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Abstract
The present technology, based on laser and visual SLAM navigation and positioning, does not apply to the event of a fire in

a room where there is a large amount of smoke, for its increasingly obvious defects. In addition, traditional track deduction

technology based on photoelectric encoder has accumulated error, and noise disturbance exists in the INS inertial navi-

gation measurement technology, and the UWB positioning technology is vulnerable to NLOS disturbance caused by site

occlusion. To solve the problem of accurate positioning of Autonomous Mobile fire-fighting robot in smoke scenes, the

system design is optimized by adopting the following methods: using IMU-assisted residual chi-square criterion to detect

whether there is NLOS in UWB, introducing IMU instantaneous compensation positioning data and adopting Chan

algorithm fitting of the second multiplication to ensure the stability and accuracy of UWB data; meanwhile, a tight

combination model of navigation and positioning is designed: via the improved Kalman filter algorithm, fused with the

magnetic encoder track estimation pose, UWB absolute and IMU heading angle pose to realize the accurate positioning of

the fire robot in the smoke scene. Finally, the fusion simulation model and algorithm are verified by MATLAB, as it shows,

the method has an average positioning accuracy of 98.63% in the X-axis direction, 99.52% in the Y-axis direction, and

97.24% in the heading angle, which solves the inherent physical defects of a single positioning sensor and serves as a

reliable and accurate solution for indoor robot positioning.

Keywords Robot � Indoor positioning � Multi-source fusion � Residual chi-square decision � Improved kalman algorithm �
Compact combination model

With the development of robotics technology, the demand

for special robots such as indoor welcoming robots, fire

rescue robots [1–3], nursing robots [4], and sweeping

robots is increasing rapidly.

The autonomous movement of indoor robots rely on

precise positioning and navigation technology. The

positioning process is to determine the position of the robot

in its working environment. At present, the indoor robot

positioning technology is basically mature. The main

applications are positioning system based on Bluetooth [5],

WIFI [6], Radio frequency identification [7], Ultra wide

band [8], near field communication [9], ZigBee [10],

indoor positioning system based on inertial navigation dead

reckoning [11], and positioning system based on vision

[12] At present, the research of multi-sensor fusion
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positioning is mainly based on the fusion mode dominated

by vision and lidar [13–16].

Robot positioning technology falls into two categories:

absolute positioning and relative positioning technology.

Navigation beacon, active or passive identification, map

matching or satellite navigation technology are mainly

adopted in absolute positioning. However, for the com-

paratively high cost of constructing and maintaining bea-

cons or signs, the slow processing speed of map matching

technology, and the reason that the satellite positioning can

only be used outdoors, three-view-angle method, three-

line-of-sight method and model matching algorithm are

applied in calculating the absolute position. Relative

positioning is to determine the current position of the robot

by measuring its initial distance and direction relatively,

which is usually called the track estimation algorithm.

Frequently used sensors include odometer and inertial

navigation system (speed gyroscope, accelerometer, etc.).

The advantage of the track estimation algorithm is that the

pose of the robot is self-calculated and does not require the

perception of the external environment. The disadvantage

is that the drift error will accumulate over time and is not

suitable for precise positioning [17]. From above men-

tioned, absolute positioning and relative positioning have

their own advantages and disadvantages.

Although some scientific research achievements have

been made in the exploration and research of single- sen-

sor-adopted indoor positioning technology, many short-

comings have also been detected. Among them, how to

solve the inherent cumulative error caused by the inertial

sensor, which results in low positioning accuracy and

reliability is a key research problem. Since the PDR posi-

tioning system [18] can only provide relative position

information, the error will accumulate over time, thus

absolute position information is required to correct it

[19, 20].

The literature [21] focuses on the study of Kinect vision

sensor-based SLAM, which constructs rich two-dimen-

sional maps. However, due to the low measurement accu-

racy of Kinect, the maps are inaccurate. Literature [22]

does research on laser-sensor-based SLAM, which can

construct accurate two-dimensional maps. However, the

laser sensor can only detect obstacle information on a

specific plane, so maps cannot provide complete informa-

tion. In addition, when there is a large amount of smoke in

an indoor fire, the SLAM technology is prone to large

errors or failures, as a result, this technology is invalid

when an active fire-fighting robot is applied.

In recent years, research on indoor positioning mainly

focuses on wireless-sensor-networks-based and inertial-

sensors-based ones. RSSI (signal strength measurement),

TDOA (Time Difference of Arrival), TOA (Time of arri-

val), AOA (Arrival of angle) and other algorithms to obtain

absolute position information [23] are used in the WIFI-

network-based indoor positioning; [24] A feasible method

is proposed for the determination of wireless signal

strength switching. However, relying only on wireless

positioning technology will cause wireless signal multipath

effects, scattering, diffraction and other phenomena due to

occlusion and metal interference, and there will be a certain

instantaneous measurement error. Therefore, some studies

have integrated inertial navigation technology. Literature

[25] points out using extended Kalman to integrate UWB

and IMU, and designing fault detection, improving iden-

tification and isolation functions in extended Kalman help

to reduce the interference of obstacles, multipath and other

factors to wireless ranging. However, due to the large

amount of noise interference in the inertial navigation

technology, measurement jitter errors often occur.

Recently, there are trajectory prediction and fusion meth-

ods based on tensor and data analysis [26], the real effect

needs to be verified.

In view of the above-mentioned problems of indoor

robot positioning technology in the smoke state, this paper

introduces a positioning method based on multi-source

information technology fusion, which effectively over-

comes the disadvantages of using single sensor technology

for indoor positioning and realizes the complementary

advantages of different positioning methods, improves the

accuracy of positioning and makes it more feasible to adopt

robots to actively fight fire in special scenes of heavy

smoke.

When both relative and absolute positioning methods

are combined, the simplest method is to perform a

weighted average of different sensor data, but this method

has low reliability and severe limitation. Therefore, some

researchers have proposed statistics-based Kalman filter-

ing, Markov method, and Monte Carlo method, etc., all of

which have got certain effect, but not an ideal one in the

smoke scene. Therefore, by considering the elements

regarding the robot, its features and different scenes, this

paper brings forward a new approach to make residual chi-

square judgement and improve Chan algorithm to com-

pensate and correct the UWB positioning data, and then

fuse the gyroscope and encoder navigation data via

improved Kalman filter algorithm Methods.

1 Robot control structure

The relative positioning method can iteratively recursive

the robot pose at each moment according to the kinematics

model of the mobile robot and achieve better short-term

accuracy without depending on the external environment

information.
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The mobile chassis of the fire-fighting robot adopts two-

wheel differential drive with the support of front and rear

universal wheels. By changing the rotation speed of the two

driving wheels, the car body can be controlled to move in a

straight line and make turns. In the track calculation

algorithm, the relationship between the speed of the two

wheels, the linear velocity and angular velocity needs to be

clarified to make an analysis of mobile chassis kinematic.

The motion model of the robot is shown in Fig. 1, where

point O stands for the instantaneous center of velocity of

the mobile chassis in the current state of motion, and it is

assumed that the chassis is traveling in an ideal state

without considering factors such as slippage. According to

the kinematics analysis, the speed at point C of the chassis

can be calculated as:

Vc ¼
V1 þ V2

2
ð1Þ

The angular velocity of the chassis is h, the moving

chassis moves clockwise in Fig. 1(b), we get:

v1 ¼ _h Rþ B

2

� �

v2 ¼ _h R� B

2

� �
8>><
>>:

ð2Þ

Then the angular velocity of the mobile chassis can be

figured out:

_h ¼ V1 � V2

B
ð3Þ

To estimate the pose of the mobile chassis at a certain

moment, it is necessary to set up a model which shows the

movement of the mobile chassis. The position and posture

change of the robot is assumed to accord with the Markov

process, that is to say, the current posture of the robot xk
only depends on the posture xk-1 and the control uk at the

previous moment, which as nothing to do with the posture

in the past moment.

Therefore, the mobile chassis motion model can be

calculated as:

xk = f xk�1,ukð Þ ð4Þ

In the formula, f(xk-1,uk) represents the nonlinear state

transition equation. As is shown in Fig. 1(b), it is the model

for calculating the track of the moving chassis. From time

k-1 to time k, the mobile chassis moves from position M to

position N, and the mobile chassis state is xk(X
0, Y0, h0). In

the figure, Lk, Rk are the trajectories of the left and right

driving wheels of the moving chassis from time k to time k-

1, so uk can be expressed as (Lk, Rk, Dh). Due to the small

time interval, the distance from M to N can be approxi-

mated as (Lk ? Rk)/2. Mobile chassis motion models are

depicted as follows:

xk ¼
X

0

Y
0

h
0

0
@

1
A

¼
Xb

Yb

hb

0
@

1
A

þ
Lk þ Rkð Þ=2� cos hþ Rk � Lkð Þ=2Bð Þ
Lk þ Rkð Þ=2� sin hþ Rk � Lkð Þ=2Bð Þ

Rk � Lkð Þ=B

0
@

1
A ð5Þ

2 Track deduction positioning method

The odometer information is measured according to the

encoder fixed at the end of the motor shaft, and the angle

that the motor has rotated during the sampling time is

calculated by analyzing the motion model of the two-wheel

differential mobile chassis, so that the current position and

azimuth angle of the mobile chassis are calculated. Since

the encoder code disc selected is an incremental code one,

the resolution of the odometer is defined here as:

d ¼ 2pR
gP

ð6Þ

In the formula, R is the radius of the driving wheel of the

mobile chassis, P is the number of pulses per revolution of

the encoder (number of encoder lines 9 number of pha-

ses), and g is the reduction ratio of the harmonic gear

reducer. The sampling period of the code disc is Dt. During
this period, the pulse numbers of the left and right drive

wheel encoders collected by the lower computer are NL and

NR respectively, then the displacements of the two wheels

are:

DdL ¼ d� NL

DdR ¼ d� NR

�
ð7Þ

The driving wheelbase of the mobile chassis is W, the

arc length of its displacement within Dt is DLt, and the

azimuth angle change is Dht, then the position change of

the mobile chassis from t-1 to t is:

Fig. 1 Robot chassis model
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DLt ¼ DdL þ DdRð Þ=2
Dht ¼ DdR � DdLð Þ=W

�
ð8Þ

If the cumulative error and drift caused by the sliding of

the mobile chassis wheel are not considered, the odometer

model can be expressed as:

lðtÞ ¼ ðDLt;DhtÞT ð9Þ

The random error model of odometer includes transla-

tion model and rotation model. The translation model

assumes that the mobile chassis only completes transla-

tional motion in a small amount of time, and the rotation

includes both position and posture changes, which is con-

sistent with the actual situation. For the mobile chassis in

this paper, by calculating the above-mentioned odometer

and track deduction model, it is possible to obtain the

accumulation of the position and attitude changes from the

origin of the motion to the end of the motion during the

motion time, and the final position and posture can be

derived. But if it only relies on the code wheel, the slip of

the wheel and the change of circumference will cause the

drift of the odometer model and the accumulation of errors.

It can be seen from Fig. 1 that in translational motion, the

measurement error in the direction perpendicular to the

direction of motion increases faster, while the increase in

measurement error of rotary motion is not perpendicular to

the direction of motion.

In order to overcome the influence of odometer mod-

eling error and random wheel sliding, some researches

have proposed various positioning methods based on

probability and statistics for various uncertainties in the

process of system modeling and sensor measurement.

One is the positioning method based on filtering esti-

mation. By linearizing the system equations, Kalman fil-

tering and its variants are used to filter and estimate the

position of the robot, such as: Extended Kalman Filter

(EKF), Kalman Filter (KF), Unscented Kalman Filter

(UKF) positioning method [27–29].

The other is the positioning method based on Bayesian

inference, which adopts grids and particles to describe the

robot position space, and recursively calculates the prob-

ability distribution in the state space, such as Markov

Localization (MKV), Monte Carlo Localization (MCL)

positioning methods.

Although various optimization algorithms have played a

certain effect, all the trajectory deduction models are

designed under the ideal state of dual differential wheels,

and when one or more universal wheel supports are added,

the navigation model errors will turn to be relatively large.

In particular, there is a certain relationship between the

steering angle and the initial orientation of the universal

wheel during track deduction, which determines the error

scale of the deduced heading angle, and the error is highly

random. Therefore, it is difficult to fundamentally solve the

system errors caused by physical reasons such as robot

wheel slip, double-wheel diameter deviation, and encoder

accuracy from the perspective of algorithm optimization

alone.

This paper designs a robot track deduction model, ver-

ifies the effect of robot encoder track deduction through

experiments, and collects and analyzes the deduction data.

As is shown in Table 2 in the track deduction pose 1, this

data is used for later algorithm fusion comparison

verification.

3 Inertial navigation system (INS)

INS integrates the angular velocity and acceleration output

by the gyroscope and accelerometer, and can output navi-

gation information such as the position, velocity, and atti-

tude of the carrier, and does not require any information

exchange with the outside world. It is completely autono-

mous and shows good dynamic performance. The

MPU6050 six-axis gyroscope (IMU) is selected in the

design, and its heading angle is served as the observation

quantity, and the heading angle derived from the encoder

track is used as the control quantity. Using an improved

Kalman filter for fusion can output a more stable and

accurate heading angle. The system angle fusion uses the

linear system state equation, through the input and output

observation data, to estimate the optimal algorithm of the

system state. Since the observation data involves the

influence of noise and interference, the optimal estimation

can also be regarded as a filtering process.

3.1 Course angle model design

Angle is the final filtered heading angle put out by the

gyroscope. However, this angle is the same as the angle

without filtering, and has no specific heading angle nature,

that is, this is just a data, from 0 to positive infinity or

negative infinity, and will not reset to zero when rotated

360�, thus, it needs to be dealt with a mathematical model

Performing processing to make it have angle nature in

order to be used in the plane coordinate system.

According to the attitude conversion principle of

quaternion space rotation, the quaternion attitude matrix

equation of the gyroscope is presented as follows:

CR
b ¼

q20 þ q21 � q22 � q23 2 q1q2 � q0q3ð Þ 2 q1q3 þ q0q2ð Þ
2 q1q2 þ q0q3ð Þ q20 � q21 þ q22 � q23 2 q2q3 � q0q1ð Þ
2 q1q3 � q0q2ð Þ 2 q2q3 þ q0q1ð Þ q20 � q21 � q22 þ q23

2
4

3
5

ð10Þ
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In the process of coordinate system conversion, gyro-

scope rotates to the final posture in the order of z-y-x, and

the rotation is shown in Eq. (11).

M b; a; cð Þ ¼ Rz bð ÞRy að ÞRx cð Þ ð11Þ

The Euler angle is calculated by the rotation matrix

M b; a; cð Þ = CR
b :

a ¼ arsin 2 q1q3�q0q2ð Þ½ �

b ¼ �arctan
2 q1q2 þ q0q3ð Þ

q20 þ q21 � q22 � q23

� �

c ¼ �arctan
2 q2q3 þ q0q1ð Þ

q20 � q21 � q22 þ q23

� � ð12Þ

Via this method, the heading angle information of the

IMU can be calculated. The experiment is carried out in-

situ rotation test in the two-dimensional space of the robot.

The results of multiple tests are shown in Table 1.

It can be seen from Table 1 that it is quite accurate to get

the heading angle information by the mobile robot in the

two-dimensional plane space through the IMU. In Fig. 2, Z

represents the offset angle of the heading angle. When the

robot only rotates 360� leftwards and rightwards on the

two-dimensional plane, the heading angle does not drift

and can accurately return to 0�, as is shown in position 1 in

Fig. 2. However, when the robot walks, the heading angle

will shift when the pitch angle and roll angle are jittered, as

is shown in position 2 in Fig. 2. After testing, the offset

angle reaches 5.63�, which cannot be reset to zero, causing

subsequent random error.

3.2 Attitude position model

According to the acceleration of the IMU, the position

coordinate information of the robot can be obtained by

double integration. Supposing the IMU carrier robot

coordinate system is the positioning coordinate system, and

the instantaneous position of the robot is represented by x,

y, and z. Using IMU’s three-axis acceleration fx, fy, fz, the

robot’s three-axis speed is vx, vy, vz, and the robot’s three-

axis instantaneous position is x, y, z, and the instantaneous

position formula is shown in (13). However, the position

coordinates obtained by this method have large errors, and

the accumulated errors increase over time.

x ¼ x0 þ
R t

0
ðvx0 þ

R t

0
f xdtÞdt

y ¼ y0 þ
R t

0
ðvy0 þ

R t

0
f ydtÞdt

z ¼ z0 þ
R t

0
ðvz0 þ

R t

0
f zdtÞdt

8><
>: ð13Þ

By the analysis, it is found that the error is mainly

caused by two points:

a. The influence of gravity cannot be removed for the

improper pose, making the error keeping accumulated;

b. The drift of the device itself cannot be removed. For

example, if acc goes from static to motional state then

to static, the speed obtained by acc integration should

be 0, but the actual speed is not 0; the influence of

gravity, for the acc ? gyr method, the acc can only get

the attitude at rest It cannot be in motion, so the

attitude is inaccurate in the case of motion, and the

influence of gravity cannot be removed; for acc ?

gyr ? mag, you can use mag to obtain the attitude to

improve the accuracy of the attitude. When there is

magnetic interference, this method also causes prob-

lems: the drift problem itself. The general resolution is

to use high-pass filtering to remove, but after high-pass

filtering, only the relative motion relationship is

obtained, and accurate position cannot be obtained.

The main advantage of the inertial sensor-based posi-

tioning method is that it can realize the positioning of the

mobile robot without relying on external conditions, and

the short-term accuracy is better. The disadvantage is that it

will drift with time, and the relatively small constant error

will become infinitely larger after being integrated. It can

Table 1 IMU heading angle test

Number Actual space coordinate angle Gyro test heading angle

1 0� 0�
2 90� 89.04�
3 180� 179.06�
4 - 90� - 90.85�
5 0� - 0.03�
6 90� 89.55�
7 180� 179.58�
8 - 90� - 90.50�

Fig. 2 IMU dynamic angle test chart
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be seen that the track estimation method based solely on

inertial sensors cannot meet the precise positioning

requirements of mobile robots traveling long distances.

The effect and test data of the robot based on INS

navigation are shown in hu of UWB ? gyro pose 2 in

Table 2. This data is used for later algorithm fusion com-

parison verification. The posture position model is used to

compensate and fit when the robot is positioned based on

UWB when NLOS occurs in the data.

4 UWB positioning method

UWB positioning is similar to GPS positioning to a large

extent. The base station is like a GPS positioning satellite.

The position of each base station is set in advance.

Therefore, the constantly moving tags can be located via

radio signals. Through radio transmission, the linear

distance from each base station to the tag can be measured

at any time. The position of the tag in the base station

coordinate system can be calculated through geometric

knowledge, and the relative base station positioning

information can be obtained. In the laboratory scenario, the

UWB positioning system adopts the structure of 1 tag ? 4

base stations, and the layout is shown in Fig. 3.

Carrying 4 Anchors (base stations) indoors, the unit of

coordinate axis is m, Anchor is abbreviated by A, set the

coordinates Tag: (x, y, z), A0: (x0, y0, z0), A1: (x1, y1, z1),

A2: (x2, y2, z2), A3: (x3, y3, z3), the distances of base

stations A0, A1, A2, and A3 are calculated as dis0, dis1,

dis2, and dis3 respectively. Then you can list the spherical

equations to each base station, the joint equation.

According to the system model, the positioning equa-

tions can be obtained, as is shown in formula (14).

Table 2 Pose fusion test data

Serial number Track deduction position and

attitude 1

UWB ? gyroscope pose 2 True posture This algorithm fuses pose

xe ye he xu yu hu xr yr hr xk yk hk

1 2.930 9.698 90.000 2.855 9.687 89.730 2.930 9.698 90.000 2.8550 9.6870 89.7300

2 3.037 9.780 43.900 3.091 9.760 45.250 3.030 9.799 45.000 3.0905 9.7600 45.2182

3 3.127 9.888 44.400 3.100 9.835 44.880 3.130 9.898 45.000 3.1306 9.8515 45.3033

4 3.195 9.958 45.000 3.137 10.036 45.010 3.230 9.998 45.000 3.1643 9.9600 45.6075

5 3.270 10.038 44.900 3.322 10.097 44.810 3.300 10.098 45.000 3.2843 10.0546 45.3340

6 3.342 10.109 45.700 3.561 10.170 44.830 3.430 10.198 45.000 3.4671 10.1348 45.8742

7 3.427 10.209 46.200 3.451 10.303 44.930 3.530 10.298 45.000 3.4975 10.2468 46.1343

8 3.497 10.291 46.400 3.716 10.452 44.820 3.630 10.398 45.000 3.6478 10.3478 46.1186

9 3.567 10.369 46.600 3.836 10.480 44.980 3.730 10.498 45.000 3.7816 10.4333 46.1517

10 3.647 10.456 46.500 3.783 10.621 46.540 3.830 10.598 45.000 3.8190 10.5330 46.1058

11 3.728 10.540 46.600 3.965 10.632 46.920 3.930 10.698 45.000 3.9353 10.6188 46.2771

12 3.804 10.623 46.700 3.984 10.891 47.090 4.030 10.798 45.000 3.9962 10.7226 46.4418

13 3.887 10.715 46.600 4.244 10.921 47.300 4.130 10.898 45.000 4.1684 10.8257 46.4215

14 3.975 10.805 46.900 4.309 11.122 46.890 4.230 10.998 45.000 4.2848 10.9363 46.7345

15 4.035 10.881 46.600 4.492 11.299 47.010 4.330 11.098 45.000 4.4246 11.0397 46.4755

16 4.130 10.970 46.700 4.588 11.245 46.780 4.430 11.198 45.000 4.5565 11.1395 46.5891

17 4.201 11.050 46.800 4.568 11.430 46.820 4.530 11.298 45.000 4.5954 11.2385 46.6973

18 4.270 11.128 46.800 4.696 11.610 46.860 4.630 11.398 45.000 4.6814 11.3424 46.7069

19 4.357 11.217 46.600 4.833 11.508 46.820 4.730 11.498 45.000 4.8032 11.4380 46.5242

20 4.422 11.277 46.700 4.726 12.089 46.790 4.830 11.598 45.000 4.7914 11.5481 46.6329

21 4.514 11.380 46.600 4.793 11.732 47.020 4.930 11.698 45.000 4.8347 11.6578 46.5573

22 4.591 11.458 46.600 5.155 11.872 47.110 5.030 11.798 45.000 5.0431 11.7471 46.5836

23 4.675 11.543 46.800 5.007 12.134 47.400 5.130 11.898 45.000 5.0620 11.8567 46.8116

24 4.747 11.636 46.700 4.983 12.235 47.040 5.230 11.998 45.000 5.0525 11.9728 46.7258

25 4.856 11.726 46.900 5.177 12.043 47.310 5.330 12.098 45.000 5.1698 12.0614 46.9418

Accuracy mean value 94.70% 98.34% 97.00% 97.70% 99.18% 97.08% 98.63% 99.52% 97.24%
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x� x0ð Þ2 þ y� y0ð Þ2 ¼ d20
x� x1ð Þ2 þ y� y1ð Þ2 ¼ d21
x� x2ð Þ2 þ y� y2ð Þ2 ¼ d22
x� x3ð Þ2 þ y� y3ð Þ2 ¼ d23

8>>><
>>>:

ð14Þ

In the formula, by subtracting any equation from the last

equation and expressing it in matrix form, Eq. 15 can be

obtained.

AX ¼ B ð15Þ

A ¼
2 x0 � x3ð Þ2 y0 � y3ð Þ
2 x1 � x3ð Þ2 y1 � y3ð Þ
2 x2 � x3ð Þ2 y2 � y3ð Þ

2
4

3
5 ð16Þ

B ¼
x20 � x23 þ y20 � y23 þ d

2

3 � d20
x21 � x23 þ y21 � y23 þ d

2

3 � d21
x22 � x23 þ y22 � y23 þ d

2

3 � d22

2
64

3
75 ð17Þ

X ¼ xu
yu

� �
ð18Þ

Solving the equation can get:

bX ¼ ATA
� ��1

ATB ð19Þ

By solving the equation, the two-dimensional coordi-

nates (xu,yu) of the real-time absolute position of the label

can be obtained. The actual layout of the base station and

tags is shown in Fig. 4.

The robot walking space is transformed into a two-di-

mensional map as is shown in Fig. 5. The black area rep-

resents obstacles on the table, which is the area where the

robot cannot walk. The white part represents the road

surface, which is the area where the robot can travel. The

blue triangle indicates the location of the UWB base

station. The yellow track is the driving track of the UWB

positioning robot.

In the actual application test, two problems are found in

UWB positioning. First, when the label position is placed

at the top position 1 of the robot in Fig. 4, the robot travel

path is shown in Fig. 5(a), and the path travel location is

completely consistent with the actual position. When the

label position is placed in the bottom position 2 of the robot

in Fig. 4, the robot travel path is shown in Fig. 5(b). It can

be seen that when the robot walks close to the tables and

chairs on both sides of the indoor path, the base station are

blocked by obstacles such as the robot tables and chairs.

The wireless signal between the tags generates NLOS,

which causes errors in the positioning data. In this case, a

large range of jitter is reflected in the figure.

When the robot label is set in position 1, Fig. 4 in static

state, the actual coordinates of the measurement are (3.80,

4.00), and the system is designed with a limited sliding

serial port filter algorithm. The positioning result is shown

in Fig. 6(a). The data analysis shows that the positioning

data is stable and the measurement error is within ± 5 cm.

However, when a man passes the robot, the data shows

obvious jitter, as is shown in Fig. 6(b). When this phe-

nomenon is placed in the motion state of a mobile robot, it

is hard to tell whether it is the real motion trajectory or

disturbing the jitter data by simply analyzing the data itself.

Therefore, other sensors need to be added for NLOS

determination and fusion compensation.

In this paper, IMU information is used to determine the

pseudo-movement of UWB system, and IMU short-time

sampling double integration is used as UWB compensation

fitting. The tight combination mode of IMU and UWB is

designed as is shown in Fig. 7. The characteristic of the

model lies in obtaining the pseudo-range rate through

pseudo-range differentiation and at the same time realizing

the amplification of the measurement noise, which is

helpful for distinguishing and fitting compensation of

NLOS error.

Fig. 3 UWB spatial positioning structure of four base stations Fig. 4 UWB positioning system layout
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The model stipulates that when the UWB coordinate

data deviates from the planned path data, it should be

judged whether the heading angle of the IMU has a cor-

responding deflection, and if the corresponding deflection

occurs, the residual mean value is further used to determine

whether there is a NLOS disturbance [30]. The literature

[24] proposes a wireless network joint anti-interference

method that has valuable reference significance. The

sampling frequency of UWB and IMU are both set to

20 ms. Since the fastest moving speed of the robot is 2 m/s,

the judgment threshold of NLOS ldes can be set to 4 cm

according to the sampling rate.ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xu;t�xu;t�1

� �2 þ yu;t � yu;t�1

� �2q
� ldes

Pu;t ¼ Pu;t�1 þ DPi;t�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xu;t�xu;t�1

� �2 þ yu;t�yu;t�1

� �2q
� ldes

Pu;t ¼ Pu;t

8>>>><
>>>>:

ð20Þ

In the above formula, xu;t, yu;t are the coordinates of

UWB at the current time t,Pu;t is the current position of

UWB, and DPi;t�1 is the rate of change of IMU position at

the previous time.

By introducing IMU as NLOS determination and fusion

compensation, if the residual chi-square is within the

threshold range, the UWB positioning data at that moment

does not need fusion compensation; if the residual chi-

square exceeds the threshold range, the UWB data at the

previous moment plus the previous one The instantaneous

displacement measured by MEMS at the moment is used as

the result of fusion compensation [31]. Through design, the

system can effectively correct UWB data errors caused by

non-line-of-sight and base station loss, thus ensuring the

accuracy of UWB absolute coordinates.

In the laboratory scenario, the robot’s UWB navigation

effect and collected data are shown as xu, yu in UWB ?

gyro pose 2 in Table 2. The data is used for the verification

of the later multi-sensor algorithm fusion comparison.

5 Multi-source perception fusion

Indoor positioning methods can be roughly divided into

two, one is relative positioning; the other is absolute

positioning. Although the relative positioning method has a

cumulative error, the error between two adjacent moments

is very small; although the absolute positioning method has

no cumulative error, its instantaneous error will be rela-

tively large.

Therefore, this design uses an encoder based on the

mobile robot to calculate the relative position information

of the robot1. On the other hand, the distance measurement

module DWM1000 and gyroscope based on UWB posi-

tioning technology are used to calculate the position of the

robot through model calculation2. Finally, an improved

Kalman filter (KF) algorithm is used to fuse the two data to

obtain the estimated position information of the robot. The

actual posture information of the robot is obtained by

manual and accurate measurement, as is shown in xr, yr, hr
in Table 2. This design adopts a combination of relative

positioning method and absolute positioning method, and

uses improved Kalman filter to correct the position infor-

mation obtained by the two methods, thereby further

reducing the cumulative error in the relative positioning

Fig. 5 UWB tag positioning robot trajectory

Fig. 6 UWB positioning static interference test results

Fig. 7 Multi-source fusion tight combination model
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method, and also correcting the absolute The instantaneous

error in the positioning method, which has significantly

improved the indoor positioning accuracy of the mobile

robot.

5.1 System structure of indoor positioning
integration

First, obtain the robot position information 1 through the

encoder on the mobile robot. Then, the Infinite Future’s

I-UWB-LPS PA module and an external gyroscope are

used to measure the position information of the mobile

robot 2. Later, the improved Kalman filter algorithm is

utilized to fuse the position information 1 and the position

information 2 as the estimated position information of the

robot. According to the needs, the system designs the

positioning fusion compact combination model, and the

structure is shown in Fig. 7.

5.2 Location information fusion

In the design of the tight combination model in this paper,

the position information obtained by the encoder 1, this

data information contains the cumulative error. There is a

certain instantaneous error in the position information 2

obtained by UWB and gyroscope together, and there is no

cumulative error. The error of position information 1

agrees with Gaussian distribution, and both position

information 1 and position information 2 meet the condi-

tions of using Kalman filter algorithm. Therefore, in order

to reduce these two errors, improved Kalman filter algo-

rithm to data are adopted to process the data to achieve

high-precision indoor positioning.

The improved Kalman filter algorithm model is as fol-

lows, set U(t)T = (xe,ye,he),Z(t)
T = (xu,yu,hu),X(t)is each

n 9 Dt time Estimated location information within.

Xðt ¼ 0Þ ¼ Zðt ¼ 0Þ ð21Þ
X tð Þ ¼ X t � 1ð Þ þ DU tð Þ þWðtÞ ð22Þ
ZðtÞ ¼ ZðtÞ þ VðtÞ ð23Þ
Xðtjt � 1Þ ¼ Xðt � 1jt � 1Þ þ UðtÞ ð24Þ
Pðtjt � 1Þ ¼ Pðt � 1jt � 1Þ þ Q ð25Þ

KgðtÞ ¼ Pðtjt � 1Þ
Pðtjt � 1Þ þ R

ð26Þ

XðtjtÞ ¼ Xðtjt � 1Þ þ KgðtÞ½ZðtÞ � Xðtjt � 1Þ� ð27Þ
PðtjtÞ ¼ ½I � KgðtÞ�Pðtjt � 1Þ ð28Þ

In the above formula, U(t)T is the gyroscope navigation

pose information 1 at a certain moment, DU(t) is the dif-

ference between the previous and current moment pose

information 1, and Z(t)T is the UWB ? IMU at the same

time Pose information 2, W(t) and V(t) are the noise when

obtaining pose information 1 and pose information 2, Q

and R are the noise variances of W(t) and V(t), P is The

prediction error of X(t), U(t), Z(t), W(t), V(t), Q, R, P are

all three-dimensional column vectors. In the algorithm,

Fig. 8 Algorithm flow chart
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pose information 1 is used as the control variable array, and

pose information 2 is used as the observation array [32].

(1) Initialize the system first, and reset the estimated

pose;

(2) Use formula (22) to obtain robot position

information;

(3) Obtain position information 2 of the robot position

information Via Formula (23);

(4) In formula (24), the estimated position information at

time t is predicted by the estimated position infor-

mation at time t-1;

(5) Predict the prediction error at time t by the prediction

error at time t-1 in formula (25);

(6) Calculate the Kalman gain Kg at time t by formula

(26);

Fig. 9 Improved Kalman fusion pose test effect

Table 3 Accuracy comparison

Algorithm X-coordinate accuracy (%) Y -coordinate accuracy (%) Heading angle accuracy (%)

Mean filtering algorithm 96.20 98.76 97.04

The algorithm in this paper 98.63 99.52 97.24
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(7) Obtain the estimated position information at time t

by combining the predicted position information and

the observed position information through formula

(27);

(8) Calculate the prediction error at time t by formula

(28).

Through the above improved Kalman filter algorithm,

the influence of noise and measurement error is reduced,

therefore, high-precision mobile robot’s estimated position

information is acquired. The flow of location information

fusion algorithm is shown in Fig. 8.

5.3 Simulation to obtain estimated position
information

After completing the design of the system’s tight combi-

nation positioning model, this paper employs MATLAB to

perform the fusion simulation of the experimental data on

the improved Kalman filter algorithm, As shown in

Table 2, the analysis results can get the following infor-

mation. In the simulation experiment, MATLAB obtains

the estimated position information. After the simulation, 3

sets of position information can be obtained, that is, the

time information is included, and the position information

measured by the encoder, gyroscope and UWB indoor

positioning module is processed. After the system is ini-

tialized, the position information 1 measured by the

encoder installed on the mobile robot and the position

information 2 measured by the UWB indoor positioning

system module and gyroscope will be obtained respec-

tively, and the estimated position information after fusion

with Kalman filter algorithm.

After simulation, 3 sets of position information can be

obtained, that is, images and data containing time infor-

mation. By comparing the position information 1, the

position information 2, the fusion position information, and

the actual position information at the same time, the

accuracy of the positioning can be obtained. The calcula-

tion of is shown in formula (29).

Precisione ¼ 1� H � Lj j
L

� �
� 100% ð29Þ

Here e is the accuracy, H is the position information

obtained by measurement or the position information after

fusion, and L is the actual position information of the

mobile robot. Four groups of coordinates and heading

angle of the position information are placed on a coordinate

system to intuitively reflect the position information. The

location information simulation is shown in Fig. 9.

As Table 3 shows, the experimental results acquired by

means of filter algorithm and the improved Kalman filter

algorithm are compared regarding the accuracy. It can be

seen that the accuracy of the improved Kalman filter

algorithm designed in this paper has been improved to a

certain extent.

6 Conclusion

In this paper, a tight combination model of indoor posi-

tioning and navigation based on encoder track deduc-

tion ? UWB ? IMU is designed. the NLOS judgment

basis and compensation method based on IMU are applied

in the model to ensure the accuracy of UWB absolute

coordinate data and improve its anti-interference ability.

Finally, the multi-source positioning pose data fusion is

carried out by improving the Kalman filter algorithm.

The fusion effect is shown in Fig. 9 and Table 2.

Through the analysis, it can be seen that the cumulative

error of the coordinates measured by the encoder gradually

increases with time, and as time changes, the error of the

coordinates measured by the UWB ? IMU positioning

system module has a large jitter and the error begins to

increase. The accuracy of the robot’s pose after the fusion

of this algorithm is significantly improved than when a

single sensor is used. In particular, the accuracy of the

fused coordinate position information in the Y-axis direc-

tion reached 99.52%, and the posture of the robot after

fusion positioning is basically the same as the actual pos-

ture, achieving a good fusion effect. And, it can be seen

that the accuracy of the heading angle after the algorithm

fusion is not very obvious, which will be conducted in the

future.
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