, the

residual energy of existing BOA ? ACO, Taylor C-SSA,

GSMO, and HABC-MBOA is 0.1493J, 0.1433J, 0.1508J,

and 0.1584J, while the proposed TSBOA has higher energy

of 0.1659J. At 900 rounds, residual energy of BOA ?

ACO, Taylor C-SSA, GSMO, HABC-MBOA, and pro-

posed TSBOA is 0.1258J, 0.1208J, 0.1271J, 0.1333J, and

0.1395J, respectively. By increasing the rounds to 1000,

residual energy acquired by BOA ? ACO, Taylor C-SSA,

GSMO, HABC-MBOA, and proposed TSBOA is 0.1016J,

0.0977J, 0.1026J, 0.1074J, and 0.1123J, respectively.

Figure 9c shows the analysis of throughput measures

using 100 nodes. At 300 rounds, throughput computed by

existing methods, like BOA ? ACO, Taylor C-SSA,

GSMO, HABC-MBOA is 68.741%, 71.167%, 72.785%,

and 76.020%, while the proposed TSBOA achieved better

throughput of 80.872% that reports the performance of

improvement of 15%, 12%, 10%, and 5% while comparing

with the existing BOA ? ACO, Taylor C-SSA, GSMO,

HABC-MBOA, respectively. By considering the number of

rounds as 400, throughput achieved by BOA ? ACO,

Taylor C-SSA, GSMO, HABC-MBOA, proposed TSBOA

is 68.741%, 71.167%, 72.785%, 76.020%, and 80.872%

such that the developed model shows the percentage of

improvement as 15%, 12%, 10%, and 5% with BOA ?

ACO, Taylor C-SSA, GSMO, and HABC-MBOA. By

considering 500 rounds, throughput computed by BOA ?

ACO, Taylor C-SSA, GSMO, HABC-MBOA, and

Fig. 8 Analysis with 50 nodes, a alive nodes, b residual energy, c throughput
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proposed TSBOA is 68.741%, 71.167%, 72.785%,

76.020%, and 80.872%, respectively.

6.7 Comparative discussion

Table 2 represents the comparative discussion of the pro-

posed TSMOA model. The below table shows the

performance measured by the proposed TSMOA model

with that of the conventional methods by analyzing the

values computed at rounds 1000 for each evaluation met-

rics. The residual energy computed by BOA ? ACO,

Taylor C-SSA, GSMO, HABC-MBOA, and proposed

TSBOA is 0.1012J, 0.0973J, 0.1022J, 0.1070J, and 0.1118

for 50 nodes. The throughput computed at 1000 rounds by

Fig. 9 Analysis with 100 nodes, a alive nodes, b residual energy, c throughput

Table 2 Comparative discussion

Number of nodes Metrics BOA ? ACO Taylor C-SSA GSMO HABC-MBOA Proposed TSBOA

With 50 nodes Alive nodes 20.592 18.252 18.72 21.528 23.4

Residual energy (J) 0.1012 0.0973 0.1022 0.1070 0.1118

Throughput (%) 56.354 68.965 71.428 75.533 82.101

With 100 nodes Alive nodes 22.88 20.28 20.8 23.92 26

Residual energy (J) 0.1016 0.0977 0.1026 0.1074 0.1123

Throughput (%) 66.195 68.532 70.089 73.204 77.877
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BOA ? ACO, Taylor C-SSA, GSMO, HABC-MBOA, and

proposed TSBOA is 56.354%, 68.965%, 71.428%,

75.533%, and 82.101% with 50 nodes. Similarly, for 1000

rounds, the residual energy measured by BOA ? ACO,

Taylor C-SSA, GSMO, HABC-MBOA, and proposed

TSBOA is 0.1016J, 0.0977J, 0.1026J, 0.1074J, and 0.1123J

with 100 nodes. Moreover, the throughput computed by

BOA ? ACO, Taylor C-SSA, GSMO, HABC-MBOA, and

proposed TSBOA is 66.195%, 68.532%, 70.089%,

73.204%, and 77.877% with 100 nodes, respectively.

7 Conclusion

In this research, an effective method is developed for

selecting the CH in the WSN environment using the pro-

posed TSBOA, which is the incorporation of TSA and

BOA, respectively. The proposed method selects the CH

optimally by considering the fitness constraints, such as

inter-cluster distance, intra-cluster distance, delay, LLT,

energy consumption of the nodes, and predicted energy.

The prediction energy is computed using a Deep LSTM

classifier based on the initial energy value. The transmis-

sion energy, receiver energy, and the normalizing factors

are used for computing the energy consumption among the

nodes. The reliability of the routing path is measure using

the route maintenance phase by monitoring the link

breakage. The link reliability factor is compared with the

threshold value to route the data packets between the

source and destination. The proposed method achieved

higher performance using metrics, like residual energy and

throughput of 0.1118J, and 82.101%, respectively. The

future dimension of research will be the consideration of

the routing process using the optimization algorithm and

thereby the performance can be improved.

References

1. Digennaro, M., Sambiasi, D., Tommasi, S., Pilato, B., Diotaiuti,

S., Kardhashi, A., Trojano, G., Tufaro, A., & Paradiso, A. V.

(2017). Hereditary and non-hereditary branches of family eligible

for BRCA test: Cancers in other sites. Hereditary Cancer in
Clinical Practice, 15(1), 1–5.

2. Caponio, M. A., Addati, T., Popescu, O., Petroni, S., Rubini, V.,

Centrone, M., Trojano, G., & Simone, G. (2014). P16 INK4a

protein expression in endocervical, endometrial and metastatic

adenocarcinomas of extra-uterine origin: Diagnostic and clinical

considerations. Cancer Biomarkers, 14(2–3), 169–175.
3. Gayathri Devi, K. S. (2019). Hybrid genetic algorithm and par-

ticle swarm optimization algorithm for optimal power flow in

power system. Journal of Computational Mechanics, Power
System and Control, 2(2), 31–37.

4. Brajula, W., & Praveena, S. (2018). Energy efficient genetic

algorithm based clustering technique for prolonging the life time

of wireless sensor network. Journal of Networking and Commu-
nication Systems, 1(1), 1–9.

5. Vidyadhari, C., Sandhya, N., & Premchand, P. (2019). A

semantic word processing using enhanced cat swarm optimiza-

tion algorithm for automatic text clustering. Multimedia
Research, 2(4), 23–32.

6. Chauhan, S., Singh, M., & Aggarwal, A. K. (2021). Cluster head

selection in heterogeneous wireless sensor network using a new

evolutionary algorithm. Wireless Personal Communications, 119,
585–616.

7. Nivedhitha, V., Saminathan, A. G., & Thirumurugan, P. (2020).

DMEERP: A dynamic multi-hop energy efficient routing protocol

for WSN. Microprocessors and Microsystems, 79, 103291.
8. Marappan, P., & Rodrigues, P. (2016). An energy efficient

routing protocol for correlated data using CL-LEACH in WSN.

Wireless Networks, 22(4), 1415–1423.
9. Tejashwini, N., Shashi Kumar, D. R., & Satyanarayana Reddy, K.

(2020). Multi-stage secure clusterhead selection using discrete

rule-set against unknown attacks in wireless sensor network. In-
ternational Journal of Electrical and Computer Engineering,
10(4), 4296–4304.

10. Soundaram, J., & Arumugam, C. (2020). Genetic spider monkey-

based routing protocol to increase the lifetime of the network and

energy management in WSN. International Journal of Commu-
nication Systems, 33(14), e4525.

11. Elsmany, E. F., Omar, M. A., Wan, T. C., & Altahir, A. A.

(2019). EESRA: Energy efficient scalable routing algorithm for

wireless sensor networks. IEEE Access, 7, 96974–96983.
12. Kelotra, A., & Pandey, P. (2019). Energy-aware cluster head

selection in WSN using HPSOCS algorithm. Journal of Net-
working and Communication Systems, 2(1), 24–33.

13. AlBalushi, F. M. (2019). Chaotic based hybrid artificial sheep

algorithm—particle swarm optimization for energy and secure

aware in WSN. Journal of Networking and Communication
Systems, 2(2), 37–48.

14. Mann, P. S., & Singh, S. (2017). Improved metaheuristic based

energy-efficient clustering protocol for wireless sensor networks.

Engineering Applications of Artificial Intelligence, 57, 142–152.
15. Kaur, S., & Mahajan, R. (2018). Hybrid meta-heuristic opti-

mization based energy efficient protocol for wireless sensor

networks. Egyptian Informatics Journal, 19(3), 145–150.
16. Maheshwari, P., Sharma, A. K., & Verma, K. (2020). Energy

efficient cluster based routing protocol for WSN using butterfly

optimization algorithm and ant colony optimization. Ad Hoc
Networks, 110, 102317.

17. Khabiri, M., & Ghaffari, A. (2018). Energy-aware clustering-

based routing in wireless sensor networks using cuckoo opti-

mization algorithm. Wireless Personal Communications, 98(3),
2473–2495.

18. Baradaran, A. A., & Navi, K. (2020). HQCA-WSN: High-quality

clustering algorithm and optimal cluster head selection using

fuzzy logic in wireless sensor networks. Fuzzy Sets and Systems,
389, 114–144.

19. Mittal, N., Singh, U., & Sohi, B. S. (2019). An energy-aware

cluster-based stable protocol for wireless sensor networks. Neural
Computing and Applications, 31(11), 7269–7286.

20. Moh’d Alia, O. (2018). A dynamic harmony search-based fuzzy

clustering protocol for energyefficient wireless sensor networks.

Annals of Telecommunications, 73(5–6), 353–365.
21 Nagarajan, L., & Thangavelu, S. (2020). Hybrid grey wolf sun-

flower optimisation algorithm forenergy-efficient cluster head

selection in wireless sensor networksfor lifetime enhancement.

The Institute of Engineering and Technology. https://doi.org/10.
1049/cmu2.12072

22. Sabet, M., & Naji, H. R. (2015). A decentralized energy efficient

hierarchical cluster-based routing algorithm for wireless sensor

5260 Wireless Networks (2021) 27:5245–5262

123

https://doi.org/10.1049/cmu2.12072
https://doi.org/10.1049/cmu2.12072


networks. AEU-International Journal of Electronics and Com-
munications, 69(5), 790–799.

23. Arioua, M., El Assari, Y., Ez-Zazi, I., & El Oualkadi, A. (2016).

Multi-hop cluster based routing approach for wireless sensor

networks. Procedia Computer Science, 83, 584–591.
24. Mehta, D., & Saxena, S. (2020). |MCH-EOR: Multi-objective

cluster head based energy-aware optimized routing algorithm in

wireless sensor networks. Sustainable Computing: Informatics
and Systems, 28, 100406.

25. Jabri, M., Moussaoui, O., Moussaoui, M., & El Moussati, A.

(2018). Combination of a successive surface experiment design

and a hierarchical routing protocol to the optimization of the

system energy in wireless sensor networks. In: Proceedings of
International Symposium on Advanced Electrical and Commu-
nication Technologies (ISAECT), IEEE, pp. 1–5.

26. Morsy, N. A., AbdelHay, E. H., & Kishk, S. S. (2018). Proposed

energy efficient algorithm for clustering and routing in WSN.

Wireless Personal Communications, 103(3), 2575–2598.
27. Lalwani, P., Das, S., Banka, H., & Kumar, C. (2018). CRHS:

Clustering and routing in wireless sensor networks using har-

mony search algorithm. Neural Computing and Applications,
30(2), 639–659.

28. Sheikh, H. F., Ahmad, I., & Arshad, S. A. (2019). Performance,

energy, and temperature enabled task scheduling using evolu-

tionary techniques. Sustainable Computing: Informatics and
Systems, 22, 272–286.

29. Alghamdi, T. A. (2020). Energy efficient protocol in wireless

sensor network: optimized cluster head selection model.

Telecommunication Systems, 74, 331–345.
30 Fawzy, A. E., Shokair, M., & Saad, W. (2018). Balanced and

energy-efficient multi-hop techniques for routing in wireless

sensor networks. IET Networks, 7, 33–43.
31 Laouid, A., Dahmani, A., Bounceur, A., Euler, R., Lalem, F., &

Tari, A. (2017). A distributed multi-path routing algorithm to

balance energy consumption in wireless sensor networks. Ad Hoc
Networks. https://doi.org/10.1016/j.adhoc.2017.06.006

32. Vinitha, A., & Rukmini, M. S. S. (2019). Secure and energy

aware multi-hop routing protocol in WSN using Taylor-based

hybrid optimization algorithm. Journal of King Saud University-
Computer and Information Sciences. https://doi.org/10.1016/j.

jksuci.2019.11.009

33. Doostali, S., & Babamir, S. M. (2020). An energy efficient cluster

head selection approach for performance improvement in net-

work-coding-based wireless sensor networks with multiple sinks.

Computer Communications, 164, 188–200.
34. Rambabu, B., Reddy, A. V., & Janakiraman, S. (2019). Hybrid

artificial bee colony and monarchy butterfly optimization algo-

rithm (HABC-MBOA)-based cluster head selection for WSNs.

Journal of King Saud University-Computer and Information
Sciences. https://doi.org/10.1016/j.jksuci.2019.12.006

35. Kumar, R., & Kumar, D. (2016). Multi-objective fractional arti-

ficial bee colony algorithm to energy aware routing protocol in

wireless sensor network. Wireless Networks, 22(5), 1461–1474.
36. Yadav, A. K., & Tripathi, S. (2017). QMRPRNS: Design of QoS

multicast routing protocol using reliable node selection

scheme for MANETs. Peer-to-Peer Networking and Applica-
tions, 10(4), 897–909.

37. Balachandra, M., Prema, K. V., & Makkithaya, K. (2014). Mul-

ticonstrained and multipath QoS aware routing protocol for

MANETs. Wireless Networks, 20(8), 2395–2408.
38. Zhu, W., Lan, C., Xing, J., Zeng, W., Li, Y., Shen, L., Xie, X.

(2016). Co-occurrence feature learning for skeleton based action

recognition using regularized deep LSTM networks. In: Pro-
ceedings of the Thirtieth AAAI Conference on Artificial Intelli-
gence, February 2016, (pp. 3697–3703)

39. Majhi, B., Naidu, D., Mishra, A. P., & Satapathy, S. C. (2020).

Improved prediction of daily pan evaporation using deep-LSTM

model. Neural Computing and Applications, 32(12), 7823–7838.
40. Kaur, S., Awasthi, L. K., Sangal, A. L., & Dhiman, G. (2020).

Tunicate swarm algorithm: A new bio-inspired based meta-

heuristic paradigm for global optimization. Engineering Appli-
cations of Artificial Intelligence, 90, 103541.

41. Arora, S., & Singh, S. (2019). Butterfly optimization algorithm: A

novel approach for global optimization. Soft Computing, 23(3),
715–734.

42. Palaniappan, S., & Chellan, K. (2015). Energy-efficient

stable routing using QoS monitoring agents in MANET. EUR-
ASIP Journal on Wireless Communications and Networking, 1,
1–11.

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Dr. Jesline Daniel is working as

Associate Professor at St.

Joseph’s College of Engineer-

ing, Chennai. She received her

Ph.D. Degree in the year 2017

from Anna University, Chennai.

Her research area was about

Routing for Visual Sensor Net-

works. She has more than

15 years of teaching experience

and her areas of expertise are

Multi-Agent Systems and Sen-

sor Networks. She had com-

pleted her M.E. Degree, under

the affiliation of Anna Univer-

sity in the year 2004 and completed her B.E. Degree, under the

affiliation of Manonmanium Sundaranar University in the year 2001.

Dr. Sangeetha Francelin Vinnar-
asi Francis , received the B.E.

degree in Computer Science and

Engineering from St.Xavier’s

Catholic College of Engineer-

ing, affiliated to Manonmaniam

Sundaranar University, Tir-

unelveli, M.Tech degree in

Computer Science and Engi-

neering from S.R.M Institute of

Science and Technology, Kat-

tankulathur, Chennai and Ph.D.

in the year 2017 from Manon-

maniam Sundaranar University,

Tirunelveli. She is currently

working as Associate Professor in the Department of Computer Sci-

ence & Engineering in St.Joseph’s College of Engineering, Chennai.

She has 15 years teaching experience. Her area of interest includes

Vehicular Adhoc Networks, Wireless Networks, Internet of Things

and Image Processing.

Wireless Networks (2021) 27:5245–5262 5261

123

https://doi.org/10.1016/j.adhoc.2017.06.006
https://doi.org/10.1016/j.jksuci.2019.11.009
https://doi.org/10.1016/j.jksuci.2019.11.009
https://doi.org/10.1016/j.jksuci.2019.12.006


Dr. S. Velliangiri obtained his

Bachelor’s in Computer Science

and Engineering from Anna

University, Chennai. Master’s

in Computer Science and Engi-

neering from Karpagam

University, Coimbatore and

Doctor of Philosophy in Infor-

mation and Communication

Engineering from Anna

University, Chennai. Currently

he is working as Associate

Professor in B V Raju Institute

of Technology, Telangana,

India. He was a member of

Institute of Electrical and Electronics Engineers (IEEE) and

International Association of Engineers (IAENG). He is specialized in

Cloud Security and Optimization techniques. He has published more

than 50 papers in esteemed journals and presented manyinternational

conferences. He has authored and co-author of several books. He

served as TPC in many premier conferences, guest editor in several

journals and Area Editor in EAI Endorsed journal of Energy Web

(Scopus) and Journal ofcomputer science bentham (Scopus). He was

the reviewer of IET Communication, Elseiver, Taylor and Francis,

Springer, Inderscience and other reputed scopus indexed journals.

5262 Wireless Networks (2021) 27:5245–5262

123


	Cluster head selection in wireless sensor network using tunicate swarm butterfly optimization algorithm
	Abstract
	Introduction
	Problem definition and motivation

	Motivation
	Literature survey
	Challenges

	System model
	Energy model
	Mobility model
	LLT model

	Energy prediction based on deep long short term memory classifier
	Proposed tunicate swarm butterfly optimization algorithm for CH selection
	Algorithmic procedure of proposed TSBOA
	Route maintenance

	Results and discussion
	Experimental setup
	Evaluation metrics
	Experimental results
	Performance analysis
	Analysis based on 50 nodes
	Analysis with 100 nodes

	Comparative methods
	Comparative analysis
	Analysis with 50 nodes
	Analysis with 100 nodes

	Comparative discussion

	Conclusion
	References




