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Abstract
Unmanned Aerial Vehicle (UAV) can play an important role in wireless systems as it can be deployed flexibly to help

improve coverage and quality of communication. In this paper, we consider a UAV-assisted Mobile Edge Computing

(MEC) system, in which a UAV equipped with computing resources can provide offloading services to nearby user

equipments (UEs). The UE offloads a portion of the computing tasks to the UAV, while the remaining tasks are locally

executed at this UE. Subject to constraints on discrete variables and energy consumption, we aim to minimize the

maximum processing delay by jointly optimizing user scheduling, task offloading ratio, UAV flight angle and flight speed.

Considering the non-convexity of this problem, the high-dimensional state space and the continuous action space, we

propose a computation offloading algorithm based on Deep Deterministic Policy Gradient (DDPG) in Reinforcement

Learning (RL). With this algorithm, we can obtain the optimal computation offloading policy in an uncontrollable dynamic

environment. Extensive experiments have been conducted, and the results show that the proposed DDPG-based algorithm

can quickly converge to the optimum. Meanwhile, our algorithm can achieve a significant improvement in processing delay

as compared with baseline algorithms, e.g., Deep Q Network (DQN).

Keywords Mobile edge computing � Unmanned aerial vehicle � Deep deterministic policy gradient � Computation

offloading

1 Introduction

1.1 Motivation

With the development of 5G technology, computation-in-

tensive applications running on the user equipments (UEs),

e.g., online gaming, VR/AR and telemedicine, will become

more prosperous and popular. These mobile applications

typically require substantial computing resources and incur

high energy consumption. Nevertheless, current UEs gen-

erally have constrained computing resources and limited

battery capacity. Mobile Cloud Computing (MCC) has

emerged to augment the computing and storage capabilities

of UE [1], and reduce the energy consumption of UE by

offloading computation to the cloud via mobile networks.

However, cloud servers are often spatially distant from the

UE, which may incur high transmission delay [2] and

adversely affect user experiences. To reduce the backhaul

link delay, mobile computing has recently shifted to a new

computation paradigm, i.e., Mobile Edge Computing
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(MEC) [3]. MEC can migrate cloud computing resources

and services at a closer proximity to the UE, so as to

effectively reduce communication delay and energy con-

sumption [4].

Early studies on MEC mainly focused on enhancing the

performance of a MEC system in which computation ser-

vices are provided by a base station at a fixed position

[5–7]. For example, Tran et al. [5] proposed a convex

optimization method to optimize resource allocation and a

low-complexity heuristic algorithm for task offloading in a

multi-user multi-server MEC system. Zhao et al. [6] aimed

at maximizing system utility with a Collaborative Com-

putation Offloading and Resource Allocation Optimization

(CCORAO) scheme in a cloud-assisted MEC system. To

reduce the computation cost in a multi-user MIMO based

MEC system, Chen et al.[7] proposed a deep reinforcement

learning method to dynamically generate a continuous

power allocation strategy. However, the MEC services

provided by fixed infrastructures cannot effectively work in

the scenarios where communication facilities are sparsely

distributed or when sudden natural disasters occur.

Most recently, researchers have paid special attention to

Unmanned Aerial Vehicle (UAV) because of its high

mobility and flexible deployment [8]. They studied

resource allocation or path planning in UAV-assisted MEC

systems [9–14]. Aiming at reducing processing delay

among UEs in the UAV-assisted MEC system, Hu et al. [9]

developed an algorithm based on the penalty dual decom-

position optimization framework, by jointly optimizing

UAV trajectory, computation offloading and user

scheduling. Diao et al. [10] designed a joint UAV trajec-

tory and task data allocation optimization algorithm for

energy saving. Cheng et al. [11] proposed a new edge

computing architecture called UAV-assisted space-air-

ground integrated network (SAGIN), and designed an

actor-critic based Reinforcement Learning (RL) algorithm

for resource allocation and task scheduling. Considering

the dimensional curse of state space, Li et al. [12] adopted

a RL algorithm to improve the throughput of UEs’ task

migrations in a UAV-based MEC system. Xiong et al. [13]

presented an optimization algorithm to reduce energy

consumption by jointly optimizing offloading decision, bit

allocation and UAV trajectory. Selim et al. [14] proposed

to use Device-to-Device (D2D) as an additional option for

auxiliary communication and computation offloading in

UAV-MEC system. Despite extensive studies and appli-

cations, there still remain a lot of challenges in UAV-as-

sisted MEC systems, e.g., the system performance is

severely affected by the limitation on UE’s computation

capability and the blockages [15] of environmental obsta-

cles (e.g., trees or buildings), especially in urban areas.

Thus, adaptive link selection and task offloading issues are

very important in the UAV-assisted MEC system.

1.2 Novelty and contribution

In this paper, we consider a MEC system consisting of a

UAV mounted with a nano server and a number of UEs,

where the communication conditions are dynamic and

time-varying. Unlike the Deep Q Network (DQN) based

algorithms proposed for discrete action spaces [12], this

paper designs a new Deep Deterministic Policy Gradient

(DDPG) based computation offloading algorithm, which

can effectively support a continuous action space of task

offloading and UAV mobility. The main contributions of

this paper can be summarized as follows.

– Considering time-varying channel status in the time-

slotted UAV-assisted MEC system, we jointly optimize

user scheduling, UAV mobility and resource allocation,

and formulate the non-convex computation offloading

problem as a Markov Decision Process (MDP) problem

to minimize the processing delay.

– The complexity of the system states is very high when

we consider the MDP models. Besides, the decisions of

computation offloading needs the support to the con-

tinuous action space. Thus, we propose a novel DDPG-

based computation offloading approach. DDPG is an

advanced reinforcement learning algorithm, which uses

an actor network to generate unique action and a critic

network to approximate Q-value action function [16].

In this paper, DDPG algorithm is adopted to obtain the

optimal policy for user scheduling, UAV mobility and

resource allocation in our UAV-assisted MEC system.

– The proposed DDPG algorithm is implemented on the

TensorFlow platform. Simulation results with different

system parameters demonstrate the effectiveness of this

algorithm. Under different communication conditions,

our algorithm can always achieve the best performance,

as compared with other baseline algorithms.

The rest of this paper are organized as follows. Sec-

tion 2 presents system models for our UAV-assisted MEC

system, as well as the optimization problem. Section 3

briefly introduces the preliminaries on deep reinforcement

learning. Section 4 proposes our DDPG-based computation

offloading algorithm. Section 5 illustrates simulation

results of our proposed algorithm, and compares it with

other baseline algorithms. Finally, Sect. 6 concludes this

work.

2 System model

We consider a UAV-assisted MEC system, which consists

of K UEs and a UAV equipped with a nano MEC server.

The whole system operates in discrete time with equal-
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length time slots [17, 18]. The UAV provides communi-

cation and computing services to all UEs, but only to one

UE at a time [13]. Due to the constrained computing

capability, the UE has to offload a portion of the computing

tasks via wireless network to the MEC server at the UAV.

2.1 Communication model

The UAV provides computing services to all UEs in a

time-division manner [13], in which the whole communi-

cation period T is divided into I time slots. We assume that

the UEs move randomly in the area at a low speed. In each

time slot, the UAV hovers in a fixed position, and then

establishes communication with one of the UEs. After

offloading a portion of its computing tasks to the server, the

UE executes the remaining tasks locally. In the 3D

Cartesian coordinate system [10], the UAV keeps flying at

a fixed altitude H, where the UAV has a start coordinate

qðiÞ ¼ ½xðiÞ; yðiÞ�T 2 R2�1 and an end coordinate qðiþ
1Þ ¼ ½xðiþ 1Þ; yðiþ 1Þ�T 2 R2�1 at time slot

i 2 f1; 2; . . .; Ig. The coordinate of UE k 2 f1; 2; . . .; Kg
is pkðiÞ ¼ ½xkðiÞ; ykðiÞ�T 2 R2�1. The channel gain of the

line-of-sight link between the UAV and the UE k can be

expressed as [13]:

gkðiÞ ¼ a0d
�2
k ðiÞ ¼

a0
jjqðiþ 1Þ � pkðiÞjj2 þ H2

; ð1Þ

where a0 denotes the channel gain at a reference dis-

tance d ¼ 1 m, and dkðiÞ denotes the Euclidean distance

between the UAV and k. Due to blockage from obstacles,

the wireless transmission rate can be given as:

rkðiÞ ¼ B log2ð1þ
PupgkðiÞ

r2 þ fkðiÞPNLOS

Þ; ð2Þ

where B denotes the communication bandwidth, Pup

denotes the transmit power of the UE in the upload link, r2

denotes the noise power, PNLOS denotes the transmission

loss [19], and fkðiÞ denotes the indicator of whether there is
any block between UAV and UE k at time slot i (i.e., 0

means no blockage and 1 means blockage) [15].

2.2 Computation model

In our MEC system, a partial offloading strategy is used for

the UE’s tasks in each time slot [20]. Let RkðiÞ 2 ½0; 1�
denotes the ratio of tasks offloaded to the server, and ð1�
RkðiÞÞ denotes the remaining tasks that are locally executed

at the UE. Then, the local execution delay of UE k at time

slot i can be given as:

tlocal;kðiÞ ¼
ð1� RkðiÞÞDkðiÞs

fUE
ð3Þ

where Dk(i) denotes the computing task sizes of UE k, s

indicates the CPU cycles required to process each unit

byte, and fUE denotes the UE’s computing capability. At i-

th time slot, UAV flies from position qðiÞ to the new

hovering position

qðiþ 1Þ ¼ ½xðiÞ þ vðiÞtfly cos bðiÞ; yðiÞ þ vðiÞtfly sin bðiÞ�T

at a speed vðiÞ 2 ½0; vmax� and an angle bðiÞ 2 ½0; 2p�. The
energy consumed by this flight can be expressed as:

EflyðiÞ ¼ /jjvðiÞjj2 ð4Þ

where / ¼ 0:5MUAVtfly[9], M is relevant to the UAV’s

payload, tfly is fixed flight time. In the MEC system, the

size of computation results provided by the server is usu-

ally very small and negligible [9]. Thus, the transmitting

delay for the downlink is not taken into consideration here.

The processing delay of MEC server can be divided into

two parts. One part is the transmission delay, which can be

given as:

ttr; kðiÞ ¼
RkðiÞDkðiÞ

rkðiÞ
: ð5Þ

The other part is the delay resulting from the compu-

tation at the MEC server, which can be given as:

tUAV ;kðiÞ ¼
RkðiÞDkðiÞs

fUAV
ð6Þ

where fUAV denotes the computation frequency of server

CPU. Correspondingly, the energy consumed to offload the

computing tasks to the server in time slot i can also be

divided into two parts, including the one for transmission

and the other one for computation. When the computation

is performed at the MEC server, its power consumption can

be expressed as:

PUAV ; kðiÞ ¼ jf 3UAV : ð7Þ

Then, the energy consumption of the MEC server at

time slot i is given as:

EUAV ; kðiÞ ¼ PUAV ; kðiÞtUAV ; kðiÞ ¼ jf 2UAVRkðiÞDkðiÞs: ð8Þ

2.3 Problem formulation

Based on the models introduced above, we formulate the

optimization problem in our UAV-assisted MEC system.

To ensure efficient utilization of the limited computation

resources, we aim at minimizing the maximum processing

delay for all UEs, by jointly optimizing user scheduling,

UAV mobility and resource allocation in the system.

Specifically, the optimization problem can be denoted as:
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min
fakðiÞ;qðiþ1Þ;RkðiÞg

XI

i¼1

XK

k¼1
akðiÞmaxftlocal;kðiÞ;tUAV ;kðiÞþ ttr;kðiÞg

ð9aÞ
s.t:akðiÞ 2 f0; 1g; 8i 2 f1; 2; . . .; Ig; k 2 f1; 2; :::; Kg;

ð9bÞ
XK

k¼1
akðiÞ ¼ 1; 8i; ð9cÞ

0�RkðiÞ� 1; 8i; k; ð9dÞ
qðiÞ 2 fðxðiÞ; yðiÞÞjxðiÞ 2 ½0; L�; y 2 ½0; W �g; 8i; ð9eÞ
pðiÞ 2 fðxkðiÞ; ykðiÞÞjxkðiÞ 2 ½0; L�; yk 2 ½0; W �g; 8i; k;

ð9fÞ
fkðiÞ 2 f0; 1g; 8i; k; ð9gÞ
XI

i¼1
ðEfly; kðiÞ þ EUAV ; kðiÞÞ�Eb; 8k; ð9hÞ

XI

i¼1

XK

k¼1
akðiÞDkðiÞ ¼ D; ð9iÞ

where Constraint (9b) and constraint (9c) guarantee that

only one user is scheduled for computing in time slot

i. Constraint (9d) denotes the range of values for the

offloading ratio of the computing task. Constraints (9e) and

(9f) show that UE and UAV can only move in the given

area. Constraint (9g) represents the blockage in the wireless

channel between the UAV and the UE at time slot i. Con-

straint (9h) ensures that the energy consumption of UAV

flight and calculation in all time slots does not exceed the

maximum battery capacity. Constraint (9i) specifies all of

computing tasks to be completed in the whole time period.

3 DDPG based computation offloading
optimization

In this section, we first introduce fundamental knowledge

of MDP, Q-Learning, DQN, and DDPG which are impor-

tant emerging RL technologies. Then, we discuss how to

utilize DDPG to train an efficient computation offloading

policy in our UAV-assisted MEC system. In detail, we

define the state space, the action space and the reward

function, describe the state normalization for data prepro-

cessing, and illustrate the procedures of training algorithm

and testing algorithm.

3.1 A primer on RL

3.1.1 MDP

MDP [21] is a mathematical framework to describe the

discrete time stochastic control process in which outcomes

are partly random and under control of an agent or a

decision maker. It formally describes an environment

which is fully observable for reinforcement learning.

Typically, a MDP can be defined as a tuple

ðS; A; pð:; :Þ; rÞ, where S is the state space, A is the

action space,pðsiþ1jsi; aiÞ is the transition probability from

the current state si 2 S to the next siþ1 2 S after action

ai 2 A is executed, and r : S � A ! R is instantaneous/

immediate reward function. We denote p:S ! PðAÞ as a

‘‘policy’’ which is a mapping from a state to an action.

MDP aims to find an optimal policy which can maximizes

the expected accumulated rewards:

Ri ¼
X1

l¼i
cl�irl; ð10Þ

where c 2 ½0; 1� is the discount factor, rl ¼ rðsl; alÞ is
the immediate reward at l-th time slot. Under policy p, the
expected discounted return from state si is defined as a state

value function, i.e.,

VpðsiÞ ¼ Ep½Rijsi�: ð11Þ

Similarly, the expected discounted return after taking

action ai in state si under a policy p is defined as an action

value function, i.e.,

QpðsiÞ ¼ Ep½Rijsi; ai�: ð12Þ

Based on the Bellman equation, the recursive relation-

ship of the state value function and the action value func-

tion can be expressed as, respectively,

VpðsiÞ ¼ Ep½rðsi; aiÞ þ cVpðsiþ1Þ�; ð13Þ
Qpðsi; aiÞ ¼ Ep½rðsi; aiÞ þ cQpðsiþ1; aiþ1Þ�: ð14Þ

Since we aim to find the optimal policy p�, the optimal

action in each state can be found by the optimal value

function. The optimal state value function can be expressed

as:

V�ðsiÞ ¼ max
ai2A

Ep½rðsi; aiÞ þ cVpðsiþ1Þ�: ð15Þ

The optimal action value function also follows the

optimal policy p�, we can write Q� in terms of V� as

follows:

Q�ðsi; aiÞ ¼ Ep½rðsi; aiÞ þ cV�ðsiþ1Þ�: ð16Þ
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3.1.2 Q-learning

RL is an important branch of machine learning, in which an

agent tries to get the maximum return by interacting with a

control environment to its optimal state. Although RL is

often used to solve the optimization problems of MDPs, the

underlying transmission probability pðsiþ1jsi; aiÞ is

unknown or even non-stationary. In RL, an agent tries to

get the maximum return by interacting with a control

environment and adjusting its action through previous

experience. Q-learning [21] is a popular and effective

method in RL, and it is an off-policy Temporal Difference

(TD) control algorithm. The Bellman optimality equation

for the state-action function, i.e., the optimal Q function,

can be expressed as:

Q�ðsi; aiÞ ¼ Ep½rðsi; aiÞ þ cmax
aiþ1

Q�ðsiþ1; aiþ1Þ�: ð17Þ

The optimal value of the Q function can be found by an

iterative process. The agent learns from experience tuple

ðsi; ai; ri; siþ1Þ and the Q function can be updated at time

step i as follows:

Qðsi; aiÞ  Qðsi; aiÞ þ a½rðsi; aiÞ þ cmax
aiþ1

Qðsiþ1; aiþ1Þ
� Qðsi; aiÞ�;

ð18Þ

where a is the learning rate, and rðsi; aiÞ þ
cmaxaiþ1 Qðsiþ1; aiþ1Þ is the predicted Q value and

Qðsi; aiÞ is current Q value. The difference between the

predicted Q value and the current Q value is a TD error.

When the appropriate learning rate is selected, the Q

learning algorithm converges [22].

3.1.3 DQN

The Q-learning algorithm updates the Q value of each item

in the state action space by maintaining a look-up table,

which is suitable for small state-action space. Considering

the complexity of system models in practice, these spaces

are usually very large. The reason is that a large number of

states are rarely accessed and the corresponding Q values

are rarely updated, resulting in a longer convergence time

of the Q function. By combining deep neural networks

(DNNs) with Q-learning, DQN [23] addresses the short-

comings of Q-learning. The core idea behind DQN is to use

a DNN parameterized by h to get the approximate Q value

Qðs; aÞ instead of Q table, i.e., Qðs; ajhÞ � Q�ðs; aÞ.
However, the stability of RL algorithm using DNN

cannot be guaranteed, which is stated in [23]. In order to

solve this problem, two mechanisms are employed. The

first one is experience replay. At each time step i, the

agent’s interactive experience tuples ðsi; ai; ri; siþ1Þ are

stored in the experience replay buffer, i.e., experience pool

Bm. Then, a small number of samples, i.e., mini-batches,

are randomly selected from the experience pool to train the

parameters of the deep neural network, instead of directly

using continuous samples for training. The second stabi-

lization method is to use a target network that initially

contains the weights of the network that sets the policy, but

remains frozen for a fixed number of time steps. The target

Q network is updated slowly, but the value of the main Q

network is updated frequently. In this way, the correlation

between the target and the estimated Q value is signifi-

cantly reduced, which makes the algorithm stable.

In each iteration, the deep Q function is trained toward

the target value by minimizing the loss function L(h). The
loss function can be written as:

LðhÞ ¼ E½ðy� Qðs; ajhÞÞ2�; ð19Þ

where the target value y is expressed as

y ¼ r þ cmaxa0 Qðs0; a0jh�i Þ. In the Q-learning, the weights

h�i ¼ hi�1, whereas in deep Q-learning h�i ¼ hi�X , i.e., the
target network weights update every X time steps.

3.1.4 DDPG

Although the DQN algorithm can solve the problem of

high-dimensional state spaces, it still can’t deal with the

continuous action spaces. As a model-free off-policy actor-

critic algorithm using DNN, DDPG [16] algorithm can

learn polices in continuous action spaces. The actor-critic

algorithm is composed of a policy function and a Q-value

function. The policy function acts an actor to generate

actions. The Q-value function acts as a critic to evaluate the

actor’s performance and direct the follow-up action of the

actor.

As shown in Fig. 1, DDPG uses two different DNNs to

approximate the actor network lðsjhlÞ, i.e., the policy

function and the critic network Qðs; ajhQÞ, i.e., the Q-value
function, respectively. In addition, both the actor network

and the critic network contain a target network with the

same structure as them: actor target network l0 with

parameter hl
0
, critic target network Q0 with parameter hQ

0
.

Similar to DQN, critic network Qðs; ajhQÞ can be updated

as follows:

LðhQÞ ¼ El0 ½ðyi � Qðsi; aijhQÞÞ2�; ð20Þ

where

yi ¼ ri þ cQðsiþ1; lðsiþ1ÞjhQÞ: ð21Þ

As has been proved by Silver et al. [24], the policy

gradient can be updated by chain rule,

rhlJ � El0 ½rhlQðs; ajhQÞjs¼si; a¼lðsijhlÞ�
¼El0 ½raQðs; ajhQÞjs¼si; a¼lðsijhlÞrhllðsjhlÞjs¼si �:

ð22Þ
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The entire training process for the DDPG algorithm can

be summarized as follows. Firstly, the actor network l
outputs lðsiÞ after the previous training step. In order to

provide adequate exploration of the state space, we need to

balance the tradeoff between exploration and exploitation.

Actually, we can treat the exploration of DDPG indepen-

dently from the learning process, as DDPG is an off-policy

algorithm. Therefore, we construct the action space by

adding behavior noise ni to obtain action ai ¼ lðsiÞ þ ni,

where ni obeys the Gaussian distribution ni	Nðle; r2e; iÞ,
le is the mean and re; i is the standard deviation. After

performing at in the environment, the agent can observe the

next state siþ1 and the immediate reward rt. Then the

transition ðsi; ai; ri; siþ1Þ is stored in the experience replay

buffer. After that, the algorithm randomly selects N tran-

sitions ðsj; aj; rj; sjþ1Þ in the buffer to make up a mini-

batch and inputs it into actor network and critic network.

With the mini-batch, the actor target network l0 outputs the
action l0ðsjþ1Þ to the critic target network Q0. With mini-

batch and l0ðsjþ1Þ, the critic network can calculate the

target value yj based on (21).

In order to minimize the loss function, the critic network

Q will be updated by a given optimizer, e.g., Adam Opti-

mizer. Afterwards, the actor network l gives the mini-

batch action a ¼ lðsjÞ to the critic network to achieve the

action a’s gradient raQðs; ajhQÞjs¼sj; a¼lðsjÞ. The parameter

rhllðsjhlÞjs¼sj can be derived by its own optimizer. Using

these two gradients, the actor network can be updated with

the following approximation:

rhlJ �
1

N

X

j

½raQðs; ajhQÞjs¼sj; a¼lðsjjhlÞrhllðsjhlÞjs¼sj �:

ð23Þ

Finally, the DDPG agent uses a small constant s to

update the critic target network and actor target network

softly:

hQ
0  hQ þ ð1� sÞhQ0 ; ð24Þ

hl
0  hl þ ð1� sÞhl0 : ð25Þ

4 DDPG-based algorithm

4.1 State space

In the UAV-assisted MEC system, the state space is jointly

determined by K UEs, a UAV and their environment. The

system state at time slot i can be defined as:

si ¼ðEbatteryðiÞ; qðiÞ; p1ðiÞ; :::; pKðiÞ; DremainðiÞ;
D1ðiÞ; :::; DKðiÞ; f1ðiÞ; :::; fKðiÞÞ;

ð26Þ

where Ebattery(i) denotes the remaining energy of UAV

battery at i-th time slot, qðiÞ denotes the UAV location

information, pkðiÞ denotes the location information of UE k

served by the UAV, Dremain(i) denotes the size of remain-

ing tasks that the system needs to complete in the whole

time period, Dk(i) denotes the task size randomly generated

by UE k in the i-th slot, and fkðiÞ denotes an indication of

Fig. 1 Diagram of DDPG
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whether the signal of UE k is blocked by obstacles. Espe-

cially when i ¼ 1, EbatteryðiÞ ¼ Eb and DremainðiÞ ¼ D.

4.2 Action space

Based on the current state of the system and the observed

environment, the agent selects actions including UE k0 to
be served, flight angle of UAV, flight speed of UAV and

task offloading ratio in time slot i. The action ai can be

denoted as:

ai ¼ ðkðiÞ; bðiÞ; vðiÞ;RkðiÞÞ: ð27Þ

It is worth noting that the actor network in DDPG out-

puts continuous actions. The action variable UE kðiÞ 2
½0; K� selected by the agent needs to be discretized, i.e., if

kðiÞ ¼ 0, then k0 ¼ 1; if kðiÞ 6¼ 0, then k0 ¼ kðiÞd e, where
�d e is the ceiling operation. The flight angle of UAV, the

flight speed of UAV and the task offloading ratio can be

accurately optimized in a continuous action space, i.e.,

bðiÞ 2 ½0; 2p�, vðiÞ 2 ½0; vmax�, and RkðiÞ 2 ½0; 1�. The

above four variables are jointly optimized to minimize

system cost.

4.3 Reward function

The agent’s behavior is reward-based, and the choice of an

appropriate reward function plays a vital role in the per-

formance of the DDPG framework. We aim to maximize

reward by minimizing the processing delay defined in the

problem (9), as follows:

ri ¼ rðsi; aiÞ ¼ �sdelayðiÞ; ð28Þ

where the processing delay at time slot i is

sdelayðiÞ ¼
XK

k¼1 akðiÞmaxftlocal; kðiÞ; tUAV ; kðiÞ þ ttr; kðiÞg

, and if k ¼ k0, then akðiÞ ¼ 1; otherwise akðiÞ ¼ 0. With

the DDPG algorithm, the action to maximize the Q value

can be found. The long-term average reward of system can

be expressed using the Bellman equation as follows:

Qlðsi; aiÞ ¼ El½rðsi; aiÞ þ cQlðsiþ1; lðsiþ1ÞÞ�: ð29Þ

4.4 State normalization

In the process of DNN training, the distribution of input in

each layer changes with the change of the previous layer

parameters, which slows down the training by requiring

lower learning rates and careful parameter initialization.

Ioffe and Szegedy proposed a batch normalization mech-

anism that allows training to use a higher learning rate and

be less careful with initialization. We propose a state

normalization algorithm to preprocess the observed states,

so that DNN can be trained more effectively. It is worth

noting that, different from Qiu’s state normalization algo-

rithm [25], the proposed algorithm takes the difference

between maximum and minimum of each variable as the

scaling factor. The proposed state normalization algorithm

can solve the problem of magnitude difference of input

variables.

In our work, the variables

EbatteryðiÞ; qðiÞ; p1ðiÞ; :::; pKðiÞ; DremainðiÞ; D1ðiÞ; :::; DK�1ðiÞ

and DKðiÞ in the state set lie in different ranges, which may

result in problems during training. As shown Algorithm

1,those variables are normalized by state normalization to

prevent such a problem. We use five scaling factors in the

state normalization algorithm. Each factor can be explained

as follows. The scaling factor cb is used to scale down the

UAV battery capacity. Since both UAV and UE have the

same x and y coordinate ranges, we use cx and cy to scale

down the x and y coordinates of the UAV and UE

respectively. We use cDrm
to scale down the remaining tasks

in the whole time period, and cDUE
to scale down the task

size of each UE in time slot i.

4.5 Training and testing

To learn and evaluate the DDPG-based computation

offloading algorithm, there are two phases including

training and testing. The training algorithm based on

DDPG for computation offloading is shown in Algorithm 2.

In the training process, the critic network parameters and

the actor network parameters of the training behavior

policy are iteratively updated. Algorithm 3 describes

computation offloading testing process, which uses the

trained actor network hl in Algorithm 2. It should be noted

that since the actor network is trained with normalized

state, we also need to preprocess the input state in the

testing process.
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5 Results and analysis

In this section, we illustrate the proposed DDPG-based

framework for computation offloading in the UAV-assisted

MEC system by numerical simulations. Firstly, the setting

of simulation parameters is introduced. Then, the perfor-

mance of the DDPG-based framework is validated under

different scenarios, and compared with other baseline

schemes.

5.1 Simulation setting

In the UAV-assisted MEC system, we consider a 2D square

area with K ¼ 4 UEs randomly distributed in L�W ¼
100� 100 m2 [10], and assume that the UAV flies at a

fixed height H ¼ 100 m [11]. As defined in [26], the gross

mass of UAV is MUAV ¼ 9:65 kg. The whole time period

T ¼ 400 s is divided into I = 40 time slots. Referring to

[9], the maximum UAV flight speed is vmax ¼ 50 m/s and

the flight time of UAV is tfly ¼ 1 s in each time slot. The

channel power gain is set to be a0 ¼ �50 dB [9] at a ref-

erence distance of 1 m. The transmission bandwidth is set

to B ¼ 1 MHz. The noise power of the receiver is assumed

to be r2 ¼ �100 dBm [9] without signal blockage. If the

signal is blocked during transmission between UAV and

UE k, i.e., fkðiÞ ¼ 1, the signal.

penetration loss is PNLOS ¼ 20 dB [19]. We assume that

the transmission power of UEs Pup ¼ 0:1 W [22], UAV

battery capacity Eb ¼ 500 kJ [26] and the required CPU

cycles per bit s ¼ 1000 cycles/bit [9]. The computing

capability of the UE and the MEC server is set to fUE ¼
0:6 GHz and fUAV ¼ 1:2 GHz [9], respectively. The scaling

factors in the proposed state normalization algorithm are

set to cb ¼ 5� 105, cx ¼ 100, cy ¼ 100, cDrm
¼ 1:05� 108

and cDUE
¼ 2.62� 106 respectively. The detailed simulation

parameters are listed in Table 1, unless otherwise specified.

In our experiments, the average reward taken from multiple

runs of Algorithm 3 with same settings are used for per-

formance comparison.

For comparison, four baseline approaches are described

as follows:

Table 1 Simulation parameters

Parameter Default value Parameter Default value

K 4 L, W, H 100 m

MUAV 9.65 kg T 400 s

I 40 vmax 50 m/s

tfly 1 s a0 - 50 dB

B 1 MHz r2 - 100 dBm

PNLOS 20 dB Pup 0.1 W

Eb 500 kJ S 1000 cycles/bit

fUE 0.6 GHz fUAV 1.2 GHz

cb 5� 105 cx; cy 100

cDrm
1:05� 108 cDUE 2.62� 106
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– Offloading all tasks to UAV (Offload-only): During

each time slot, the UAV provides computing services to

the UE at a fixed location in the area center. The UE

offloads all its computing tasks to the MEC server on

UAV.

– Executing all tasks locally (Local-only): Without the

assistance of UAV, all computing tasks of UE are

executed locally.

– Actor Critic-based computation offloading algorithm

(AC): To evaluate the performance of the proposed

DDPG-based computation offloading algorithm, the

continuous action space based RL algorithm, i.e., AC

[11], is also implemented for the computation offload-

ing problem. In order to compare it with DDPG fairly,

AC also applies state normalization.

– DQN-based computation offloading algorithm (DQN):

The traditional discrete action space based DQN [12]

algorithm is compared with the proposed DDPG-based

algorithm. During the UAV flight, the angle levels are

defined as B ¼ f0; p=5; . . .; 2pg, and the speed levels

are expressed as V ¼ f0; vmax=10; . . .;vmaxg and the

offloading ratio levels can be set as

O ¼ f0; 0:1; . . .;1:0g. In order to compare it with

DDPG and AC fairly, DQN also applies state

normalization.

5.2 Simulation results and discussions

5.2.1 Parametric analysis

We first conduct a series of experiments to determine the

optimal values for important hyper-parameters used in

algorithm comparisons. The convergence performance of

the proposed algorithm with different learning rates is

shown in Fig. 2. We assume that the learning rates of the

critic network and actor network are different. Firstly, we

can clearly observe that when aActor ¼ 0:1, aCritic ¼ 0:2 or

aActor ¼ 0:001, aCritic ¼ 0:002, the proposed algorithm can

converge. However, the proposed algorithm converges to a

local optimal solution when aActor ¼ 0:1 and aCritic ¼ 0:2.

The reason is that the large learning rates will make both

critic network and actor network take a large update step.

Secondly, we can find that when the learning rate is very

small, i.e., aActor ¼ 0:00001 and aCritic ¼ 0:00002, the

algorithm cannot converge. That is because lower learning

rates will result in a slower update rate of DNNs, which

requires more iterative episodes to converge. Thus, the best

learning rates of actor network and critic network are

aActor ¼ 0:001 and aCritic ¼ 0:002, respectively.

In Fig. 3, we compare the impact of different discount

factors c on the convergence performance of the proposed

algorithm. It is observed that when the discount factor

c ¼ 0:001, the trained computation offloading policy has

the best performance. The reason is that the environment in

different periods varies greatly, so the data of the whole

time period cannot completely represent the long-term

behavior. A larger c means that the Q table will consider

the data collected in the whole time period as long-term

data, which leads to the poor generalization ability of dif-

ferent time periods. Therefore, an appropriate value of c
will improve the ultimate performance of our trained

policies, and we set the discount factor c to 0.001 in the

following experiments.

Figure 4 shows the performance comparisons of the

proposed algorithm in terms of the processing delay under

different exploration parameter re. The convergence per-

formance of the proposed algorithm is greatly affected by

this exploration parameter. When the algorithm converges

at re ¼ 0:1, the optimal delay fluctuates at 63 s. A larger

value of re produces a larger random noise distribution

space, which makes it possible to explore a larger spatial

Fig. 2 Convergence performance of the DDPG-based algorithm under

different learning rates Fig. 3 Convergence performance with different discount factors
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range for the agent. When re ¼ 0:001, the performance of

the algorithm decreases at 850 episodes, as the algorithm

falls into a local optimal solution due to a small re.
Therefore, a large number of experiments are needed to

obtain the appropriate exploration setting in the UAV-as-

sisted scenario. Hence, we choose re ¼ 0:01 for better

performance in the following experiments.

Figure 5 shows the influence of training strategies that

do not use state normalization or behavior noise in DDPG

training algorithms. On the one hand, if the DDPG algo-

rithm is trained without behavior noise, the convergence

speed of the algorithm will be slower. On the other hand, if

the policy is trained without state normalization, i.e.,

without introducing scale factor into the state normaliza-

tion, the training algorithm will not work. The reason is

that without the state normalization strategy, the values of

Ebattery(i), Dremian(i) and Dk(i) are too large, which results

in the random initialization of DNNs to output a larger

value. Thus, if the state normalization strategy proposed by

us is not adopted in DDPG algorithm, the algorithm will

eventually become a greedy algorithm.

5.2.2 Performance comparison

Figure 6 shows the performance comparison between dif-

ferent algorithms. In Fig. 6a, we trained the DNNs of RL

algorithms for a total of 1,000 episodes. From this figure, it

can be observed that the AC algorithm cannot converge as

the number of iteration increases, while both DQN and

DDPG algorithms can achieve convergence. That’s

because the AC algorithm suffers from the problem of

simultaneous updating of the actor network and the critic

network. The action selection of the actor network depends

on the value function of the critic network, but the critic

network itself is difficult to converge. Therefore, the AC

algorithm may not converge in some cases. In contrast,

both DQN and DDPG benefit from the dual network

structure of an evaluation network and a target network,

Fig. 4 Performance of the delay under different exploration parameter

settings

Fig. 5 Performance without state normalization or behavior noise

Fig. 6 (a) Performance of different algorithms under task sizes

D = 100 Mb. (b) Delay with different task sizes
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which can be used to cut off the correlation between

training data to find the optimal action strategy. Using the

delay results obtained after the algorithm convergence, we

compare these algorithms under different settings of task

size and show the results in Fig. 6b. In Fig. 6b, the delay of

the DDPG algorithm is always the lowest among the five

algorithms for the same task size. Due to the exploration of

discrete action space and non-negligible spaces between

the available actions, the DQN cannot accurately find the

optimal offloading strategy. However, the DDPG algorithm

explores a continuous action space and takes a precise

action, which finally obtains the optimal strategy and sig-

nificantly reduces the delay. Besides, the DQN algorithm

converges with a processing delay much higher than

DDPG. The Offload-only and Local-only algorithms can-

not fully utilize the computing resources in the whole

system. Thus, for the same task size, the processing delay

of the DDPG algorithm is significantly lower than those of

Offload-only and Local-only. Moreover, as the task size

increases, the increasing speed of processing delay opti-

mized by the DDPG algorithm is much slower than those

of Offload-only and Local-only, which indicates the

advantages of our proposed algorithm.

Figure 7a and b show the performance of the same

group of experiments in terms of delay and offloading ratio.

Figure 7a shows the convergence performance of DQN

scheme and DDPG scheme with different computing

capabilities of UE. The reason why the proposed scheme is

not compared with the AC scheme is that the AC scheme is

still not convergent. We can find that when the computing

capability of UE is small, i.e., fUE ¼ 0:4 GHz, the pro-

cessing delay optimized by the two optimization schemes

is higher than that when the computing capability of UE

fUE ¼ 0:6 GHz. On the other hand, when the computing

capability of UE is large, the average offloading ratio in the

system is small according to Fig. 7b, and thus the UE

prefers to execute the task locally. The smaller the com-

puting capability of UE, the slower the data processing

speed of the system in the same time, resulting in the larger

maximum delay between local execution and offloading.

Figure 7c shows the optimized delay comparison between

the proposed scheme and DQN scheme under different

CPU frequency conditions. It can be observed from Fig. 7c

that the proposed DDPG scheme achieves lower delay

compared with DQN scheme under different UE comput-

ing capabilities. This reason is that, DDPG scheme can

output a number of continuous actions, instead of a limited

discrete set of actions in DQN. Thus, DDPG can find an

accurate factor that affects greatly the delay in the con-

tinuous action control system, i.e., the offloading ratio.

In Fig. 8, we compare the average processing delay

between the proposed DDPG scheme, DQN, Offload-only

and Local-only, as the number of UEs varies from 1 to 10.

We assume that the total task size to be completed in a time

period is the same under different number of UEs. As

shown in Fig. 8, the average processing delay of all

schemes except DQN is almost constant as the number of

Fig. 7 (a) Performance of DQN and DDPG under different computing

capabilities of UE. (b) Offloading ratio of DQN and DDPG under

different computing capabilities of UE. (c) Comparison between

DQN and DDPG
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UEs increases. With the increase of the number of UEs, the

processing delay of DQN scheme fluctuates at about 86 s.

The reasons can be explained as follows. The value ranges

of the DQN output actions under different UE numbers

vary greatly. Thus, when the sample is used as the input of

DNN training, DNNs may prefer to output a larger value.

The actor network of DDPG outputs multi-dimensional

actions to ensure that the input data of DNNs are in the

same range, i.e., [0, 1], which ensures the convergence and

stability of DDPG algorithm. Besides, the proposed DDPG

scheme achieves the lowest delay. This is due to the fact

that DDPG scheme can find the optimal value in the con-

tinuous action and obtain the optimal control policy.

6 Conclusion

In this paper, we study computation offloading in a UAV-

assisted MEC system, where a flying UAV provides

communication and computing services for UEs. We aim

to minimize the sum of the maximum processing delays in

the whole time period by jointly optimizing user schedul-

ing, task offloading ratio, UAV flight angle and flight

speed. In order to solve the nonconvex optimization

problem with discrete variables, we introduce the DDPG

training algorithm to obtain the optimal offloading strategy.

We describe the RL related background knowledge and the

DDPG training process. Then, the state normalization

algorithm is proposed to make the DDPG algorithm easier

to converge. We analyze the parameters of DDPG algo-

rithm through simulation, and compare the impacts of

different parameters, including learning rate, discount

factor and training strategies. The simulation results show

that, as compared with the baseline algorithms, our pro-

posed algorithm can achieve better performance in terms of

processing delay. For future work, we will investigate the

performance of our algorithm with other popular RL

algorithm, e.g., ACER, ACKTR, PRO2 and TRPO

[21, 27].
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