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Abstract
Automatic modulation recognition is a critical challenge in the field of cognitive radio. In the process of communication,

radio signals are modulated in various modes and are interfered by the complex electromagnetic environment. To cope

with these problems and avoid manual selection of complex expert features, we propose a multi-level feature extraction

algorithm based on deep learning to adequately exploit the hidden feature information of modulated signals. Our algorithm

integrates the correlation between the channels of radio signals with convolutional neural networks and Bidirectional Long

Short-term Memory (Bi-LSTM), and adopts the appropriate skip connection, which avoids the loss of valid information

and achieves the complementarity between spatial and temporal features. In our model, the one-dimensional convolutional

layer is specially utilized to enrich the feature representation of each sample point of in-phase and quadrature (I/Q) signals

and emphasize the mutual influence of I channel (in-phase signal) and Q channel (quadrature signal). In addition, the label

smoothing technique is used to improve the generalization ability of the model. Our proposed method is also of certain

significance for other signal processing methods based on deep learning. Experiment results demonstrate that our algorithm

outperforms the popular algorithms and is of higher robustness. Specifically, the proposed method improves the recognition

accuracy, reaching 92.68% at high signal-to-noise ratio (SNR). In particular, it also reduces the difficulty of recognition for

multiple quadrature amplitude modulation (MQAM) signals and significantly improves the recognition accuracy for

16QAM and 64QAM.
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1 Introduction

Automatic modulation recognition (AMR) is an essential

technology in the field of wireless communication. In the

process of non-cooperative communication, due to the

unknown modulation type of the radio signal, it is neces-

sary to determine the modulation type of the signal, so as to

adopt the corresponding demodulation mode for demodu-

lation. AMR is widely applied in civilian fields [1, 2] and

military fields such as military reconnaissance [3], elec-

tronic countermeasures [4] and so on. Blind recognition of

modulation types of radio signals is a major challenge due

to the lack of the prior knowledge and receiving parame-

ters. In addition, the diversity of modulation types and the

complex electromagnetic environment in the transmission

process exacerbate the difficulty of AMR. Therefore, lots

of researchers are trying to explore efficient and robust

modulation recognition algorithms.

In general, modulation recognition methods are divided

into two categories: likelihood-based and feature-based

modulation recognition methods. The likelihood-based

methods [5–8] require rich prior knowledge. By processing

the likelihood function of the signals, the obtained likeli-

hood ratio is compared with the setting threshold to achieve

& Ruisen Luo

rsluo@scu.edu.cn

1 College of Electrical Engineering, Sichuan University, 24

South Section 1, One Ring Road, Chengdu 610065, China

2 State Key Laboratory of Hydraulics and Mountain River

Engineering, Sichuan University, Chengdu 610065, Sichuan,

China

3 Chengdu Dagongbochuang Information Technology Co., Ltd,

Chengdu 610059, China

123

Wireless Networks (2021) 27:4665–4676
https://doi.org/10.1007/s11276-021-02758-0(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11276-021-02758-0&amp;domain=pdf
https://doi.org/10.1007/s11276-021-02758-0


the modulation recognition. This method has high com-

putational complexity and heavily relies on the thresholds.

Besides, it is more sensitive to parameter deviations and

has poor model robustness. The feature-based methods

mainly include three steps: pre-processing, feature extrac-

tion, and classifier selection. Traditional feature extraction

for modulated signals consists of the following methods,

such as feature parameter extraction based on higher-order

cumulants [9], cyclic spectral analysis [10], wavelet

transform [11, 12], and transform analysis based on con-

stellation diagrams [13]. Then these artificially extracted

expert features are used to identify the modulation mode by

a classifier, e.g., the decision tree or support vector

machine [14, 15], etc. These extracted features belong to

expert knowledge and require strong expertise. Meanwhile,

they have a limited scope of application.

In recent years, with the rise of deep learning, some

scholars have utilized the artificial neural networks (ANNs)

with powerful feature extraction capabilities to avoid the

cumbersome manual selection of features and achieve better

performance of modulation recognition. Reference [16]

compares the effects of decision-theoretic methods and

ANNs on modulation recognition and finds that the overall

accuracy of the ANN-based algorithm was higher than that of

the decision-theoretic algorithm at 15 dB signal-to-noise

ratio (SNR). Reference [17] converts the modulated signals

into the form of constellation diagrams and uses deep

learning methods to achieve high accuracy recognition at

high SNR for two classes of signals, multiple phase shift

keying (MPSK) and multiple quadrature amplitude modu-

lation (MQAM). Recently, in order to facilitate the specifi-

cation of the study and to compare the advantages and

disadvantages of various algorithms, a researcher releases a

radio modulated signal standard dataset RML2016.10a [18],

and related research has gradually increased. An early pro-

posed AMR model based on deep learning is a convolutional

neural network (CNN) based algorithm [19]. O’Shea uses the

appropriate convolutional layer and fully connected layer to

extract the features of in-phase and quadrature (I/Q) signals,

which proves the effectiveness of the CNN for modulation

recognition. To eliminate the frequency offset and phase

offset in the signal transmission process, reference [20]

introduces a signal correction module and combines with the

CNN, which can complete the modulation recognition task.

Reference [21] makes a comparison between CNN, incep-

tion modules, residual networks, and convolutional long

short-term deep neural networks (CLDNN) based methods

on the RML2016.10a dataset. Results show that modulation

recognition performance is not limited by network depth and

the performance of CLDNN is better than that of other net-

works. Reference [22] proposes two ensemble CNN models

for modulation recognition, which are utilized for identify-

ing MQAM and other modulation types, respectively. This

approach is effective, but the model is complex and needs

more processing time. The recurrent neural network (RNN)

has been proved to be a powerful model for sequential data

processing [23]. Considering the temporal characteristics of

I/Q signals, reference [24] proposes to use an improved

structure of RNN, the gated recurrent unit network (GRU)

[25], to accomplish the modulation recognition. From

another perspective, reference [26] proposes an automatic

recognition algorithm based on long short-term memory

(LSTM) at the benchmark dataset. It achieves a high accu-

racy closed to 90% above 0 dB SNR by taking the instan-

taneous amplitude and phase of the I/Q signal as input. It

shows that the relationship between the I channel (in-phase

signal) and Q channel (quadrature signal) has significant

influence on automatic modulation recognition.

The existing modulation recognition methods based on

neural networks mainly use CNN or RNN to complete

modulation recognition through an elaborately designed

network model. Most of these methods ignore the mutual

information between the components of I/Q signals, and

there is useful information loss during the network calcu-

lation process. In addition, the hidden information mining

of I/Q signals is not sufficient, which also limits the per-

formance of modulation recognition. Moreover, in the

actual transmission process of radio signals, there are fre-

quency shifts, multipath fading, and other complex envi-

ronmental influences, which increase the difficulty of

identifying some modulation types. To fully exploit the

hidden information of I/Q signals and pay attention to the

mutual influence between the I and Q components, we

propose an algorithm based on the combination of spatial

fusion features and temporal features of I/Q signals. Our

contributions consist mainly of the following points:

(1) The substantial correlations between the components

of I/Q signal are emphasized in our proposed algo-

rithm. A one-dimensional (1D) convolutional layer is

used to extract the mutual information between the I

channel and Q channel, and to expand the feature

channel of each sample point to rich the representation

of features.

(2) The features of I/Q signals are extracted from multiple

levels, to utilize the diverse features of I/Q sig-

nals. Firstly, the fused spatial features are extracted

by a series of convolutional blocks and skip connec-

tions. Then, they are fed into the bidirectional long

short-term memory (Bi-LSTM) with the attention

mechanism to obtain the temporal features. The label

smoothing technology is also utilized to improve the

generalization ability of the model. It is demonstrated

that the overall performance of our model is better than

other popular models, especially in terms of the

recognition accuracy of MQAM signals.

4666 Wireless Networks (2021) 27:4665–4676

123



2 Related work

The effect of the modulation recognition algorithms based

on feature engineering mainly depends on the choice of

artificial features and classifiers. They are easily affected

by expert knowledge and have weak generalization ability.

In comparison, the deep learning model is composed of the

multi-layer non-linear structure, which can achieve auto-

matic mining of the potential features of the data, avoid the

cumbersome manual feature selection, and has better

effects. Therefore, the modulation recognition algorithm

based on deep learning has great potential. Considering the

differences between modulated signals, images and speech

signals, how to make better use of the characteristics of

neural networks and design a suitable algorithm for mod-

ulation recognition task is the current research focus.

In reference [27], higher order spectra features of

modulated signals are constructed, and are input to neural

networks for classification to achieve high recognition

accuracy for three kinds of modulated signals. However,

this method still needs to construct artificial features, and

there are few kinds of modulation recognition types, which

has certain limitations. Reference [28] first calculates the

cyclic spectra of the modulated signal and then feeds them

into a well-designed CNN, which enables the recognition

of the modulation types of very high frequency signals. In

[29, 30], modulated signals are firstly preprocessed to

obtain the corresponding time–frequency distribution

maps, and then the CNN is used for feature extraction from

these maps, so as to achieve the recognition of several

modulation types. Reference [31] combines the eye dia-

grams and vector diagrams of modulated signals, and then

inputs them into the proposed CNN for feature extraction,

which can recognize eight kinds of digital signals. These

methods mentioned above all convert the modulated sig-

nals into other characteristic representations according to

different modulation types, and then utilize the neural

networks for modulation recognition. On the one hand,

these above algorithms require additional signal prepro-

cessing and lack real-time performance. On the other hand,

these algorithms need to artificially determine preprocess-

ing methods according to different modulation types, and

the converted feature representation may have a loss of

valid information, which has some limitations in applica-

tions. Therefore, a large number of researchers are

exploring how to take advantage of the powerful feature

extraction ability of neural networks to design an efficient

algorithm for AMR. In reference [32], an improved CNN

inspired by the AlexNet network [33] is designed for

automatic feature extraction of I/Q signals to identify their

modulation types. Reference [34, 35] proposes an algo-

rithm based on CNN, which can recognize the modulation

of pulse repetition intervals. Referring to the development

of CNN in image field, a specific CNN is designed in

[36, 37] to achieve modulation recognition. Reference

[38, 39] uses generative adversarial networks to improve

the performance of modulation recognition, but it requires

certain skills for the training of this network structure and

can easily lead to unstable training results.

The above related researches illustrate the inherent

feature diversity of modulated signals, prompting us to

think about how to improve the performance of modulation

recognition algorithms based on deep learning. In our

algorithm, the intrinsic temporal and spatial characteristics

of the modulated signals are fully considered, and the

mutual information between the I/Q components is

emphasized, which significantly improves the modulation

recognition effect. The experiment results show its

effectiveness.

3 Methods

3.1 Our proposed model

I/Q signals of different modulation types have their cor-

responding rules, and in the actual channel transmission

process, there are complex effects such as multipath fading,

frequency offset, and path loss. Therefore, to improve the

robustness of modulation recognition and find an effective

representation of features of modulated signals, a multi-

level feature fusion algorithm is proposed in this paper, as

shown in Fig. 1. Firstly, a 1D convolutional layer is

adopted to explore the mutual information corrections

between the I channel and the Q channel. Next, the high-

order spatial fusion features extracted by subsequent con-

volutional blocks and skip connections method are sent to

the Bi-LSTM for temporal feature extraction. Moreover,

the attention mechanism is utilized to mine more important

temporal characteristics. Through the integration of CNN

and LSTM, it can achieve the complementarity between

the spatial and temporal characteristics of the I/Q signals

and attain more competitive recognition accuracy for

multiple modulation signals.

3.2 Spatial fusion feature extraction module

In the field of communications, I/Q signals are composed

of the quadrature component and the in-phase component.

In this way, it is convenient for determining various

characteristic information of the signal, such as instanta-

neous amplitude, phase, power, and so on. Reference [26]

proposed a method to obtain high recognition accuracy by

calculating the instantaneous amplitude and phase of I/Q

signals and then sending them to the LSTM network for
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feature extraction. It indicates that there is crucial corre-

lations between the I and Q channel. Inspired by this, in

order to sufficiently explore the mutual influence between

the I/Q components and use the powerful feature extraction

capabilities of the neural network, we propose an algorithm

that combines spatial fusion feature extraction module and

temporal feature extraction module.

The spatial fusion feature extraction module is shown in

Fig. 1. BN represents the Batch Normalization layer. It is

used to speed up the training process, and can also suppress

the disappearance of the gradient and the internal covariate

shift phenomenon [40]. For obtaining the mutual infor-

mation between each component of the I/Q signals and

extracting their hidden instantaneous characteristics, the

normalized I/Q data with the size of 2*128 is fed into a

1Dconvolutional layer. In our experiment, the number of

1D convolution kernel is set to 25 and its size is 5. Thus,

the output size of I/Q data by one-dimensional convolution

operation is 25*128. Then by Concatenate1 operation, the

original I/Q signal and the extracted features are merged to

get an array of size 27*128, where 27 contains both the

original I/Q sample points (2) and the hidden features (25)

extracted by the 1D convolutional layer, and 128 represents

the number of sample points in each frame. It not only

avoids the loss of the original useful information, but also

effectively combines the extracted I/Q mutual information.

In this way, each I/Q sample point is expanded from the

original two dimensions to more dimensions, which enri-

ches their feature representation. Then the fused I/Q feature

information is fed into two Attention-Residual Blocks to

acquire the spatial features. The internal structure of this

block is shown in Fig. 1. Its main structure is composed of

three 2D convolutional layers. BN layer is added between

each convolutional layer, and the ‘relu’ activation function

is used to improve its nonlinear mapping ability. Further-

more, to improve the exploitation of useful information and

enhance the feature extraction capability of the model, the

channel attention mechanism [41] is introduced in our

designed network. The implementation principle of this

attention mechanism is shown in Fig. 2. It includes two

parts: squeeze and excitation. Firstly, the extracted feature

map U is compressed into the channel descriptor z 2 Rc by

using the global average pooling (GAP). The element of cth

is calculated by the following formula in (1):

zc ¼ FsqðucÞ ¼
1

H � W

XH

i¼1

XW

j¼1

ucði; jÞ ð1Þ

Therefore, each element of z has global receptive field

corresponding to the feature map U. The excitation part is

composed of two fully-connected layers (FC layer). The

dimension of the fully-connected layer is controlled by the

hyper-parameter r. The weights of the respective channels

are learned by dimensional transformations of the two FC

layers, and then the obtained weights are multiplied by the

feature maps of its corresponding channel to readjust the

feature map. It is a lightweight gating mechanism used to

improve the network representation capabilities by estab-

lishing the channel-wise relationship.

Finally, the recalibrated feature maps and the previous

inputs are added through the skip-connection to achieve

residual learning [42] and avoid network degradation. Then

the features extracted by the two Attention-Residual

Blocks are input into a BN layer and a 2D convolutional

layer with the size of 1*1 to realize cross-channel inter-

action and information integration. Through the Concate-

nate2 operation, the original IQ signal and the extracted

spatial features are concatenated together to obtain the

spatial fusion features. This not only takes into account the

spatial features extracted by the network, but also avoids

the potential loss of temporal features during the extraction

process, so as to facilitate the feature extraction of later

modules. The next step is to send them into the Part2 of the

network for hidden temporal characteristics extraction.

3.3 Temporal feature extraction module

As an important branch of neural networks, RNN shows

great advantages in time-series data processing. However,

due to structural defects in traditional RNN, the problem of

gradient disappearance is prone to occur during model

training, and it is difficult to learn long-term dependencies.

Therefore, a kind of improved RNN named LSTM [43] is

used in this paper, which has a gating mechanism and can

choose to update the content that needs to be remembered.
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FC 
layer

FC 
layer

Excita�on

C

W

H

ReLU Sigmoid

Scale

Fig. 2 A Squeeze-and-

Excitation block [41]
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To extract the intrinsic characteristics of modulated

signals from multiple dimensions, the spatial fusion fea-

tures obtained from the Part1 of our model are entered into

the Part2 structure consisting of two Bi-LSTM layers and

FC layers, which is expected to capture the temporal fea-

tures embedded in the modulated signal. The advantage of

Bi-LSTM is that it can extract the past and future corre-

lation information of the sequence data, which can gain

more complete temporal features. Since there is a large

amount of information stored in Bi-LSTM, we add an

attention mechanism [44] to the final output of the two Bi-

LSTM layers to filter out irrelevant information and make

the model focus on more important features. That is, one of

the output vectors of the last Bi-LSTM layer is extracted

and projected as a query vector using the FC layer, and

then a dot product operation is performed with the output

of Bi-LSTM. After that, the result is normalized by the

‘softmax’ function to get the values of the attention prob-

ability distribution. Next, the attention value, i.e., a vector,

makes dot product with the output of the last Bi-LSTM

layer to obtain the final feature vector. To map the

extracted feature vector to a more easily separable space,

two FC layers are introduced with the activation function,

’selu’ in our model. The ‘dropout’ strategy is adopted to

prevent overfitting, and finally input them to the FC layer

with the ‘softmax’ activation function to get the confidence

level of the I/Q signal corresponding to each kind of

modulation types.

3.4 Label smoothing

Automatic modulation recognition is essentially a multi-

classification task, therefore, the modulation type labels are

generally encoded in one-hot vector and cross-entropy loss

function is used. However, some of the modulation types

are similar, e.g., 16QAM, 64QAM. Moreover, due to the

influence of noise, it is easy to cause overfitting, and makes

the model too confident of the classification result and

leads to misclassification of certain complex modulation

types. To improve this situation and enhance the general-

ization ability of our model, the label smoothing technique

[45] is introduced in our algorithm. Besides, it encourages

the representations of training examples from the same

class to group in tight clusters to improve model calibration

[46]. For the ground-truth label y corresponding to the

training sample x, we use (2) to replace the label distri-

bution qðkjxÞ ¼ dk;y.

q0ðkjxÞ ¼ ð1� 2Þdk;yþ 2 uðkÞ ð2Þ

where ε represents the smoothing parameter. In our

experiment, it is set to 0.2. uðkÞ denotes the distribution of

labels. Since the number of each modulation types are

equal in the experiment, we use the uniform distribution.

Let u kð Þ ¼ 1=K, K is equal to number of label categories

(11).

4 Experiments

4.1 Dataset

In fact, the received I/Q signals yðtÞ can be given by (3):

yðtÞ ¼ sðtÞ � hðtÞ þ nðtÞ ð3Þ

where sðtÞ represents the modulated signal, hðtÞ represents

the channel impulse response, nðtÞ denotes the additive

white Gaussian noise (AWGN) with zero mean.

In our experiment, the benchmark dataset RML2016.10a

[18] generated by GNU Radio is used as the basis for

different algorithm comparisons. It includes 11 kinds of

common I/Q signals (BPSK, QPSK, 8PSK, 16QAM,

64QAM, BFSK, CPFSK WB-FM, AM- SSB, AM-DSB,

and PAM4) with SNRs ranging from -20 dB to 18 dB with

an interval of 2. The number of each type of modulation

signals corresponding to the certain SNR is 1000. The

entire dataset has a total of 220,000 modulated signals, and

each I/Q signal has 128 complex floating-point samples. In

the process of signal generation, in addition to adding

noise, other factors such as center frequency offset, sam-

pling rate offset, and multipath fading are also considered

to resemble the real communication conditions.

4.2 Experimental details

4.2.1 Parameter setting

The neural network is implemented using Keras with the

TensorFlow backend. All of the models are trained by the

GPU, Nvidia GeForce RTX 2080. The batch size is 64. The

initial learning rate is 0.001, and it would decay every 10

epochs during the training process. The dataset is divided

by a ratio of 7:1:2, i.e., for each modulation type per SNR,

700 signals are randomly selected as the training set, 100

signals are considered as the validation set, and 200 are

selected as the test set. The early-stopping technique is

introduced in the training process, that is, if the recognition

accuracy of validation set is not improved within 10

epochs, then the model would be stopped training. Adam is

selected as the optimizer.

4.2.2 Verification experiments

To compare and evaluate our proposed model, it was made

a comparison with the previous state of the art algorithm,

[19, 21, 24, 26], respectively named VTCNN2, CLDNN,

GRU2, LSTM-AP. Among them, VTCNN2, CLDNN, and
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GRU2 took IQ raw signals as inputs directly and fulfilled

the task of modulation recognition through well-designed

models. LSTM-AP used the normalized instantaneous

amplitude and phase series extracted from I/Q signals as

inputs. We also visualized the attention mechanism intro-

duced in our proposed model for the Bi-LSTM layer and

analyzed the label smoothing techniques. In addition, the

advantages and disadvantages of different algorithms in

terms of computational complexity are respectively

illustrated.

4.3 Results and discussion

4.3.1 The overall recognition accuracy

As shown in Fig. 3, a total of five algorithm are compared

in the experiment. It can be found that when the SNR is

over -6 dB, the recognition accuracy of our proposed

algorithm is significantly better than that of other algo-

rithms. Above 4 dB SNR, its recognition accuracy keeps

approximately 92%. The maximum recognition accuracy

can reach 92.68% at 16 dB. The average recognition

accuracy is 91.3% from 0 dB to 18db SNR, which is

improved by nearly 1% * 17% compared with other

models. These results validate the stability and reliability

of our proposed algorithm.

Figure 4 shows the effects of the label smoothing

technique and the attention mechanism in Bi-LSTM on the

modulation recognition. It shows that when these two

techniques are introduced, above 0 dB SNR, the recogni-

tion accuracy of our algorithm is almost higher than that of

the models without adding the label smoothing technique

or the attention mechanism. Furthermore, even without

these two optimization methods, the average recognition

rate of our model over 0 dB SNR is still higher than that of

the other aforementioned algorithms. It indicates that our

algorithm, by fully exploiting implicit characteristics of I/Q

signals from multiple dimensions, achieves the comple-

mentarity between different dimensional features. What’s

more, it is conducive to enhancing the robustness of our

algorithm and implementing high recognition accuracy for

different modulated signals.

4.3.2 Confusion matrix

To distinguish the difficulty of identifying each type of I/Q

modulated signal by these models, we draw the confusion

matrix generated by various models at 0 dB SNR. As

demonstrated in Fig. 5, the horizontal axis represents the

predicted modulation types, and the vertical axis represents

the real modulation types. The diagonal reflects the

recognition accuracy of each kind of modulation signals,

and the darker color indicates higher recognition accuracy.

Both WBFM and AM-DSB belong to analog modulation.

The presence of silent periods in the analog audio signals

leads to recognition difficulties between WBFM and AM-

DSB. Besides, at lower SNRs, the model is prone to con-

fuse 16QAM with 64QAM. This is because both 16QAM

and 64QAM belong to the multiple quadrature amplitude

modulation, and they have overlapped constellation map-

ping. Meanwhile, due to the noise disruption, it makes

misrecognition more probable to occur at low SNRs.

Although this is a common problem, our proposed model

has obviously alleviated the difficulty of misrecognition.

The accuracy of 16QAM and 64QAM by our model is

higher than that of other models, which indicates that the

misidentification of some modulation types at low SNR can

be reduced by making full use of the correlation informa-

tion of I/Q signals through multi-level feature fusion.
Fig. 3 The recognition accuracy of different algorithms from -20 dB

to 18 dB SNRs. The figure at the bottom right corner shows the

detailed information

Fig. 4 The influences of label smoothing and attention mechanism

techniques. Our_v3 denotes the holistic algorithm. Our_v2 denotes

our algorithm without attention mechanism in the Bi-LSTM layer.

Our_v1 denotes our algorithm without label smoothing technique
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At high SNRs, since the modulated signal is almost free

from noise pollution, it can better reflect its essential

characteristics. Table 1 shows our model performs the

highest average recognition rate of 91.5% for these 11

modulation types at 18 dB SNR. The recognition accuracy

of our model for most of the modulation types is also

higher than others. It further reveals the importance of

multi-level feature mining, and it is conducive to improv-

ing the robustness of the modulation recognition algorithm.

4.3.3 Attention mechanism

It can be seen from Fig. 4 that introducing the attention

mechanism can enhance the performance of our method.

To further observe the role of attention mechanism played

in the Bi-LSTM, we visualize the outputs obtained through

the attention mechanism. As shown in Fig. 6, taking

CPFSK and GFSK as examples, for different types of

modulation signals, the attention distribution values from

Fig. 5 The confusion matrix of a our proposed algorithm, b CLDNN, c VTCNN2, d GRU2, e LSTM-AP at 0 dB SNR

Table 1 The recognition

accuracy of different algorithms

for each modulated types at

18 dB SNR, with the best

performances are in bold

VTCNN2 (%) CLDNN (%) GRU2 (%) LSTM-AP (%) Ours (%)

8PSK 36.0 87.5 96.5 99.5 98.5

AM-DSB 99.0 100.0 100.0 100.0 100.0

AM-SSB 98.0 95.5 93.5 94.0 97.5

BPSK 96.5 97.5 96.5 97.5 97.0

CPFSK 100.0 100.0 100.0 100.0 100.0

GFSK 96.0 97.0 100.0 100.0 100.0

PAM4 99.0 100.0 100.0 99.5 100.0

16QAM 14.0 36.0 40.0 85.0 86.0

64QAM 83.5 74.0 74.0 83.0 87.5

QPSK 70.0 88.5 98.0 98.5 99.0

WBFM 28.0 37.0 40.0 40.5 40.5

Average Accuracy 74.5 83.0 85.3 90.7 91.5
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the Bi-LSTM have a significant temporal correlation. By

weighting them with the extracted features, the main fea-

tures of the corresponding modulated signals can be

highlighted, and the redundant or unimportant features can

be weakened, so as to improve the recognition accuracy of

various types of modulated signals.

4.3.4 The computational complexity

Computational complexity is an indispensable index to

evaluate the models. The average training time per epoch,

the number of total training epochs, trainable parameters

and classification time for mentioned models are compared

in the experiment.

Figure 7 shows that the VTCNN2 model has the maxi-

mum number of trainable parameters, while the number of

parameters in our model is similar to that of LSTM-AP, but

larger than that of CLDNN and GRU2. This is because our

algorithm extracts features of the IQ signals from multiple

dimensions, and some parameters are appropriately added.

The total number of our training epochs required is sig-

nificantly lower than that of several other algorithms.

Therefore, our model converges faster in a limited number

of training epochs. To further reflect the time complexity of

different models, we recorded the time to classify a batch

of samples. As shown in Fig. 8, our proposed model takes

2.59 s to identify 1024 examples, which is higher than the

other models, but our model does not require extra running

time to preprocess the IQ signal, like LSTM-AP. Compared

with VTCNN2, CLDNN and GRU2, our proposed algo-

rithm consumes a bit more time to extract the potential

features of the modulated signal from higher levels, which

enables the model to maintain a higher recognition accu-

racy and better robustness even at low SNRs.

Fig. 6 The Visualization of

the Attention Mechanism

Fig. 7 The comparison of training time and trainable parameters of

different models
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5 Conclusion

Since the I/Q signals carry rich information, how to

effectively extract the characteristics of the modulated

signals has always been the focus of researches. Therefore,

we propose a multi-level feature extraction algorithm that

highlights the correlation between the I and Q channel. Our

designed model could achieve complementation between

spatial and temporal features and enrich the feature rep-

resentation for modulated signals. The recognition accu-

racy of our proposed algorithm is higher than that of other

models. Moreover, it also ameliorates the confusion situ-

ation between 16QAM and 64QAM. These results

demonstrate the superiority of our algorithm. It also enri-

ches the expression of modulation signal characteristics

and the huge potential of deep learning for modulation

recognition.

In general, the current modulation recognition algorithm

based on deep learning is still over complex. In actual

communication conditions, low time complexity and low

computation is required. Thus, in the future, we would like

to further investigate and design a miniaturized model to

make feature extraction more effective.
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