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Abstract
Recently, cooperative and distributed processing has been attracted a lot of attention, especially in wireless sensor

networks, to prolong the network’s lifetime. So, distributed adaptive filtering, which operates in a distributed and adaptive

manner, has been established. In the distributed adaptive networks, in addition to filter coefficients, the length of the

adaptive filter is also unknown in general, and it should be estimated. The distributed incremental fractional tap-length (FT)

algorithm is an approach to determine the adaptive filter length in a distributed scheme. In the current study, we analyze the

steady-state behavior of the distributed incremental variable FT LMS algorithm. According to the analysis, we derive the

mathematical expression for the steady-state tap-length at each particular sensor. The obtained results indicate that this

algorithm overestimates optimal tap-length. Numerical simulations are provided to confirm the theoretical analyses.

Keywords Adaptive networks � DILMS algorithm � Distributed estimation � Fractional tap-length (FT)

1 Introduction

Wireless sensor network (WSN) has been adopted as one of

the most potential applications in many research fields,

such as environmental monitoring, factory instrumentation,

power transmission and distribution systems, and military

surveillance [1]. In many applications, the objective is to

estimate a desired unknown parameter employing mea-

surements collected from the sensor nodes and the dis-

tributed solution is usually used to estimate the parameter.

The distributed estimation extracts the information col-

lected from the sensors distributed in an area. The distri-

bution of the sensors, in addition to the temporal

dimension, provides spatial diversity to improve the

robustness of the processing tasks [2]. In the distributed

solution, each sensor node relies on its local measurements,

communicates with its immediate neighbors, and the pro-

cessing is distributed between all sensors. In this solution,

the processing and communications measurements are

significantly decreased.

Recently, distributed adaptive estimation approaches (or

adaptive networks) have been proposed to solve the linear

estimation problem in a distributed and adaptive manner.

The distributed adaptive approach extends the adaptive

filters to the network domain, which is performed without

prior knowledge of data statistics. The adaptive networks’

performance strongly depends on the cooperation modes of

incremental and diffusion [3]. In the incremental scheme, a

cyclic path is needed, and the sensors communicate with

their neighbors inside the path. The incremental LMS

algorithm [4], incremental RLS algorithm [5], incremental

affine projection-based adaptive (APA) algorithm [6] are

distributed adaptive estimations that use incremental

cooperation. When more communications and energy

resources are accessible, a cooperative diffusion mode is

utilized. In this mode, each node communicates with all its

neighbors as managed by the network topology, and it is

not required any cyclic path. The diffusion LMS [7], dif-

fusion RLS algorithm [8], and diffusion APA [9] are dis-

tributed adaptive estimation algorithms that use diffusion

cooperation.

In most of the previous studies of distributed adaptive

estimation algorithms [4–9], the tap-length of the adaptive
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filters is constant for each node. This issue is not proper in

general because the optimal value of tap-length is variable

or unknown. The tap-length of a linear filter significantly

influences its performance. The deficient tap-length likely

increases the mean-squared error (MSE), whereas the

excess mean-squared error (EMSE) and computational cost

will be high when the tap-length is too large. Hence, there

is an optimal value for tap-length to balance the conflicting

requirements of performance and complexity. Furthermore,

in many applications, the optimal tap-length may be time-

variant. So, a variable tap-length algorithm is required to

determine the optimal length. In the single filter domain,

many algorithms have been introduced for this purpose

[10–21]. The most efficient algorithm among them is the

FT algorithm [21]. This algorithm, like the LMS and its

variants [22–24] is simple and has an excellent perfor-

mance. Thus, it is considered a popular algorithm, and in

the adaptive networks domain, it is more suitable than all

variable tap-length algorithms. In [25], the FT algorithm

has developed in the context of incremental learning for

distributed networks. Two recursive algorithms run con-

currently, one for estimating the tap-length and the other

for estimating the tap-weights. The authors in [25] only

provide a steady-state analysis to examine the steady-state

performance of the tap-weight vector. This issue is per-

formed by deriving the theoretical expressions for the

mean-squared deviation (MSD), MSE, and EMSE for each

node within the network. For this purpose, the authors

assume a fixed tap-length at the steady-state scenario, but

they have not provided any theoretical expression for this

steady-state tap-length. In this paper, we investigate a

theoretical expression for steady-state tap-length achieved

in the incremental structure tap-length adaption for each

node. The achieved results indicate that this algorithm

overestimates the optimal tap-length. Simulation results

validate the derived theoretical expressions.

The remains of the paper are organized as follows. In

Sect. 2, we provide the background that includes the esti-

mation problem and its incremental-based solution. In part

3, we analyze the performance of distributed incremental

variable FT LMS algorithm. In this part, we also calculate

the mathematical expression for the steady-state tap-length

at each sensor. The comparison of the simulation results

and theoretical analyses is given in Sect. 4, while conclu-

sion remarks are presented in Sect. 5.

Notation: For ease of reference, the main symbols used

in this paper are listed in Table 1.

2 Incremental FT-LMS algorithm

We consider N sensor nodes spatially distributed in a

region. The objective is to estimate the coefficients and the

length Lopt of an unknown vector wo
Lopt

from multiple

measurements obtained from N sensors of the network. The

adaption rules for the coefficients and the length of wo
Lopt

are decoupled, where the selection of each node does not

depend on the other. As we will present later, the tap-length

L is calculated using the tap-length estimation algorithm.

We also suppose that each node k has access to time

realizations fdkðiÞ; uk;ig of zero-mean spatial data fdk; ukg,

where dk and uk are respectively the scalar and 1 � L row

regression vector.

By collecting the measurement data and regression into

global matrices, the following definitions are made:

d,colfd1; d2; . . .; dNg ðN � 1Þ
U,colfu1; u2; . . .uNg ðN � LÞ

ð1Þ

First, we consider the unknown parameter coefficients

estimation. The aim is the estimation of L� 1 vector w that

solves arg minw JLðwÞ, where

JLðwÞ ¼ Efkd� Uwk2g ð2Þ

Let w
ðiÞ
k be the local estimation of the unknown parameter

at node k in time instant i. In [4], a distributed incremental

LMS (DILMS) approach is reported to solve the above

optimization problem as follows:

w
ðiÞ
k ¼ w

ðiÞ
k�1 þ lku

�
k;iðdkðiÞ � uk;iw

ðiÞ
k�1Þ

k 2 N
ð3Þ

where the parameter lk is the proper selected positive local

step-size. Each sensor k emploies the local data dkðiÞ, uk;i
and w

ðiÞ
k�1 received from the sensor k � 1. Then, w

ðiÞ
N is used

as the initial condition for the next time at sensor node

k ¼ 1.

Considering the tap-length L, the segmented cost func-

tion is defined as [25]:

J
ðLÞ
M ðwÞ,Efkd� UMwMk2g ð4Þ

where 1�M� L, UM and wM respectively contain the

initial M column vectors of U and M elements of w such as:

wM,colfwð1Þ;wð2Þ; . . .;wðMÞg ð1 �MÞ
UM,colfu1ð1 : MÞ; u2ð1 : MÞ; . . .; uNð1 : MÞg
ðN �MÞ

ð5Þ

where w(j) is the j’th element of w and ukð1 : MÞ consists

of the M initial elements of uk. In [25], to explore the

optimal length Lopt, the smallest difference of MSE esti-

mation is proposed as:
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minf L j JðLÞL�DðwÞ � J
ðLÞ
L ðwÞ� eg ð6Þ

where e is a small positive value and it is predetermined by

the system requirements. The integer value D prevents the

tap-length to be suboptimal.

In [25], to solve the optimization problem (6) a solution

by developing the FT algorithm within the context of

incremental cooperation has been proposed. With the

assumption that ‘k;f ðiÞ denotes the local estimation of the

FT at sensor k in time instant i, in the specific topological

circle, sensor k receives the calculated FT ‘k�1;f ðiÞ from

sensor k � 1 and updates its local estimation as:

‘k;f ðiÞ ¼ ð‘k�1;f ðiÞ � akÞ � ck

ðeðLkðiÞÞk;LkðiÞðw
ðiÞ
k�1ÞÞ

2
� ðeðLkðiÞÞk;LkðiÞ�Dðw

ðiÞ
k�1ÞÞ

2
h i ð7Þ

where

e
ðLkðiÞÞ
k;LkðiÞ w

ðiÞ
k�1

� �
¼ dkðiÞ � uk;iw

ðiÞ
k�1 ð8Þ

and

e
ðLkðiÞÞ
k;LkðiÞ�D w

ðiÞ
k�1

� �
¼ dkðiÞ

� uk;ið1 : LkðiÞ � DÞwðiÞ
k�1ð1 : LkðiÞ � DÞ

ð9Þ

In which uk;ið1 : LkðiÞ � DÞ and w
ðiÞ
k�1ð1 : LkðiÞ � DÞ consist

of the initial LkðiÞ � D elements of uk;i and w
ðiÞ
k�1 respec-

tively. In (7) ak denotes the local leakage factor and ck
indicates the local step-size for ‘k;f ðiÞ adaption at sensor k.

‘k;f ðiÞ is no longer forced to be an integer value, and the

local estimation of integer tap-length LkðiÞ is achieved

from the FT as follows:

Lkþ1ðiÞ ¼
b‘k;f ðiÞc if jLkðiÞ � ‘k;f ðiÞj� dk
LkðiÞ o:w

�
ð10Þ

where b:c indicates the floor operation, which rounds down

to the nearest integer, and dk is a small integer. Also the

tap-length during its evolution is conditioned to be not less

than a lower floor value Lmin, where Lmin [D (usually

Lmin ¼ Dþ dk þ 1), i.e., when the tap-length fluctuates

under Lmin, it is set to Lmin. The necessity of this operation

is due to using LkðiÞ � D as a tap-length in the incremental

FT algorithm.

With LkðiÞ, the tap coefficients are then updated by (3)

in which the length of vectors uk;i and w
ðiÞ
k�1 are adjusted by

LkðiÞ.

3 Steady-state analysis of incremental
variable FT LMS networks

In this part, we intend to obtain the mathematical expres-

sion for the steady-state tap-length of incremental FT

algorithm for each sensor node. First, we assume a linear

model as:

dkðiÞ ¼ uLoptk;iw
o
Lopt

þ vkðiÞ ð11Þ

where vkðiÞ is temporally and spatially white noise element

with zero mean and variance r2
v;k and independent of uLopt‘;j

and d‘ðjÞ for all ‘, j. In (11), uLoptk;i is a vector of length Lopt.

Since in this scenario, the length of the vectors varies in

each iteration, so it is convenient to define an upper bound

for the length and pad the vectors by zeros to achieve this

length. So, we obtain vectors with the same length that

simplifies the calculations. Thus, we define the upper

bound for length Lub as:

Lub [maxfLopt; LkðiÞg for all i ð12Þ

By this definition, using wLub we denote the unknown

parameter wo
Lopt

, where wLub is obtained by padding wo
Lopt

with Lub � Lopt zeros. In this way, we define the vector

w
ðiÞ
Lub;k�1 that is obtained by padding w

ðiÞ
k�1 with Lub � LkðiÞ

Table 1 The main symbols
Symbol Description

|.| Absolute operation

k:k2 Squared Euclidean norm operation

Ef:g Statistical expectation

colf:g Column vector

0M�1 M � 1 zero vector

01�M 1 �M zero vector

IL L� L identity matrix

trðAÞ Trace of matrix A

ð:ÞT Transposition

ð:Þ� Conjugation for scalars and Hermitian transpose for matrices
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zeros. Now we partition the unknown parameter wLub into

three parts as:

_w

€w

w
:::

2
64

3
75 ð13Þ

where _w is the part modeled by _w
ðiÞ
k�1, and €w is the part

modeled by €w
ðiÞ
k�1 such that:

_w
ðiÞ
k�1 ¼ w

ðiÞ
k�1ð1 : LkðiÞ � DÞ

€w
ðiÞ
k�1 ¼ w

ðiÞ
k�1ðLkðiÞ � Dþ 1 : LkðiÞÞ

ð14Þ

where w
ðiÞ
k�1ð1 : LkðiÞ � DÞ consists of the initial LkðiÞ � D

elements of w
ðiÞ
k�1 and w

ðiÞ
k�1ðLkðiÞ � Dþ 1 : LkðiÞÞ consists

of the last D elements of w
ðiÞ
k�1 and w

:::
is the undermodeled

part. Now we define the vector w
ðiÞ
Lub;k�1, that computes the

difference among the estimated weight at sensor k � 1 and

the desired solution wLub as:

w
ðiÞ
Lub;k�1 ¼ wLub � w

ðiÞ
Lub;k�1

ð15Þ

and it is partitioned into three parts as:

w
ðiÞ
Lub;k�1 ¼ wLub � w

ðiÞ
Lub;k�1 ¼

_w

€w

w
:::

2
64

3
75�

_w
ðiÞ
k�1

€w
ðiÞ
k�1

0ðLub�LkðiÞÞ�1

2
664

3
775

¼
_w� _w

ðiÞ
k�1

€w� €w
ðiÞ
k�1

w
:::

2
664

3
775 ¼

_
w
ðiÞ
k�1

€
w
ðiÞ
k�1

w
:::ðiÞ

k�1

2
6664

3
7775

ð16Þ

For convenience of analysis, similar to wLub and w
ðiÞ
Lub;k�1,

we partition the regression vector uLub;k;i with length Lub
into three parts _uk;i, €uk;i and u

:::
k;i. Considering the above

notations and replacing (11) and (15) into (8) and (9) and

padding all the vectors in (8), (9) and (11) with zeros to

make their length equal to Lub, we have:

e
ðLkðiÞÞ
k;LkðiÞðw

ðiÞ
k�1Þ ¼ uLoptk;iw

o
Lopt

� uk;iw
ðiÞ
k�1 þ vkðiÞ

¼ uLub;k;i
wo

Lopt

0ðLub�LoptÞ�1

" #
� uLub;k;i

w
ðiÞ
k�1

0ðLub�LkðiÞÞ�1

" #

þvkðiÞ
¼ uLub;k;iwLub � uLub;k;iw

ðiÞ
Lub;k�1 þ vkðiÞ

¼ uLub;k;iðwLub � w
ðiÞ
Lub;k�1Þ þ vkðiÞ

¼ uLub;k;iw
ðiÞ
Lub;k�1 þ vkðiÞ

¼ _uk;i €uk;i u
:::
k;i

� �
_
w
ðiÞ
k�1

€
w
ðiÞ
k�1

w
:::ðiÞ

k�1

2
66664

3
77775
þ vkðiÞ

¼ _uk;i
_
w
ðiÞ
k�1 þ €uk;i

€
w
ðiÞ
k�1 þ u

:::
k;iw

:::ðiÞ

k�1 þ vkðiÞ

ð17Þ

and

e
ðLkðiÞÞ
k;LkðiÞ�Dðw

ðiÞ
k�1Þ ¼ uLoptk;iw

o
Lopt

�uk;ið1 : LkðiÞ � DÞwðiÞ
k�1ð1 : LkðiÞ � DÞ þ vkðiÞ

¼ uLub;k;i
wo

Lopt

0ðLub�LoptÞ�1

" #
� uLub;k;i

_w
ðiÞ
k�1

0ðLub�LkðiÞþDÞ�1

" #

þvkðiÞ

¼ uLub;k;i

_w� _w
ðiÞ
k�1

€w

w
:::

2
64

3
75þ vkðiÞ

¼ _uk;i €uk;i u
:::
k;i

� � _
w
ðiÞ
k�1

€w

w
:::

2
664

3
775þ vkðiÞ

¼ _uk;i
_
w
ðiÞ
k�1 þ €uk;i €wþ u

:::
k;i w

::: þvkðiÞ
ð18Þ

The main term in the FT updating (7), is written as:

ðeðLkðiÞÞk;LkðiÞðw
ðiÞ
k�1ÞÞ

2
� ðeðLkðiÞÞk;LkðiÞ�Dðw

ðiÞ
k�1ÞÞ

2

¼ ðeðLkðiÞÞk;LkðiÞðw
ðiÞ
k�1Þ � e

ðLkðiÞÞ
k;LkðiÞ�Dðw

ðiÞ
k�1ÞÞ

�ðeðLkðiÞÞk;LkðiÞðw
ðiÞ
k�1Þ þ e

ðLkðiÞÞ
k;LkðiÞ�Dðw

ðiÞ
k�1ÞÞ

ð19Þ

Substituting (17) and (18) in (19) results:

ðeðLkðiÞÞk;LkðiÞðw
ðiÞ
k�1ÞÞ

2
� ðeðLkðiÞÞk;LkðiÞ�Dðw

ðiÞ
k�1ÞÞ

2

¼ ð€uk;i €w
ðiÞ
k�1 � €uk;i €wÞ

� ð2 _uk;i
_
w
ðiÞ
k�1 þ €uk;i

€
w
ðiÞ
k�1

þ €uk;i €wþ 2u
:::
k;i w

::: þ2vkðiÞÞ

ð20Þ

By multiplying the parentheses in (20), we get:

4606 Wireless Networks (2021) 27:4603–4614

123



ðeðLkðiÞÞk;LkðiÞðw
ðiÞ
k�1ÞÞ

2
� ðeðLkðiÞÞk;LkðiÞ�Dðw

ðiÞ
k�1ÞÞ

2

¼ 2vkðiÞ€uk;i €w
ðiÞ
k�1 � 2vkðiÞ€uk;i €w

þ2€uk;i
€
w
ðiÞ
k�1 _uk;i

_
w
ðiÞ
k�1 � 2 _uk;i

_
w
ðiÞ
k�1 €uk;i €w

þ €uk;i
€
w
ðiÞ
k�1

� �2

� €uk;i €w
� �2

þ2u
:::
k;i w

:::
€uk;i

€
w
ðiÞ
k�1 � 2u

:::
k;i w

:::
€uk;i €w

ð21Þ

For the ease of presentation, we define the following

parameters:

A ¼ 2vkðiÞ€uk;i €w
ðiÞ
k�1; B ¼ 2vkðiÞ€uk;i €w

C ¼ 2€uk;i
€
w
ðiÞ
k�1 _uk;i

_
w
ðiÞ
k�1; D ¼ 2 _uk;i

_
w
ðiÞ
k�1 €uk;i €w

E ¼ €uk;i
€
w
ðiÞ
k�1

� �2

; F ¼ €uk;i €w
� �2

G ¼ 2u
:::
k;i w

:::
€uk;i

€
w
ðiÞ
k�1; H ¼ 2u

:::
k;i w

:::
€uk;i €w

ð22Þ

From (7), (21) and (22) we have:

‘k;f ðiÞ ¼ ð‘k�1;f ðiÞ � akÞ
� ck½A� Bþ C � Dþ E � F þ G� H�

ð23Þ

Now, according to the update equation, we analyze the

steady-state performance. For simplicity of analysis, the

following assumptions are made.

1. The regressors uLub;k;i are spatially and temporally

independent.

2. The components of uLubk;i are obtained from white

Gaussian random process with zero mean and

variance r2
u;k. The covariance matrix of uLubk;i is

Ru;k ¼ r2
u;kI.

3. In the steady-state, the tap-length in node k approx-

imately converges to the constant value Lkð1Þ. Also

we assume that at steady-state, Lkð1Þ[ Lopt. This

overestimate phenomenon will be justified by the

results of the analysis.

4. The elements of the unknown parameter are obtained

from the zero-mean random sequence with variance

r2
o.

5. We assume that in the steady-state

f
_
w
ðiÞ
k�1

€
w
ðiÞ
k�1

2
4

3
5 _

w
ðiÞ
k�1

€
w
ðiÞ
k�1

2
4

3
5
T

g ¼ r2

w;k�1
I; where r2

w;k�1
is the

variance of the elements of _
w
ðiÞ
k�1 and €

w
ðiÞ
k�1.

As a result of these assumptions, we can say that w
ðiÞ
k�1 and

consequently w
ðiÞ
Lub;k�1 (or _

w
ðiÞ
k�1 and €

w
ðiÞ
k�1) are independent

from uLub;k;i and vkðiÞ.
Considering the assumptions 1-5 and performing the

mathematical expectations from both sides of (23) in

steady-state, we have:

Ef‘k;f ðiÞg ¼ ðEf‘k�1;f ðiÞg � akÞ
� ckEfA� Bþ C � Dþ E � F þ G� Hg; i �! 1

ð24Þ

With the assumption of Lkð1Þ and Lk�1ð1Þ as steady-state

tap-length of nodes k and k � 1 we have:

Lkð1Þ ¼ ðLk�1ð1Þ � akÞ
� ckEfA� Bþ C � Dþ E � F þ G� Hg; i �! 1

ð25Þ

To continue, we evaluate the moments in (25). From the

assumptions 1–5 and their results we have:

EfAg ¼ Ef2vkðiÞ€uk;i €w
ðiÞ
k�1g ¼ 2EfvkðiÞgEf€uk;i €w

ðiÞ
k�1g ¼ 0

EfBg ¼ Ef2vkðiÞ€uk;i €wg ¼ 2EfvkðiÞgEf€uk;i €wg ¼ 0

EfCg ¼ Ef2€uk;i
€
w
ðiÞ
k�1 _uk;i

_
w
ðiÞ
k�1g

¼ 2Ef€uk;igEf €w
ðiÞ
k�1gEf _uk;igEf

_
w
ðiÞ
k�1g ¼ 0

EfDg ¼ Ef2 _uk;i
_
w
ðiÞ
k�1 €uk;i €wg ¼ 2Ef _uk;igEf _

w
ðiÞ
k�1gEf€uk;igEf €wg ¼ 0

EfEg ¼ Ef €uk;i
€
w
ðiÞ
k�1

� �2

g ¼ trðEf €uk;i
€
w
ðiÞ
k�1

� �2

gÞ

¼ Eðtrf€uk;i €w
ðiÞ
k�1 €uk;i

€
w
ðiÞ
k�1gÞ

¼ Eðtrf€uk;i €w
ðiÞ
k�1

€
w
ðiÞT

k�1 €uk;i
TgÞ

¼ Eðtrf€uk;iT €uk;i €w
ðiÞ
k�1

€
w
ðiÞT

k�1gÞ

¼ trðEf€uk;iT €uk;igEf €w
ðiÞ
k�1

€
w
ðiÞT

k�1gÞ

¼ trðr2
u;kIDEf

€
w
ðiÞ
k�1

€
w
ðiÞT

k�1gÞ

¼ r2
u;kEðtrf

€
w
ðiÞT

k�1
€
w
ðiÞ
k�1gÞ ¼ r2

u;kEfk
€
w
ðiÞ
k�1k

2

g

EfFg ¼ Ef €uk;i €w
� �2g ¼ r2

u;kEfk €wk
2g

ð26Þ

According to assumption in the steady-state, Lkð1Þ[ Lopt,

so, in steady-state w
::: ¼ 0 and it is resulted that in the

steady-state the terms G and H will disappear. From this

and substituting(26) in (25) result:
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Lkð1Þ ¼ ðLk�1ð1Þ � akÞ � ckr
2
u;kfEfk

€
w
ðiÞ
k�1k

2

g
� Efk €wk2gg; i �! 1

ð27Þ

If ðLk�1ð1Þ � DÞ[ Lopt, then in the steady-state €w ¼ 0,

but, if ðLk�1ð1Þ � DÞ� Lopt, then €w consists of Lopt �
Lk�1ð1Þ þ D nonzero elements of wo

Lopt
, so we have:

In fact, if Lkð1Þ and Lk�1ð1Þ are not exactly equal, but

are almost equal. We can temporarily assume

Lkð1Þ ¼ Lk�1ð1Þ, and rewrite (27) as:

fEfk €w
ðiÞ
k�1k

2

g � Efk €wk2gg
¼ �ak=ckr

2
u;k i �! 1

ð29Þ

Now if we assume that Lk�1ð1Þ[ ðLopt þ DÞ, then

according to (28) discrepancy is seen between the parties of

(29). Because of this assumption, the left-hand side of (29)

is higher than zero, but the right-hand side has a negative

value. Thus, we conclude that Lopt � Lk�1ð1Þ� ðLopt þ DÞ
will hold true. According to this and by defining PLub;k�1 ¼

w
ð1Þ
Lub;k�1 and partitioning of PLub;k�1 similar to w

ðiÞ
Lub;k�1 in

(16) into three parts _Pk�1, €Pk�1 and P
:::

k�1 we can rewrite

(27) as:

Lkð1Þ ¼ ðLk�1ð1Þ � akÞ
�ckr

2
u;kfEfk€Pk�1k

2g � ðLopt � Lk�1ð1Þ þ DÞr2
og

ð30Þ

In order to evaluate the term Efk€Pk�1k
2g we need the

steady-state MSD of the deficient length DILMS algorithm.

In [26], we have introduced the concept of deficient length

DILMS algorithm and derived an expression for its steady-

state MSD. The main results are included in appendix A to

make the paper self-contained. Here we rewrite the

resulting MSD that appears in appendix A, (71), as:

EfkPLub;k�1k2g ¼ ð1 �Pk;1Þ�1sk ð31Þ

In comparison with (71) here the subscript Lopt in

EfkPLopt ;k�1k2g is modified as Lub, since here we are

assuming that the length of the unknown parameter equals

to Lub . In (31), Pk;1 and sk are defined as:

Pk;‘,bk�1bk�2. . .b1bNbN�1. . .

bkþ‘bkþ‘�1 ‘ ¼ 1; . . .;N

sk,Pk;2fk þPk;3fkþ1 þ . . .þPk;N�1fk�3

þPk;Nfk�2 þ fk�1

ð32Þ

with

bk ¼ 1 � 2lkr
2
u;k

þ l2
kr

4
u;kðLk�1ð1Þ þ 2Þ

ð33Þ

and

fk ¼ 2lkr
2
u;kð1 � lkr

2
u;kÞkw

::: k2

þ l2
kr

2
v;kr

2
u;kLk�1ð1Þ

¼ l2
kr

2
v;kr

2
u;kLk�1ð1Þ

ð34Þ

By comparing (33) and (34) with (66) and (69), we observe

that in (33) and (34), M has changed to Lk�1ð1Þ, since here

in the steady-state the length of adaptive filter in sensor

k � 1 is equal to Lk�1ð1Þ, while in appendix A, length M

is considered for the adaptive filter of each sensor. Also

k €wLopt�Mk2
in (69) has changed to kw::: k2

in (34), since

according to partitioning in (13), here €wLopt�M is equivalent

to w
:::

, which is also consistent with w
::: ¼ 0 in the steady-

state. Now using (31)-(34) we want to compute

Efk€Pk�1k
2g. In order to do so, first we divide the steady-

state MSD into three parts as:

EfkPLub;k�1k2g ¼ Efk _Pk�1k
2g þ Efk€Pk�1k

2g

þ EfkP
:::

k�1k
2
g

ð35Þ

Using the assumption 5, and since P
:::

k�1 ¼ w
:::ð1Þ

k�1 ¼ w
::: ¼ 0,

we have:

Efk _Pk�1k
2g ¼ ðLk�1ð1Þ � DÞr2

w;k�1

Efk€Pk�1k
2g ¼ Dr2

w;k�1

EfkP
:::

k�1k
2
g ¼ 0

ð36Þ

Substituting (36) into (35), we get:

Efk €wk2g ¼
ðLopt � Lk�1ð1Þ þ DÞr2

o if Lopt � Lk�1ð1Þ� Lopt þ D

0 if Lk�1ð1Þ[ Lopt þ D

(
ð28Þ
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EfkPLub;k�1k2g ¼ Lk�1ð1Þr2

w;k�1
ð37Þ

From (37) and (36) we have:

Efk€Pk�1k
2g ¼ D

Lk�1ð1ÞEfkPLub;k�1k2g ð38Þ

According to (31), the eqution (38) is rewritten as:

Efk€Pk�1k
2g ¼ D

Lk�1ð1Þ ð1 �Pk;1Þ�1sk ð39Þ

or

Efk€Pk�1k
2g ¼ Dð1 �Pk;1Þ�1 _sk ð40Þ

where

_sk,
sk

Lk�1ð1Þ ¼ Pk;2
_f k þPk;3

_f kþ1 þ . . .

þPk;N�1
_f k�3

þPk;N
_f k�2 þ _f k�1

ð41Þ

with

_f k ¼
fk

Lk�1ð1Þ ¼ l2
kr

2
v;kr

2
u;k ð42Þ

Substituting (40) into (30) results:

Lkð1Þ ¼ Lk�1ð1Þ � ak

� ckr
2
u;kfDð1 �Pk;1Þ�1 _sk

� ðLopt � Lk�1ð1Þ þ DÞr2
og

ð43Þ

Equation (43) can be arranged as the following:

Lkð1Þ ¼ ð1 � ckr
2
u;kr

2
oÞLk�1ð1Þ

þ ckr
2
u;kr

2
ofLopt þ D� D

r2
o

ð1 �Pk;1Þ�1 _skg � ak

ð44Þ

In the resulting equation, Pk;1 depends on bk and according

to (33) depends on Lk�1ð1Þ. But, on the other hand, as

previously explained, we know

Lopt � Lk�1ð1Þ� ðLopt þ DÞ, and in practice D	Lopt; thus,

Lk�1ð1Þ is very close to Lopt. The equation (33) can be

rewritten as:

bk ¼ 1 � 2lkr
2
u;k þ l2

kr
4
u;kðLopt þ 2Þ ð45Þ

By defining hk and gk as:

hk ¼ 1 � ckr
2
u;kr

2
o

gk ¼ ck

r2
u;kr

2
ofLopt þ D� D

r2
o

ð1 �Pk;1Þ�1 _skg � ak

ð46Þ

(44) can be written as:

Lkð1Þ ¼ hkLk�1ð1Þ þ gk ð47Þ

It should be noted that (47) is a coupled equation: it con-

tains Lkð1Þ and Lk�1ð1Þ, i.e., information of two different

locations. To mitigate this issue, we use ring topology [4]-

[6]. Thus, by iterating (47), we have:

L1ð1Þ ¼ h1LNð1Þ þ g1

L2ð1Þ ¼ h2L1ð1Þ þ g2

..

.

Lk�2ð1Þ ¼ hk�2Lk�3ð1Þ þ gk�2

Lk�1ð1Þ ¼ hk�1Lk�2ð1Þ þ gk�1

..

.

LNð1Þ ¼ hNLN�1ð1Þ þ gN

ð48Þ

Observe that according to (48), Lk�1ð1Þ can be express in

term of Lk�3ð1Þ as:

Lk�1ð1Þ ¼ hk�1hk�2Lk�3ð1Þ þ hk�1gk�2 þ gk�1 ð49Þ

By iterating in this manner, we have:

Lk�1ð1Þ ¼ hk�1hk�2. . .h1hNhN�1. . .hkLk�1ð1Þ
þhk�1hk�2. . .h1hNhN�1. . .hkþ1gk

þhk�1hk�2. . .h1hNhN�1. . .hkþ2gkþ1

þ. . .þ hk�1hk�2. . .h1hNgN�1

þhk�1hk�2. . .h1gN þ hk�1hk�2. . .h2g1

þhk�1hk�2. . .h4h3g2 þ . . .

þhk�1hk�2gk�3 þ hk�1gk�2 þ gk�1

ð50Þ

We use N quantities for each sensor k as:

Gk;‘,hk�1hk�2. . .h1hNhN�1. . .

hkþ‘hkþ‘�1; ‘ ¼ 1; . . .;N
ð51Þ

and mk is defined as:

mk,Gk;2gk þ Gk;3gkþ1 þ . . .

þ Gk;N�1gk�3 þ Gk;Ngk�2 þ gk�1

ð52Þ

From (50)-(52) we have:

Lk�1ð1Þ ¼ Gk;1Lk�1ð1Þ þ mk ð53Þ

From (53), we illustrate the desired steady-state tap-length

as:

Lk�1ð1Þ ¼ ð1 � Gk;1Þ�1mk ð54Þ

The equation (54) renders a mathematical expression of the

steady-state tap-length. Because of the complicated form of

the obtained results for the steady-state tap-length, it is

almost difficult to make beneficial information about the

steady-state tap-length of each sensor node. To achieve a

clear view of the steady-state tap-length, we simplify the
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equation (54). For this issue, we assume that all sensors

employ the same step size for the tap-length adaption, i.e.,

ck ¼ c; 8k�N , then, we assume that Ru;k ¼ r2
uI. With these

assumptions, we have:

hk ¼ 1 � cr2
ur

2
o ð55Þ

Furthermore, we assume cr2
ur

2
o 	 1 such that:

Gk;1 ¼h1h2. . .hN

¼ð1 � cr2
ur

2
oÞ

N 
 1 � Ncr2
ur

2
o

ð56Þ

Also, mk can be approximate as:

mk 

PN

k¼1 gk ¼ Ncr2
ur

2
oðLopt þ DÞ

�cr2
uD

PN
k¼1 ð1 �Pk;1Þ�1 _sk �

PN
k¼1 ak

ð57Þ

Substituting (56) and (57) in (54) result:

Lk�1ð1Þ ¼ ðLopt þ DÞ

� D
Nr2

o

XN
k¼1

ð1 �Pk;1Þ�1 _sk

�
PN

k¼1 ak
Ncr2

ur
2
o

ð58Þ

Since the value of steady-state tap-length in (58) rarely is

an integer, the steady-state tap-length usually varies nearby

this value. The last two terms of the right-hand side of (58)

are small and can be ignored. So, the steady-state tap-

length is close to the value Lopt þ D, as will be presented in

the simulations. This gives the result that the incremental

FT algorithm overestimates the steady-state tap-length, and

the third assumption is confirmed.

4 Simulation results

In this part, simulations are presented to verify the theo-

retical results of the paper. Numerical simulations are made

under three low noise, high noise, and large step sizes for

tap-length adaption conditions.

4.1 Low-noise scenario (SNR=20dB)

We assume a network with N=12 nodes exploring an

unknown parameter with length Lopt=20. The elements of

the unknown parameter are obtained from a white and

zero-mean random sequence with variance r2
o=0.01. The

regressors are independent zero-mean Gaussian variables,

and their covariance matrix is Ru;k ¼ I. The observation

noise is zero-mean white Gaussian and scaled to have the

SNR=20dB. The step size for the DILMS algorithm is set to

lk=0.05 for all nodes. The parameters of the incremental

FT algorithm are chosen as dk=1, ak=0.001, ck=6, D=6 with

initial tap-length that are set in the minimum value Lmin=8.

Figures 1 and 2 respectively show the evolutions of the

fractional and integer tap-length, under a low noise con-

dition for node k=1. To obtain the integer values for the

theoretical tap-lengths, we applied the floor operator b:c to

(54). As shown in the figures, this node converges to a

steady-state tap-length that corresponds well with the value

obtained for the theoretical steady-state tap-length. We

observe through the simulations that this is true for all

nodes.

4.2 High-noise scenario (SNR=0dB)

In this case, a high-noise environment is considered for

simulations. The parameters used in the simulations are the

same as that of the previous case, but the observation noise

is scaled to reach the SNR=0dB. The step size of the
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DILMS and tap-length adaption algorithm are set to

lk=0.001, and ck=2, respectively. The evolutions of the

fractional and integer tap-length, under this condition, are

shown in Figs. 3 and 4 for node k=1. It is observed that the

simulation results support the theoretical analyses.

4.3 Large step size for tap-length adaption

The simulation setup of this scenario is the same as that of

the first scenario, except that, in this case, we use a sig-

nificant value for the tap-length adaption step size ck=30.

However, increasing the step size ck increases the con-

vergence rate, but a large ck causes a significant fluctuation

of the evolution curve. The evolution curves of the frac-

tional and integer tap-length, under this condition, are

presented in Figs. 5 and 6 for node k=1. It is easily seen

from the figures that the steady-state tap-length fluctuates

are about the theoretical values.

Table 2 shows the simulation results for different SNR

values and compares them with the theoretical results. All

parameters are following the previous experiments except

for lk=0.001 and ck=2. As the table shows, for different

values of SNRs, the theoretical results are well compatible

with the simulation results.

Table 3 also shows the results for different Lopt values

and compares them with the theoretical results. In this

simulation, lk=0.001 and ck=10. As shown, first, the sim-

ulation results are compatible with the theoretical results.

Secondly, all these results show that the length of the

steady-state is overestimated almost as much as D. This

overestimation of length is important because it shows that
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Fig. 3 Evolution of the fractional tap-length in high-noise scenario
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adaption step size, ck=30
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length is not estimated deficiently. As shown in [26],

deficient length estimation increases the steady-state error.

On the other hand, a length much larger than the optimal

value increases the computational complexity, which is not

proper for a network of low-power sensors. However, the

overestimation of the length is not significant and almost

equal to D, which is much smaller than the optimal length.

5 Conclusions

In this paper, we investigated the performance of the dis-

tributed incremental variable fractional tap-length (FT)

LMS algorithm. Since in this scenario, the length of the

vectors varies in each iteration, so we defined an upper

bound for the size and padded the vectors by zeros to

achieve this length. We obtained the vectors with the same

sizes that simplified the calculations. Based on these

findings, we analyzed the incremental variable FT LMS

algorithm and derived the mathematical expression for the

steady-state tap-length at each sensor node. The most

important result is that this algorithm overestimates the

optimal value of the tap-length. Computer simulation

results confirmed the mathematical analysis and the

derived closed-form expression of tap-length.

Appendix A.

In [26], we have presented the concept of a short-length

DILMS algorithm, and we have provided an expression for

its steady-state MSD. This steady-state MSD is needed for

the evaluation of the term Efk€Pk�1k
2g in (30), so the main

results are included here. For this aim, we assume a set of N

sensors in order to find an Lopt � 1 unknown vector wo
Lopt

with unknown length Lopt from multiple measurements

collected at N sensor nodes in the network. As previously

mentioned, to find the length of the unknown parameter, a

variable tap-length algorithm is needed. But, we assume

that such an algorithm is not applicable for reasons such as

energy storage (since energy consumption is an essential

issue in WSNs). So, at each sensor, a conjectural length M

for the unknown parameter is considered. More clearly,

each sensor is equipped with an adaptive filter with M

coefficients (M\Lop). Now at each sensor node, only the

algorithm (3) is applicable in which all vectors have length

M.

Now, we present a steady-state analysis for this deficient

length case. To perform this analysis, first, we partition the

unknown parameter wo
Lopt

as follow:

_wM

€wLopt�M

" #
ð59Þ

where _wM is the partition of wo
Lopt

that is modeled by w
ðiÞ
k in

each sensor, and €wLopt�M is the partition of wo
Lopt

that

excluded in the estimation of wo
Lopt

. The partitioning sim-

plifies the work with the variable-length vectors. Regarding

the partitioning and using the data model (11), the update

equation (3) is expressed as:

w
ðiÞ
k ¼ w

ðiÞ
k�1 � lku

�
k;iuLoptk;iw

ðiÞ
Lopt ;k�1

þ lkvkðiÞu�k;i
ð60Þ

where the vector w
ðiÞ
Lopt ;k�1 with length Lopt, computes the

difference among the weight at sensor k � 1 and wo
Lopt

as:

Table 2 The steady-state tap-length performance in different SNRs

Length (Theoretical) Length (Simulations) SNR (dB)

25.7374 26.0317 �4

25.8715 25.7825 �2

25.8979 25.5523 0

25.9145 25.3627 2

25.9152 25.3960 4

25.9320 25.3807 6

25.9452 25.3675 8

25.9403 25.3026 10

25.9460 25.2738 12

25.9483 25.3649 14

25.9485 25.2994 16

25.9493 25.2700 18

25.9491 25.2947 20

25.9496 25.2510 22

25.9497 25.3360 24

Table 3 The steady-state tap-length performance in different values

of Lopt

Length (Theoretical) Length (Simulations) Lopt

25.9896 25.5805 20

55.9891 55.6295 50

105.9875 105.6483 100

133.9862 133.5513 128

261.9831 261.9681 256

517.9772 518.2319 512

4612 Wireless Networks (2021) 27:4603–4614

123



w
ðiÞ
Lopt ;k�1 ¼ w

ðiÞ
k�1

OðLopt�MÞ�1

" #
�

_wM

€wLopt�M

" #
ð61Þ

By padding the Lopt �M zeros in vectors with length M in

(60), and subtracting the unknown parameter wo
Lopt

from

both of its sides results in:

w
ðiÞ
Lopt ;k

¼ KkðiÞw
ðiÞ
Lopt ;k�1 þ lkvkðiÞ

u�k;i
OðLopt�MÞ�1

" #
ð62Þ

where

KkðiÞ ¼ ILopt � lk
u�k;i

OðLopt�MÞ�1

" #
uLoptk;i ð63Þ

To demonstrate the steady-state MSD, first we write the

kwðiÞ
Lopt ;k

k
2

as:

kwðiÞ
Lopt ;k

k
2

¼ w
�ðiÞ
Lopt ;k�1K

�
kðiÞKkðiÞw

ðiÞ
Lopt ;k�1

þlkvkðiÞw
�ðiÞ
Lopt ;k�1K

�
kðiÞ

u�k;i
OðLopt�MÞ�1

" #

þlkvkðiÞ uk;i O1�ðLopt�MÞ
� �

KkðiÞw
ðiÞ
Lopt ;k�1

þl2
kv

2
kðiÞkuk;ik

2

ð64Þ

Considering the assumptions 1, 2, and employing the

mathematical expectations from both sides of (64), after

some tedious algebra leads to:

EfkwðiÞ
Lopt ;k

k
2

g ¼ bkEfkw
ðiÞ
Lopt ;k�1k

2

g

þ ðgk � bkÞk €wLopt�Mk2 þ sk
ð65Þ

where

bk ¼ 1 � 2lkr
2
u;k þ l2

kr
4
u;kðM þ 2Þ

gk ¼ 1 þ l2
kr

4
u;kM

ð66Þ

and

sk ¼ l2
kr

2
v;kr

2
u;kM ð67Þ

Now we write (65) in the brief form of below:

EfkwðiÞ
Lopt ;k

k
2

g ¼ bkEfkw
ðiÞ
Lopt ;k�1k

2

g þ fk ð68Þ

where

fk ¼ ðgk � bkÞk €wLopt�Mk2 þ sk ð69Þ

According to the steady-state analysis, as ði ! 1Þ in (68),

and assuming PLopt ;k ¼ w
ð1Þ
Lopt ;k

, (68) is rewritten as:

EfkPLopt ;kk
2g ¼ bkEfkPLopt ;k�1k2g þ fk ð70Þ

This equation has a similar structure with (47), therefore in

the same manner that was used for the solving of the

recursive equation (47) we have:

EfkPLopt ;k�1k2g ¼ ð1 �Pk;1Þ�1sk ð71Þ

where

Pk;‘,bk�1bk�2. . .b1bNbN�1. . .

bkþ‘bkþ‘�1; ‘ ¼ 1; . . .;N
ð72Þ

and

sk,Pk;2 fk þ Pk;3 fkþ1 þ . . .þ Pk;N�1 fk�3 þ Pk;N fk�2

þ fk�1

ð73Þ
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