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Abstract
The high data traffic requirements of the new generation 5G networks will be satisfied with effective and efficient mobility

and handover management. However, dense or ultra-dense small cell (eNB) placements in 5G networks may lead to some

problems, such as latency, handover failures, frequent handover, ping-pong effect, etc. In this study, we proposed an

Entropy-based simple additive weighting decision-making method for multi-criteria handover in software-defined net-

working (SDN) based 5G small cells for the solution of the aforementioned problems. This method provides the connection

of the mobile node to the most suitable eNB using bandwidth, user density and SINR parameters. The proposed handover

method is compared with conventional LTE handover and distributed approach in terms of delay, block ratio, handover

failure and throughput according to the varying number of mobile users. The scalability of handovers for both approaches

according to the user number are also analysed. According to the simulation results, the proposed approach achieved 15%,

48% and 22% improvement in handover delay, blocking probability and throughput, respectively, compared to the

conventional LTE handover.
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1 Introduction

Fifth-generation networks (5G) are expected to meet

growing industrial demands both to serve more mobile

nodes (MNs) and to support higher data rates [1, 2]. A large

number of small cells with lower coverage are planned to

meet these expectations. [3]. In this context, the commu-

nication requirements of a large number of MNs will be

met through small cells. Small cells will also increase

capacity, spectrum efficiency, data rate, etc. [4]. Deploy-

ment of small cells is also one of the most important

solutions to increase energy efficiency in mobile commu-

nication networks. However, it also poses some problems

such as interference, delay, and frequent handover.

Therefore, new approaches are required to solve the

problems arising with small cells.

SDN is a new paradigm for changing the way networks

are designed and managed. This paradigm, that is

still being developed, separates the control plane from the

data plane. The control plane unit (controller) decides how

to handle the network managements and the data plane

devices forward traffic according to decisions made by the

control plane. Simple forwarding devices in the data plane

can be programmed via a well-defined Application Pro-

gramming Interface (API) [5–7]. SDN is one of the most

important approaches for the basic problems of small cell

topologies that arise in 5G networks. The control and

management algorithms of a large number of small cells

with low coverage become more complex and an inextri-

cable problem with the distributed network approach.

Therefore, new innovative solutions are required for the 5G

architecture with centralized SDN paradigm. The controller

that has a network operating system performs the control

and management operations of the entire network in the

control plane, transmits the relevant rules to the data-plane

elements (i.e., routers, switches, and other middleboxes)

via API such as OpenFlow protocol. This centralized

approach will provide important benefits for the small cell

topology.

Another problem is handover management among small

cells in 5G networks. The geographical area served by a
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base station (eNB) is called a small cell. eNB could serve a

single small cell or use omnidirectional antennas to serve

multiple small cells. However, there are no crisp bound-

aries for the coverage area, and overlaps occur [8].

Therefore, the MN can potentially communicate with

multiple eNBs. When the MN begins to leave from a small

cell, it can move to an area that overlaps with one or more

small cells. When the signal from the current eNB weak-

ens, the control of the device passes to an eNB that pro-

vides the strongest signal. The process of transferring MN

to the new base station is called handover. The decision-

making process for handover takes place with different

parameters in a distributed way.

The decision-making process in handover management

is a complex problem that could be solved by different

methods. Multi-attribute decision-making (MADM)

approaches are the most widely used algorithms for net-

work selection. Simple Additive Weighting (SAW), Mul-

tiplicative Exponential Weighting (MEW), Grey Relational

Analysis (GRA), Technique for Order Preference by Sim-

ilarity to Ideal Solution (TOPSIS) are some of them [9, 10].

Among these ranking algorithms, SAW [11] is preferred in

this study because it is simple, easy to install and has the

least complexity. The ranking is generally made according

to the preferences of the user in MADM algorithms. The

user is always trying to maximize their benefits. However,

this may lead to an inefficient performance in terms of

network utilization. As a solution to this problem, we used

an entropy weighting approach [12] for handover man-

agement. In the entropy method, the weight is proportional

to the information. If the difference between the attribute

ranges is large, it contains more information and the greater

weight is assigned to this attribute. In this way, attributes

that have been assigned the maximum weight are deter-

mined by an objective approach. In the entropy method, no

user priority is taken into account and the weight depends

on the attribute range.

In this study, a new handover management mechanism

has been developed using the multi-criteria entropy-based

SAW ranking algorithm running on the controller in SDN-

based 5G small cell networks. The main purpose of this

study is to select the most suitable eNB and assign it to

mobile nodes. This handover process is performed by the

controller without the need for packet exchanges between

MNs and eNBs. The main contributions of the paper are as

follows:

• Handover management algorithm proposed for fast and

seamless connections for small cell networks.

• A new centralized, proactive, and multi-metric archi-

tecture based on SDN approach is proposed for

decision-making processes in 5G small cell networks.

• A new handover management module running on the

controller with entropy-based SAW algorithm has been

developed for mobile nodes in the small cell networks.

• We identify several very critical metrics (i.e., band-

width, SINR, and user density) affecting the handover

management at a controller and handover management

consists of the information of these metrics.

• Simulations results show Entropy-based SAW handover

algorithm is superior to the conventional handover

algorithm.

The rest of the paper is organized as follows. The related

works are given in Sect. 2. The proposed multi-criteria

handover management using an Entropy-based SAW in

SDN enabled 5G small cell network is presented in Sect. 3.

The evaluation scenario and the performance results are

given in Sect. 4. Finally, the conclusion is given in Sect. 5.

2 Related works

There are few studies on handover management for SDN-

based 5G small cells in the literature. Machine learning

techniques [13–15], centralized and distributed approaches

[16–19], SDN enabled handover [20, 21] have been pro-

posed for handover management. Therefore, the multi-

criteria entropy-based SAW ranking algorithm running on

the controller is used for handover management in SDN-

based 5G small cell architecture for the first time in the

literature.

In [16], SDN-based mobility and available resource

evaluation methods are proposed to solve the handover

delay problem. The neighbour migration and available

resource probabilities are estimated via Markov chain. As a

result of the delays observed according to the densification

ratio parameter, it is concluded that the proposed handover

strategies are more successful than conventional LTE. The

authors in [22] mentioned a general framework for the

trends in mobility management taking into account some

types of services (eMBB, mMTC, URLLC) emerging with

the 5G. The implementation of the SDN approach is

explained in 5G considering the new architectural changes

implemented by Network Function Virtualization (NFV)

and Multiple Access Edge Computing (MEC).

The authors in [23] emphasized the basic aspects of the

handover process of small cells and identified the main

problems affecting its consistency. A handover decision

algorithm has been proposed for small cells to reduce the

interference in the cellular uplink while extending the

battery life of the user terminal. An SDN based handover

architecture is proposed that has an overview of the net-

work and can perceive its needs from all perspectives,

including the physical layer, user and application level in
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[24]. A context-sensitive multi-criteria handover mecha-

nism has been developed in the SDN controller to provide

differentiated services. A new combination between Soft-

ware Defined Wireless Network (SDWN) and Software-

Defined Transition Decision Engine (SDHDE) is proposed

for optimum handover performance in the Heterogeneous

Cloud Radio Access Network in [25]. In the baseband pool,

a wireless controller is used to retrieve handover infor-

mation from the Southbound API that communicates with

end-users on the Radio Access Network (RAN). This

information is transmitted to SDHDE via the controller

Northbound API, and SDHDE makes the handover deci-

sion for each user in the most appropriate way.

A utility sensitive optimization algorithm is proposed

for network selection in a heterogeneous environment in

[10]. The weight factor has been proposed for the modified

Jaya algorithm, which is calculated by analytical hierar-

chical process, standard deviation and entropy method.

Available bandwidth, packet jitter, packet loss, cost per

byte are considered for different applications such as video,

audio, web browsing and e-mail transfer. The proposed

algorithm is compared with multi-attribute decision-mak-

ing algorithms. The authors in [18] proposed a game-the-

oretic approach to deal with the cell association problem by

allowing the users to sense their surrounding environment

and power control in the uplink of multi-service open

access two-layer femtocell networks. The authors in [26]

proposed an effective solution to the handover problem

occurring in dense 5G networks via topology-aware han-

dover skipping. The algorithm with different skipping

techniques is compared with the conventional best-linked

scheme. In [27], a new handover scheme using a collabo-

rative cell clustering scheme has been developed to solve

the handover problem in small cell users in a heteroge-

neous network environment, to reduce the handover over-

head in the core network and also to reduce the overhead

between small cells.

3 System model

In this section, SDN and 5G integration, mobility and

handover operations with SDN controller, small cell

deployment, and decision support system issues in the

proposed architecture with all modules are explained in

detail.

3.1 SDN enabled 5G small cell network
architecture

It has become common to apply the principles of the SDN

paradigm to communication technologies. The 4G/5G

cellular network infrastructure can be strengthened with

SDN principles. However, the infrastructures of access

networks generally consist of special purpose, closed and

proprietary devices. Converting these company-specific

devices into white box counterparts that can be controlled

by open-source software is one of the most important steps

in terms of solving some basic problems. Cellular networks

have two modules: Evolved NodeB (RAN base station,

eNodeB or eNB) which provides connectivity between

eNB and MNs and Enhanced Packet Core (EPC) which is

responsible for mobility and control operations. These

devices are produced for some special purposes. In addi-

tion, they are very problematic in terms of applying SDN

principles due to their closed and proprietary nature.

However, the network operators are actively following

a software-defined RAN approach, as it also represents an

opportunity for huge gains in the networking world [8].

SDN, which provides the separation of control and data

plane functions, is convenient for handover decisions in

small cells. This approach allows coordination and con-

trol of small cell clusters, radio resources, and service

delivery. In the proposed architecture, control and data

planes are abstracted from each other via the SDN con-

troller. While there is a logically centralized controller in

the control plane, there are small cell base stations and

mobile nodes in the data plane.

The proposed SDN-based approach, given in Fig. 1,

consists of control and data plane. In the proposed archi-

tecture, there is a controller which enables the programing

of the small cell base stations (eNBs) by managing network

resources. The controller, which is a logical central unit

with an overview of the network, takes over the control and

management functions and provides real-time service to

MN and small cell base stations. In this way, all actual data

related to small cells, handover requests of MNs and

mobility management information are collected in the

control plane. There are many modules related to the

control plane in the controller. Our study focused on the

handover management module that the most suitable small

cell selection for MNs transitions between small cells is

performed. Bandwidth, user density and Signal-to-inter-

ference-plus-noise ratio (SINR) parameters must be taken

from both small cells and MNs in order to execute han-

dover operations. The small cell base stations (eNB_ID)

broadcast these parameters at certain times to the controller

and mobile nodes (MN_ID) request handover from the

controller.

Communication between the controller and data plane

devices takes place via a well-defined API (such as

OpenFlow protocol [28]). OpenFlow is the most widely

known protocol and used for southbound API, therefore, it

has been taken as a reference in our study. There are flow

tables in devices on the data plane as well as the rules,
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actions, and statistics fields in the flow table of OpenFlow.

We have reorganized it for adaptive handover management

as shown in Fig. 2. Match fields describe special handling

between the controller and eNBs. The parameters related to

mobile node (MN_ID) and small cell (eNB_ID) have been

added to the match field for the communication from

control plane to data plane. These fields are set by the

controller and the decisions taken regarding the handover

management are transmitted to data plane devices by

updating flow tables. In this way, the MN can reach the

most appropriate small cell data with the help of the con-

troller, which has a general view of the network. In addi-

tion, the devices on the data plane execute their operations

just by looking at the flow tables in case of any action. If

there is no rule in the flow table, the device on the data

plane communicates with the controller and requests a new

flow rule.

3.2 Proposed entropy-based SAW handover
procedure

The flowchart of handover management proposed in the

SDN enabled 5G small cell network is summarized in

Fig. 3. Simple Additive Weighting (SAW) decision sup-

port system, one of the multi-criteria decision-making

methods, based on the entropy weighting approach, has

been used for handover management. First, the Entropy

weighting method is used to calculate criterion weights,

then the SAW method is used for ranking. Each eNB

periodically sends relevant parameters (user density,

bandwidth, SINR) to the controller. By gathering this data,

the controller can access all information about the up-to-

date status of the network. Thus, the controller, which has

convenient information about each eNB, creates the data-

base that will make the most appropriate handover decision

Fig. 1 The proposed network

architecture

Fig. 2 Modified OpenFlow table message format
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for MNs. When the MN requests the most appropriate eNB

data from the controller, then the proposed multi-criteria

decision-making algorithm, we have created for handover

management, is triggered. In light of the data obtained by

the controller monitoring unit, it creates an objective

weighing between the parameters and the Entropy

weighting method. Subsequently, the SAW algorithm ranks

all candidate eNBs. The first two eNBs (main and backup

eNB_ID) with the highest performance are selected and

transmitted to the MN. The result of this process is trans-

ferred to both the MN and related eNB by the controller as

a flow rule in the flow table. All of these procedures are

performed for all eNBs that are in the MN’s trajectory.

If there is any problem with the eNB connection, the

MN examines the flow rules in the flow table. The con-

troller creates a flow rule for a backup eNB each time

because of the Entropy-based SAW algorithm. The MN

transmits the handover request to the next eNB (backup). If

there is a flow rule for this handover request in the flow

table of the new eNB, an acknowledgement (ACK) packet

is forwarded to the MN. ACK indicates that the handover

request has been accepted by the eNB. Thus, in case of a

possible problem, communication is continued over the

backup eNB. If a suitable flow rule cannot be found in the

flow table of MN and eNB, this request is transmitted to the

controller as shown in Fig. 3. The controller repeats the

steps to create new flow rules and update the flow tables of

the relevant nodes (MN or eNB). The Entropy-based SAW

used in the handover management of the controller is

explained in detail in Sects. 3.2.1 and 3.2.2.

3.2.1 Entropy weighting method

One of the most prominent approaches in social science,

engineering, physics, and information theory is Entropy.

The entropy weighting method developed by Shannon is

based on the variation degree of a certain index used in

weight calculation. Here, the low information entropy

provides an increase in the degree of variation, so the larger

Fig. 3 Handover procedure flow diagram
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weight should be assigned to that. The reason for increas-

ing the weighting can be expressed as more information

content. Conversely, when it contains less information, a

large entropy value indicates small variation. Therefore, it

causes smaller weighting. The main issue of the entropy

method is that the information comes from the opposite-

ness between data sets. Objective weights of qualities are

determined as to how separate or differentiated the outputs

of alternatives according to each attribute, i.e. ‘‘the inten-

sity of their opposition’’. This method comprises a few

steps of object gathering, normalization, determination of

weight, and calculation of synthetic index. The steps used

for weight calculation are as follows:

Step 1: Creating the decision matrix: The decision

matrix is created with addressing the network and related

features.

Step 2: Normalization: It is calculated for each param-

eter as given in Eq. 1.

Nac ¼
BacPx
a¼1 Bac

ð1Þ

Step 3: Calculating entropy: First, the entropy coeffi-

cient according to Eq. 2 is found. Here, the entropy coef-

ficient (y) is the logarithmic state of the number of base

stations considered. Subsequently, the entropy value for

each criterion is calculated according to Eq. 3. It is sum-

med by multiplying the normalized values with the loga-

rithmic values of these values. This total is multiplied by

the last ‘y’ entropy coefficient and placed in the related

field.

f ¼ ðlnðyÞ�1Þ ð2Þ

ec ¼ �f
Xy

c¼1
NaclnNac ð3Þ

Step 4: Weighting calculation: The weight value of each

criterion is obtained according to Eq. 4. wc is the degree of

importance of criteria c.

Xx

1

wc ¼ 1 wc ¼
1� ecPx
1ð1� ecÞ

ð4Þ

The symbols used in these equations are; a is alternate, c

is criteria, Nac is normalized values, Bac is benefit values, f

is entropy factor, ec is entropy value, wc is weighted value.

In this study, the entropy-weighting model is used for

finding the appropriate weight for each criterion. The

method is based on objective criteria that will enable the

solution to be searched in the system rather than the user

preference. In this way, errors due to user preferences are

prevented.

3.2.2 Simple additive weighting (SAW) method

Multi-attribute decision-making (MADM) algorithms are

one of the most widely used approaches for network

selection. SAW is an MADM method that is the simplest

and most widely used algorithm. The performance value of

an alternative is calculated as the weighted sum of the

attribute degree. There are two different criteria in SAW

method, namely, benefit and cost. In the SAW method,

when calculating the benefit criterion, the value that each

alternative receives in terms of each criterion is divided by

the maximum value. When calculating the cost criterion,

the minimum value is divided into each value from the

values that each alternative receives in terms of each cri-

terion. Then the obtained results are multiplied by the

criterion weight and the alternative preference value is

calculated. The steps used in the SAW algorithm are:

Step 1 Normalization of decision matrix is calculated

according to Eq. 5. In the first step in SAW method, the

decision matrix consisting of m alternatives and n evalua-

tion criteria is normalized with the help of the following

equation.

rij ¼

xij
maxxij

i ¼ 1; . . .;m; j ¼ 1; . . .; n benefit criteria

minxij
xij

i ¼ 1; . . .;m; j ¼ 1; . . .; n cost criteria

8
><

>:

9
>=

>;

ð5Þ

Step 2 Normally, the criterion weights of the SAW

method are calculated using Eq. 6. However, entropy-

weighting equations are used to obtain more realistic

results in this study.

w ¼ C1

C1þ . . .þ Cn
� 100% ð6Þ

Step 3 The preference values of the alternatives and the

total preference values of each alternative are calculated

with the help of Eq. 7.

Vi ¼
Xn

j¼1

wjriji ¼ 1; . . .;m ð7Þ

3.3 Algorithm complexity

An algorithm is a structure consisting of a finite number of

tasks to solve a specific problem in a given time frame.

Algorithms have some advantages and disadvantages. The

process of examining the behaviour of algorithms before

coding is called complexity analysis [29]. These analyses

are calculated according to the input parameters and iter-

ation numbers in the algorithm. The complexity of a
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system (S) is the number of resources required (used) for a

process P that includes S. The steps used for ranking in

most MADM algorithms are basically similar. Complexity

analyzes of AHP [30], TOPSIS [31], GRA [32] and other

MADM algorithms are calculated according to the number

of mutual comparisons of the alternatives. New alternatives

cause additional calculations as they have to be compared

with existing alternatives and are expected to change the

existing ranking as well. For example, the complexity

analysis for the worst case scenario of TOPSIS has been

determined as O(n2) [33, 34]. When the equations given in

Sect. 3.2.2 are examined, it is seen that the complexity

analysis result is O(n) since the SAW method does not

have an additional cyclic operation for weighting. The

differences other than generalizations made for MADM

algorithms are due to the execution time, which gives the

number of operations that are considered basic, to be

executed, and the input parameters that vary according to

the scenarios used.

In our study, the SAW algorithm is used with entropy

weighting approach and utilized for handover management

in SDN-based 5G small cell networks. The centralization

of the control plane is an important limiting factor for the

computational complexity of handover management.

Therefore, a new efficient handover algorithm has been

proposed, focusing on a simple model that can provide

services for more MNs and small cells. Based on the SDN

approach, this method aims to reduce computational

complexity. This goal is achieved thanks to a centralized

SDN controller that collects data and makes decisions,

rather than distributed handover decision making. Thus, the

computational complexity of the Entropy based SAW

algorithm has been reduced and also the additional memory

resources allocated for storing the data before making a

decision are made flexible. The complexity analysis of the

proposed algorithm is calculated as O (i•s•m) depending

on the number of MNs (m), eNBs (s) and iterations (i).

4 Performance evaluation

The performance analysis of the proposed approach is

carried out in the Riverbed Modeler (OPNET) simulation

software. First, the study results of the Entropy-based SAW

MADM algorithm in a sample network scenario are ana-

lyzed gradually. Then, handover delay, blocking proba-

bility, failure, and throughput results of the conventional

LTE and proposed approach for different numbers of MNs

are examined.

4.1 Entropy-based SAW: a numerical example

In an example network scenario, four different small cell

base stations (eNBs) are taken into consideration and

the entropy method is used in weighting the criteria to be

used for the performance of these base stations. As stated in

the algorithm complexity analysis, the execution time

value of the proposed algorithm is proportional to the eNB,

MN and number of iterations. In this context, as the

number of devices in the environment increases, the exe-

cution time value is expected to increase. First, the values

taken from the base stations for the formation of the

decision matrix are given in Table 1. The normalized

standard decision matrix with the help of Eq. 1 is created

as given in Table 2.

Entropy value for each criteria is calculated as given in

Table 3 with the help of Eqs. 2 and 3. It is summed by

multiplying the normalized values with the logarithmic

values of these values. The total is multiplied by the

entropy coefficient. The entropy coefficient is the loga-

rithmic state of the number of base stations.

The weight value of each criterion is calculated with the

help of Eq. 4. Each of the entropy values is subtracted from

1 to calculate the weight values. The entropy value of the

desired criterion is subtracted from 1, and the weight value

is found by dividing the first calculated sum. These values

are given in Table 4. The weights obtained from the

entropy method should be between zero and one, and the

sum of the obtained weights should give a value of one.

Table 1 Decision matrix

Alternate Criteria

Bandwidth (MHz) SINR (dBm) User density (%)

eNB1 600 20 20

eNB2 800 3 50

eNB3 500 15 30

eNB4 1500 10 10

Table 2 Normalized decision matrix

Alternate Criteria

Bandwidth SINR User density

eNB1 0.176470588 0.416666667 0.181818181

eNB2 0.235294117 0.0625 0.454545454

eNB3 0.147058824 0.3125 0.272727272

eNB4 0.441176471 0.208333333 0.090909090
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According to the entropy results, it is seen that the most

important criterion is the SINR, the least important is the

Bandwidth. These weights will be used in the SAW

method.

The entropy weighting method calculates the weighting

of each attribute of small cell base stations. The calculation

is performed with objective criteria and will be used to

evaluate the performance of base stations. The second stage

is the application of the SAW method. In the SAW method,

the decision matrix is formed as in Table 5. As shown in

Eq. 5, each value must be divided by the maximum or

minimum value in its row in order to normalize the deci-

sion matrix. The values obtained from the result are given

in Table 6.

The normalized values are multiplied by the weight

values calculated according to the Entropy weighting

method and the utility matrix of the SAW method will be

formed. Table 7 shows the utility matrix calculated by

SAW method.

As a result, all the values are summed up in columns and

the highest value gives the best result. The ranking

resulting from this calculation is given in Table 8. As can

be seen, eNB4 small cell base station has the highest result

compared to other base stations. eNB1, eNB3 and eNB2

base stations, respectively, have the values of 0.673069458,

0.497709148, and 0.260879967.

4.2 Simulation results

The simulation results obtained from the Riverbed Modeler

are given in this section. An example simulation scenario is

given in Fig. 4. In our simulations, handover delay is first

considered and compared to conventional handover

scheme (LTE) with respect to different number of MNs. In

addition, handover blocking probability, failure ratio and

throughput results are also examined according to different

numbers of MNs. In our study, IEEE 802.11 (CSMA/CA)

medium access control protocol has been used between

MN, controller and eNBs. In this protocol, all nodes sense

the communication medium, if it is idle, they send their

packets to the destination. If not, it waits for a random

period (bakoff time). Another important detail in our study

is defining a special priority for control packets which are

used between controller and data plane nodes. The purpose

of this priority is to minimize the delay of control packets

that may occur due to the SDN approach. This priority was

achieved by configuring the number of contention windows

(CW). The parameters used in the simulation are given in

Table 9.

Riverbed Modeler [35] is a powerful network simulator.

Performance, availability and optimization cost are among

the most important goals to using it. Riverbed Modeler

offers various tools for designing, simulating the model,

data mining and various analyses by considering different

alternatives. In this simulation software, a wide variety of

interconnected networks can be simulated. The models

have a hierarchical structure. The behaviour of a protocol is

programmed in a state diagram with the Proto-C pro-

gramming language. In the middle tier, various functions

Table 3 Calculated entropy values

Bandwidth SINR User density

0.930161209 0.886063654 0.894964536

Table 4 Calculation of weight values

Bandwidth SINR User density Sum

0.241815194 0.394501955 0.363682851 1

Table 5 Decision matrix for

SAW method
Criteria Alternate

Types of criteria eNB1 eNB2 eNB3 eNB4 MAX-MIN

Bandwidth Max 600 800 500 1500 1500

SINR Max 20 3 15 10 20

User Density Min 20 50 30 10 10

Table 6 Decision matrix normalized to SAW method

Criteria Alternate

eNB1 eNB2 eNB3 eNB4

Bandwidth 0.4 0.533 0.333 1

SINR 1 0.15 0.75 0.5

User density 0.5 0.2 0.333 1
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such as transmitting and receiving packets, buffering and

forwarding are performed by each of the separate objects.

Handover delays of proposed and conventional han-

dover approaches according to different number of MNs

are evaluated in order to show the effects of MN number on

handover delay. MN and small cell numbers are two factors

that affect the density of the environment. While increasing

the number of MNs in our simulation, we evaluate the

Table 7 Utility matrix
Criteria Alternate

eNB1 eNB2 eNB3 eNB4

Bandwidth 0.096726078 0.128968104 0.080605065 0.241815194

SINR 0.394501955 0.059175293 0.295876466 0.197250978

User density 0.181841425 0.072736570 0.121227617 0.363682851

Sum 0.673069458 0.260879967 0.497709148 0.802749022

Table 8 Entropy-based SAW ranking results

Base stations Results Ranking

eNB4 0.802749022 1

eNB 1 0.673069458 2

eNB 3 0.497709148 3

eNB 2 0.260879967 4

Fig. 4 An example simulation scenario in the Riverbed Modeler
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success of the proposed algorithm by keeping the small cell

number constant. Considering the conventional handover

mechanism in the same scenario, as the number of mobile

nodes increases, the queue and handover delay increase. In

the proposed approach, while the flow rule increases, the

number of handovers increases. However, the handover

delay is less than the conventional handover mechanism as

can be seen in Fig. 5. The handover delay of the proposed

approach is approximately 15% lower than the conven-

tional handover mechanism. The main reason for this result

is that the most accurate eNB decision is made thanks to

the MADM algorithm running on the controller.

In order to show the effects of MN number on handover

blocking probability, the blocking probability of the

proposed and conventional handover approaches are eval-

uated according to different MN number. Blocking prob-

ability, one of the main quality of service (QoS)

parameters, refers to the possibility of rejecting a new

handover request due to lack of resources. Blocking

probability is directly related to density in neighbouring

small cells and mobility of MNs. In this context, both the

increase in the number of MNs and mobility in the envi-

ronment are some of the crucial problems that increase the

blocking probability in the handover process. As a solution

to this problem, it is seen that a controller has a general

view of the network, and an intelligent algorithm working

on this unit is needed. Due to this need, a new handover

management algorithm working on the controller has been

developed. This algorithm performs a ranking by taking

real-time status information of eNBs and makes the most

appropriate handover decisions. These decisions are

transmitted to the relevant MN and eNBs as a flow rule.

Thus, as seen in Fig. 6, it has been observed that there is a

decrease in blocking probability values compared to the

conventional approach. It is seen that the proposed

approach is approximately 48% lower than the conven-

tional handover mechanism in terms of handover blocking

probability.

The throughput of proposed and conventional handover

approaches according to different number of MNs are

examined in order to show the effects of MN number on

throughput. As seen in Fig. 7, the throughput of the pro-

posed handover algorithm is higher than the conventional

approach. The main reason for this result, a centralized

SDN controller performs the coordination task among

small cells quickly and efficiently. In the conventional

approach, the increasing number of MNs causes more

Table 9 Simulation parameters

Parameter Value

Simulation time 3600 s

Number of small cells 5–10

Radius of small cells 200 m

Number of mobile nodes 10–80

Mobile nodes distribution Randomly

Small cell communication protocol IEEE 802.11

(CSMA-CA)

Priorities Control packets CW = 32

Normal packets CW = 16

Bandwidth 10 MHz

BS status transmission period 100ms

Tx power for small cells 30 dBm

Antenna height for small cell 10 m

Carrier frequency for small cell 3.5 GHz

Mobil node speed 5–15 km/h

Fig. 5 Delay analysis according to mobile nodes Fig. 6 Blocking probability according to mobile nodes
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handover among small cells. The lack of a centralized SDN

controller causes wrong decisions or frequent handover

(causes the ping-pong effect), so throughput decreases. As

a result, transferring handover decision functions from the

data plane to the control plane enables the solution of the

above-mentioned problems and increases the performance

of the network.

When the number of MN in the topology increases, the

variation of handover failure ratio according to both dis-

tributed and centralized approach is given in Fig. 8.

According to the obtained results, it is seen that the cen-

tralized approach significantly reduces the handover failure

ratio. The conventional handover mechanism is maintained

with a distributed approach. However, SDN is a centralized

approach that allows 5G small cell base stations and MNs

to be managed via a control software (running on the

controller). This approach, which enables the abstraction of

the control and data planes, is to centrally collect the

handover parameters (bandwidth, SINR, and user density),

make an optimal decision (with Entropy-based SAW

algorithm), and send them to the nodes (eNBs and MNs) to

execute the relevant control parameters (flow rules). In this

way, the handover failure ratio is reduced by optimal

decisions.

In addition, the delay results of scenarios with different

user densities have been compared according to conven-

tional and proposed architecture and discussed in terms of

scalability. As seen in Fig. 9, delay increases as the number

of MN in the environment increases in both approaches.

However, this increase is a lower level in the proposed

approach. There is still no common standard developed for

dynamic network management in conventional network

infrastructures. Therefore, as the network traffic or the

number of flows in the network increases, there is no

mechanism with a general view that can keep the QoS

requirements at an acceptable level. These conditions cause

a rapid decrease in performance after a certain scalability

level. The separation of data planes with the centralized

SDN controller and the controller’s ability to manage all

nodes is an effective solution to the scalability problem. It

is very important for the controller to have the general view

of the network, to detect the flow load of small cells and to

manage handover requests of MNs in dynamic network

conditions more fairly in terms of increasing scalability

performance. In addition, increasing scalability in this

architecture is proportional to the capacity of a controller

that can manage more flows.

Fig. 7 Total throughput according to mobile nodes

Fig. 8 Handover failure ratio according to number of mobile nodes Fig. 9 Average delay analysis according to mobile nodes
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In the proposed architecture, the controller performs the

handover process by getting each flow from mobile nodes

periodically according to the flow load of the eNBs that

receive information. For this reason, as shown in Fig. 9, the

controller increases the scalability of the system with

dynamic flow management by keeping each flow at a

certain level. However, in the conventional approach, this

process is performed statically, without considering the

workloads of eNBs. Although the proposed architecture

seems to perform better, it also has some disadvantages.

The major disadvantage of the SDN approach is that the

centralized controller means a single point of failure.

Although this is not the subject of our study, it is still

among the problems seeking solutions.

5 Conclusions

One of the main issues for wireless 5G networks is how to

optimally meet the QoS requirements of mobile nodes with

an increasing number of small cells. In this study, a han-

dover management strategy with multi-criteria entropy-

based SAW decision-making method is proposed for SDN

based 5G small cell networks. The proposed algorithm

selects the most suitable small cell according to bandwidth,

SINR, and user density parameters and assigns them to the

relevant mobile nodes and small cell via flow rules. The

centralized SDN controller carries out all decisions with

ensuring the abstraction of control and data planes from

each other. The nodes (mobile nodes and eNBs) in the data

plane have been transformed into simple forwarding

devices and only process the flow rules in the flow tables.

According to the simulation results, it has been observed

that the proposed approach achieved 15%, 48 and 22%

improvement in handover delay, blocking probability and

throughput, respectively, when the number of mobile nodes

increased compared to the conventional LTE handover

mechanism. In future studies, artificial intelligence,

machine learning techniques are planned to select the most

suitable small cell for ultra-dense and heterogeneous

networks.
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