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Abstract
Localization in wireless sensor networks (WSNs) is required to examine the coordinates of the sensor nodes deployed in

the sensing field. It is the process that determines the location of the target nodes relative to the location of deployed anchor

nodes. The anchor nodes positions are known as the nodes that have GPS unit incorporated with them. All sensor nodes are

generally not configured with GPS as it is not suitable for indoor environments and/or underwater areas. A network

becomes more expensive and utilizes more energy if all nodes are equipped with GPS that is a major drawback of WSNs.

Various localization schemes have been proposed in literature, while most research proposals deal with the study of 2D

applications. However, in the 3D applications, the area under observation may have a complexity in the sensing envi-

ronment. An optimized algorithm is required for the determination of node location in 3D environment. In this paper, we

propose an adaptive flower pollination algorithm (AFPA) with enhanced exploration and exploitation capabilities of

conventional FPA for the localization of sensor nodes in WSN. To test the performance of AFPA, benchmark functions

(CEC 2019) are used to compare it with other meta-heuristics. The results show that proposed AFPA outperforms in terms

of convergence speed and provides better results for most of the benchmark functions. Also, the proposed AFPA is tested

on WSN Localization problem, it provides least localization error in comparison to other techniques applied in 3D WSN

environments.
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1 Introduction

WSN comprises of a network of sensors that are deployed

either in static or mobile conditions randomly in a given

geographical area to gather, process, and communicate data

collected from the environment to a special node consid-

ered as the common point of contact referred as a sink

[1, 2]. In WSN, sensor nodes re-locate their positions to

collect the data about the sudden change occurring in the

field. The information gathered by the sensors is commu-

nicated periodically or after a sudden change, depending on

the nature of particular application. WSN consists of many

applications like environmental monitoring, healthcare,

medical research, defense and military affairs etc. Sensor

nodes are unreliable and consumes more energy [3] but are

cheaper and deployed everywhere in the coming future. To

meet up with these requirements, the exact locations of

unknown target nodes (TNs) must be known. The deter-

mination of their exact location in WSN is commonly

referred to as the localization problem. There are numerous

solutions to assign location to the nodes, it can be done

either manually or using GPS. But assigning it manually is

a complex and challenging task in WSN. It is also not

feasible to use GPS feature in every node because of cost

constraints in deploying sensor nodes with this feature [4].

There are various localization techniques available in the

literature to detect the exact location of localized nodes. By

using anchor nodes (ANs), it is possible to estimate the

exact location of the TNs but AN location must be known

prior and only few nodes with this feature are deployed in

field due to certain cost constraints [5].
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The range-based algorithms determine the distance

among the sensors based on received signal strength indi-

cator (RSSI), time of arrival (ToA) and angle of arrival

(AoA) [6, 7]. Similarly, the algorithms that calculates the

hop counts between nodes are classified as Range free

techniques. Multidimensional signalling, Distance vector

hop, and adhoc positioning system provides the position of

various targeted nodes with lesser infrastructure

requirements.

In WSN, accurate location estimation is one of the

biggest challenges. In static nodes, localization can be

achieved precisely but in case of moving nodes this task is

quite challenging. In this paper, we deployed a single

anchor to locate all unknown TNs and by using the pro-

jection of the ANs virtually in six directions using hexag-

onal projection for targeting the unknown nodes using

Adaptive Flower Pollination Algorithm (AFPA). As soon

as the TNs drop under the range of AN; the AN itself, and

three virtual nodes are selected (as minimum four ANs are

required to determine 3D positions). The problem of Line

of Sight (LoS) is minimised by deploying AN virtually in

other six directions.

The following benefits were offered for localization

using the proposed method in this paper:

• A new technique of projecting VAs employing

umbrella projection in the field for determining the

exact locations of deployed sensors in 3D environment

is proposed using Adaptive FPA Algorithm.

• By using the concept of VA, the line of sight (LoS)

issues is minimized to a greater extent.

• Flip ambiguity issues in range-based methods are also

reduced.

The rest of the paper is organized as follows: Sect. 2

describes the literature review on 3D localization. Sec-

tion 3, AFPA is presented in detail. In Sect. 4 statistical

testing of AFPA with other meta-heuristics is presented.

Section 5 deals with concept of deploying a single AN and

TNs to locate unknown nodes in the deployed region.

Section 6 deals with results and discussions on proposed

algorithm. In Sect. 7, conclusion, limitations, and future

scope are presented.

2 Literature review

WSN comprises of multiple homogeneous and/or hetero-

geneous sensor nodes. Each node collects the data, mea-

sures it, transmits it to the corresponding node, and forward

it to the sink node. By knowing the exact location of the

TNs, the data obtained and transmitted is useful and

meaningful. The manual incorporation of the location

information in every node is very tedious and even

impossible in many applications. Generally, localization is

applied in two dimensional (2D) planes. But for the

localization of sensor nodes in applications like sea, for-

ests, hilly areas and in free space, 3D algorithms are

required. Although, determining 3D scenario is more

complex than 2D but the algorithms used for 2D needs to

be modified and applied for 3D localization with some

exceptions.

Bulusu et al. [8] discussed unconstrained open-air

environment using different localization algorithms for

low-cost devices that does not contains GPS. They pro-

posed an RF-based localization method in that the receiver

is located using Centroid method. Graefenstein et al. [9]

suggested technique that is energy efficient in which RSSI

method is employed to calculate the approximate separa-

tion among the target and reference nodes deployed in the

field using trilateration approach. Sumathi and Srinivasan

[10] have suggested a method that requires a single AN for

localizing the unknown nodes using RSSI method. The

least square approach for locating the fixed TNs is used in

this algorithm. Guo et al. [11] developed a perpendicular

intersection (PI) mobile based approach that does not

specifically map RSS distances. The measurement of the

node position is carried out using the geometric PI relation.

Ultra-Wide Band, and ToA technique to compute node

location in 3D environment is proposed by Shi et al. [12].

By using this technique, the AN and TN separation is

calculated more efficiently. Distance Vector-Hop based

approach for locating sensor nodes is introduced by Wang

et al. [13]. The main reason behind the failure of this

algorithm is complexity and its increased cost. Xu et al.

[14] introduced another enhanced 3D localization tech-

nique which adopted DV-Distance with quasi-newton

optimization method for optimizing the results. By con-

sidering localization accuracy and coverage, authors fur-

ther tested the effectiveness of the proposed algorithm. Li

et al. [15] suggested the 3D WSN localization method

based on irregular RSSI model in order to calculate the

relation among DOIs and the variability in signal trans-

mission range. Ahmad et al. [16] suggested a parametric

loop-division algorithm for 3D localization, in which

the deployed nodes are located in an area surrounded by a

group of ANs. In this method network shrink toward the

centre accurately and provides accurate localization results.

In order to get the best approximate locations of TNs

various meta-heuristic optimization algorithms are used for

2D and 3D scenarios. A computationally efficient swarm

intelligence approach for locating static nodes is suggested

by Gopakumar and Jacob [17]. Easier implementation and

low memory requirements are the key benefits of this

approach. Chuang and Wu [18] use RSS ranging technique

for locating sensor nodes efficiently using PSO based

approach. This scheme has a higher success rate in terms
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of localization. Kumar et al. [19] uses H-best PSO and

BBO algorithm to predict the optimum position of the

randomly deployed TNs. HPSO provides mature and fast

convergence, and higher accuracy is achieved using BBO.

Suyatha and Siddappa [20] implemented a hybrid

localization optimization technique using differential evo-

lution (DE) and Dynamic Weight PSO to achieve better

localization accuracy. Lower localization error, better

localization accuracy and improved stability results are

achieved using the proposed algorithm. Arora and Singh

[21] suggested a BOA optimization algorithm to optimize

the location of unknown sensor nodes. The performance of

this proposed algorithm, in 2D scenarios is compared and

contrasted with PSO and FA. The authors concluded that

this approach outperforms in terms of convergence time

and location accuracy as compared to other meta heuristics.

Due to the higher accuracy, the range-based methods

are commonly used but flip ambiguity is the major draw-

back of range-based methods. In order to address this

important challenge, several researchers proposed different

strategies [22–25]. Various computational intelligence

techniques were introduced [26–33] for determining the

location of the moving TNs using a single anchor in WSNs.

Virtual ANs were deployed at the corners of the sensing

field, and this algorithm is divided into two stages. Cal-

culations of distance were performed based on RSSI during

the first stage. In the later stage, virtual ANs were assumed

to locate unknown TNs with the help of anchor and virtual

anchors (VAs). Centroid calculations are obtained in these

stages along with optimization algorithms namely PSO,

HPSO, BBO, FA, and their results show better convergence

time. In this work, authors proposed the concept of single

anchor and VAs. Singh and Mittal proposed a hybrid DA-

FA [34] approach to locate TNs in 2D environment using

single anchor, and six VAs; and their results show less

localization error and faster convergence as compared with

PSO, HPSO, BBO, FA. Singh and Mittal [35] proposed

various NMRA variants and are applied it to 3D localiza-

tion problem and their results show faster convergence and

least localization error in comparison to state-of-the-art

algorithms.

3 The proposed adaptive FPA algorithm

Flower Pollination Algorithm (FPA) is inspired from the

natural process of pollination occurring in flowering plants

[36]. In FPA, each flower stands for a feasible solution and

the objective function value is regarded as the fitness value.

To mimic the pollination process, two different pollination

phases: Global and local pollination phase are used for

each flower to mimic the pollination process with a switch

probability ps. The specific process is described as follows.

Global pollination phase: For each individual, a random

number rand is generated. If rand\ ps, then global polli-

nation should be carried out. In the global pollination

process, each flower updates its position according to the

following equation [34]:

Xtþ1
i ¼ Xt

i þ cLðkÞðXt
best � Xt

iÞ ð1Þ

where Xt
i and Xtþ1

i are the old and new positions of ith

flower, respectively, Xt
best is the best flower at current

iteration t, which has the best fitness value in the whole

population, and c is the scaling factor that controls the step

size of global pollination. Parameter L, the Ĺevy flight, is

used as the strength of pollination in the basic FPA, and the

step size (k) obeys the Ĺevy distribution:

L� kCðkÞsinðpk=2Þ
p

1

s1þk
; ðs � s0 [ 0Þ ð2Þ

where C(k) is the gamma function.

Local pollination phase: If rand[ ps, the local polli-

nation process should be carried out. Flower Xt
i obtains its

new position Xtþ1
i according to the difference between its

old position and the position of two neighboring flowers Xt
p

and Xt
q. This process is considered as local search, and the

updating equation [34] is defined as

Xtþ1
i ¼ Xt

i þ rðXt
p � Xt

qÞ ð3Þ

where r is drawn from a uniform distribution [0, 1], and it

is considered as a local random walk.

After pollination is completed, the new individuals

update their positions by comparing fitness values. If the

fitness of Xtþ1
i is better than that of Xt

i, the new position of

ith flower will be replaced by Xtþ1
i . Otherwise, ith flower

remains at Xt
i.

FPA has gained attention due to its linear nature and its

effectiveness in the recent past and large number of

improvements in its basic form as been done since its

inception.

The revised improved FPA seeks to achieve enhanced

performance by enhancing the basic FPA’s exploration and

exploitation capabilities. Exploration has been improved by

the introduction of the Elite Opposition-Based Learning

(EOBL) strategy [37], Global pollination phase has been

improved by Cauchy based step size that helps to explore

the search space more effectively [38], exploitation has

been enhanced by Local Neighborhood Search (LNS) dri-

ven by knowledge of the best solution so far found in a

small neighborhood of the current solution [39]. A balance

between the exploration and exploitation is achieved using

the dynamic switch probability ðptÞ [40], The catfish-effect
mechanism [41] is presented to circumvent premature

convergence. The major alterations are discussed as

follows:

Wireless Networks (2021) 27:1999–2014 2001

123



3.1 Strategy for elite opposition-based learning
(EOBL)

In basic FPA, once the algorithm falls to the local optimal,

it is difficult to achieve the optimal global solution. So,

directing the current solution space approximation to the

global optimal solution space is very important. The EOBL

approach is adopted to improve the FPA’s global search

capabilities [39].

We would clarify opposition-based learning (OBL) first,

before presenting the EOBL. OBL’s main idea is that it

produces the current solution’s opposition solution,

simultaneously compares the current solution and the

opposition solution, and selects the stronger one to join the

next iteration. We assume that x ¼ ðx1; x2; x3; :::; xDÞ is a

point in the population (D is the search space dimension;

xj 2 aj; bj
� �

; j ¼ 1; 2; :::;DÞ and its opposition point is

defined by �
x ¼ ð�x 1; x2;

�
x 3; :::;

�
x DÞ as follows:

�
x j

¼ aj þ bj � xj ð4Þ

Sometimes the created OBL opposition solution may not

be promising than the current search space to search for the

optimal global solution, we can therefore use EOBL

strategy [39] in this paper. EOBL is an intelligence com-

puting technique. In this, suppose the elite (optimal) indi-

vidual in the current population is Xe ¼ ðxe;1; xe;2; xe;3;
:::; xe;DÞ. For the individualXi, the elite opposition solution

~Xi is given by

~xi;j ¼ g � daj þ dbj
� �

� xe;j ð5Þ

where i = 1, 2,..., NP, j = 1, 2,..., D, NP is the population

size, and g [ U(0, 1) is a generalized coefficient, and

[daj; dbj] is the dynamic boundary of the jth dimensional

search space and is represented by:

daj ¼ min xi;j
� �

dbj ¼ max xi;j
� �

ð6Þ

The dynamic boundary is used instead of fixed boundary

in order to preserve the search experience to make the

opposite solution situated in the narrowing search space. In

addition, if the dynamic boundary operator makes ~xi;j jump

from [daj; dbj], the following approach is employed to reset

~xi;j:

~xi;j ¼ rand daj; dbj
� �

ð7Þ

In EOBL, opposition population is generated according

to the elite individual. It makes full use of the elite indi-

viduals characteristics to provide more useful search

information which will help to enhance the diversity of the

population, and hence the global exploration tendency of

FPA.

3.2 Cauchy distribution based global pollination
phase

Each flower in the global pollination phase of basic FPA

updates its position according to the following equation:

Xtþ1
i ¼ Xt

i þ cL kð Þ Xt
best � Xt

i

� �
ð8Þ

where Xt
i and Xtþ1

i are the previous and current positions of

ith flower, respectively, Xt
best is the flower with best fitness

at iteration t, and c is the scaling factor to control the global
pollination phase step size. The function of Ĺevy flight

parameter L is to strengthen the pollination in the con-

ventional FPA, and the step size (k) obeys the Ĺevy

distribution:

L� kC kð Þsin pk=2ð Þ
p

1

s1þk
; ðs � s0 [ 0Þ ð9Þ

where C(k) is the gamma function.

In the proposed AFPA, heavy tailed and highly directed

Cauchy based step size is utilized instead of Lèvy flights

used in conventional FPA [36]. Due to its heavy tailed

distribution, this Cauchy based step size is better at

exploring the search space and is given by

dis ¼ 1

2
þ 1

p
arctan

d
g

� �
ð10Þ

The Cauchy density function is represented as

fCauchy 0;gð Þ disð Þ ¼ 1

p
g

g2 þ x2
ð11Þ

where g is a scaling parameter with value equals to 1, d is

the Cauchy random operator and dis is a uniform random

number. The position updating equation for global polli-

nation phase using Cauchy distribution function is given

by:

Xtþ1
i ¼ Xt

i þ C dð Þ Xt
best � Xt

i

� �
ð12Þ

3.3 Local Neighborhood Search (LNS)

FPA makes use of the best current solution and random

solutions to improve local search in the local pollination

phase. The local neighborhood search model (LNS) [41] is

introduced to further strengthen the local search function-

ality of basic FPA.

The main idea is to use the current best solution to

change the current solution in a small neighborhood of the

current solution. For updating the position of the individ-

ual, the knowledge of an individual’s neighborhood (i.e.

the graph of their interconnections called the neighborhood

structure) is utilized.

Suppose the population X ¼ X1;X2;X3; :::;XNPð Þ;
Xi i 2 1;NP½ �ð Þ is a vector in the current population. Here,
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the indices of each vector are random in order to maintain

the diversity of each neighborhood. Next, we can define the

radius r neighborhood (r is a nonzero integer and

2r ? 1\NP), for each vector Xi, neighborhood of Xi

consists of Xi�k; :::;Xi; :::;Xiþk. Figure 1 shows the notion

of local neighborhood model in that the vectors can be

organized into a ring topology according to their indices.

Mathematically, the LNS model is defined as

Li ¼ Xi þ m � Xn opt � Xi

� �
þ n � Xp � Xq

� �
ð13Þ

where p, q [ [i - r, i ? r] (p 6¼ q 6¼ i) and m and n are the

scaling factors, where m, n [ rand() and Xn opt is the best

solution in the Xi neighborhood. The enhanced version of

FPA updates the best solution according to (13), and the

modified solution performs the local pollination step as

Xtþ1
i ¼ Lti þ r � Xt

k � Xt
m

� �
ð14Þ

where Li is the best solution updated by LNS and Xt
kandX

t
m

are the random solutions of kth and mth flower where k 6¼ m

and r is a scaling factor, where r [ rand().

3.4 Dynamic switch probability

In adaptive FPA, instead of using a fixed switch, an

adaptive switch ðptÞ has been designed to balance the

exploitation and exploration tendency during the search

process [42]. The search agents can adapt this strategy to

update their next position in accordance with the present

fitness value variation, as follows:

Xtþ1
i ¼

Xt
i þ C dð Þ Xt

best � Xt
i

� �
; rand[ pt

Xt
i þ m � Xt

n opt � Xt
i

� 	
þ n � Xt

p � Xt
q

� 	

þr � Xt
k � Xt

m

� �
;

rand� pt

8
>><

>>:

ð15Þ

here pt is evaluated in the previous iteration. To accelerate

the optimizer convergence, the exploitation must be pre-

ferred with a higher probability as compared with the

exploration mode. So, the switch ptþ1 is defined in the

range [0.5, 1] with the initial switch value as 0.5, the

adaptive transition is given as [36],

ptþ1 ¼

1

1þ exp � f �t
f �t�1

� � ; log10 f �t


 

 6¼ log10 f �t�1



 



1

1þ exp �
f �t � h:

f �t
h

f �t�1 � h:
f �t�1

h

0

B@

1

CA

; otherwise

8
>>>>>>>>>><

>>>>>>>>>>:

ð16Þ

In Eq. 16, f �t is the finest fitness value obtained at the tth

iteration,: is the floor function, h is the threshold value of

adaptive scale parameter that helps to auto-recognize the

search state and is given by,

h ¼ 10log10 f �t �f �t�1j jþ1 ð17Þ

For the case f �t of �t�1, there is a large difference in fit-

ness values between two iterations. So, the adaptive switch

ptþ1 attains value 1. Therefore, the algorithm switches to

the exploitation mode for next iteration. For f �t nf �t�1, the

adaptive switch ptþ1 will be 0.5 and the exploration mode

is selected for next iteration. A local minima has been

found for the situation log10 f �t


 

 ¼ log10 f �t�1



 

. In order to

make this adaptive switch more sensitive, the adaptive

switch ratio is modified by the term
f �t �h:

f �
t
h

f �
t�1

�h:
f�
t�1
h

. This

improvement allows the search agents to jump out of

potential traps with higher probability [40].

3.5 Catfish effect mechanism

In real life, fishermen always place catfish into a sardine

pond to maintain the freshness of sardines. The catfish

disturb the sardines’ living environment to activate their

ability to survive. This phenomenon derives the catfish

effect and was successfully incorporated into PSO [43].

This mechanism is employed to avoid premature con-

vergence by forcing the worst individuals to explore new

regions and possibly get better candidate solutions.

According to this mechanism if in n consecutive iterations

the fitness value of the current best solution has not been

enhanced, the 10% worst ‘‘sardine’’ individuals WX will be

replaced by new ‘‘catfish’’ individuals CX. The ‘‘catfish’’

individuals are considered as opposition ‘‘sardine’’ indi-

viduals, and can be calculated as follows:

CXid ¼ ad þ bd �WXid ð18Þ

Fig. 1 Neighborhood ring topology of radius 2
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where i is the ‘‘sardine’’ individuals index and WX is 10%

worst ‘‘sardine’’ individuals.

Main Procedure of the AFPA. The modified approach

AFPA is developed by integrating the EOBL technique,

Cauchy distribution based Global pollination phase, the

LNS model, dynamic switch probability and catfish effect

mechanism in the conventional FPA. To demonstrate our

proposed algorithm, the detailed pseudocode of the AFPA

is shown in Algorithm 1.

4 Statistical testing of adaptive FPA
algorithm

A set of 10 CEC 2019 benchmark functions (see Appendix

Table 5) termed as the ‘‘100-Digit Challenge’’ [38] is

selected for AFPA evaluation. Out of these 10 bench-

marking functions few of them are shifted and rotated

(CEC04-CEC-10), whereas CEC (01–03) are taken as it is.

These are all scalable test functions. Comparison with FPA

[36], GWO [43], SSA [44], CS [45], and SCA [46] is done

to check the effectiveness of AFPA. For every algorithm a

total of 500 iterations are performed using 30 agents. The

parameter settings for abovesaid algorithms are given in

Table 1. For all the algorithms under evaluation, the out-

comes are described in terms of the worst, best, mean and

standard deviation values for 30 independent runs. AFPA

achieves better results than competitive algorithms, except

in CEC04, CEC06, and CEC9 as shown in Table 2. Fig-

ure 2 displays the convergence graph and box plot of

various algorithms for the different benchmark functions.

It has been found that AFPA’s results for function

CEC01 are better in terms of the worst, average, and

median values obtained in compassion to other algorithms,

but GWO outperforms in terms of the best fitness perfor-

mance obtained. GWO, SSA, CS and AFPA are able to find

optimal solution for function CEC02, but it is found that

AFPA is the better for minimum standard deviation

achieved. For the CEC03 function, most of the algorithms

can achieve almost globally optimal solution; but overall,

in terms of minimum standard deviation, AFPA is found to

be better.

For function CEC04, GWO outperforms in terms of the

best fitness value achieved, but it has been found that

Table 1 Parameter settings

Algorithm Parameters

FPA NP = 30; Imax = 500; ps = 0.5

GWO NP = 30; Imax = 500; a ¼ 2 to 0½ �; C ¼ 0 to 2½ �
SSA NP = 30; Imax = 500;c1 ¼ 2 to 0½ �
CS NP = 30; Imax = 500; pa = 0.25

SCA NP = 30; Imax = 500;r1 ¼ 2 to 0½ �
AFPA NP = 30; Imax = 500; pt = Dynamic and adaptive

Here, NP is the population size, Imax is number of iterations
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Table 2 Results of competitive algorithms for CEC 2019 test suite

Function Parameters Best Worst Average Median SD

CEC01 FPA 1.66E ? 08 1.34E ? 09 4.94E ? 08 4.58E ? 08 2.36E ? 08

GWO 4.04E ? 04 1.22E ? 09 1.17E ? 08 3.12E ? 07 2.39E ? 08

SSA 1.87E ? 08 4.03E ? 10 7.73E ? 09 4.76E ? 09 1.04E ? 10

CS 1.00E ? 10 1.00E ? 10 1.00E ? 10 1.00E ? 10 0.00E ? 00

SCA 1.60E ? 08 2.08E ? 10 6.90E ? 09 4.44E ? 09 6.70E ? 09

AFPA 1.05E ? 06 1.75E ? 08 2.52E ? 07 1.52E ? 07 3.59E ? 07

CEC02 FPA 1.80E ? 01 3.18E ? 01 2.14E ? 01 2.04E ? 01 3.35E ? 00

GWO 1.73E ? 01 1.74E ? 01 1.73E ? 01 1.73E ? 01 2.11E-02

SSA 1.73E ? 01 1.73E ? 01 1.73E ? 01 1.73E ? 01 4.57E-04

CS 1.73E ? 01 1.73E ? 01 1.73E ? 01 1.73E ? 01 2.86E-04

SCA 1.74E ? 01 1.77E ? 01 1.75E ? 01 1.75E ? 01 8.77E-02

AFPA 1.73E ? 01 1.73E ? 01 1.73E ? 01 1.73E ? 01 2.80E-05

CEC03 FPA 1.27E ? 01 1.27E ? 01 1.27E ? 01 1.27E ? 01 1.56E-07

GWO 1.27E ? 01 1.27E ? 01 1.27E ? 01 1.27E ? 01 2.01E-06

SSA 1.27E ? 01 1.27E ? 01 1.27E ? 01 1.27E ? 01 2.93E-12

CS 1.27E ? 01 1.27E ? 01 1.27E ? 01 1.27E ? 01 9.81E-11

SCA 1.27E ? 01 1.27E ? 01 1.27E ? 01 1.27E ? 01 1.00E-04

AFPA 1.27E ? 01 1.27E ? 01 1.27E ? 01 1.27E ? 01 2.78E-14

CEC04 FPA 9.12E ? 01 1.98E ? 02 1.26E ? 02 1.24E ? 02 2.54E ? 01

GWO 2.35E ? 01 1.43E ? 03 1.60E ? 02 5.59E ? 01 3.41E ? 02

SSA 1.19E ? 01 7.86E ? 01 3.74E ? 01 3.68E ? 01 1.85E ? 01

CS 3.67E ? 01 5.82E ? 02 1.94E ? 02 1.78E ? 02 1.19E ? 02

SCA 4.94E ? 02 2.25E ? 03 1.40E ? 03 1.31E ? 03 4.08E ? 02

AFPA 2.06E ? 01 4.09E ? 01 2.92E ? 01 2.90E ? 01 5.41E ? 00

CEC05 FPA 1.35E ? 00 1.80E ? 00 1.60E ? 00 1.59E ? 00 9.38E-02

GWO 1.05E ? 00 1.85E ? 00 1.41E ? 00 1.29E ? 00 2.72E-01

SSA 1.04E ? 00 1.74E ? 00 1.24E ? 00 1.19E ? 00 1.44E-01

CS 1.04E ? 00 2.00E ? 00 1.44E ? 00 1.44E ? 00 2.50E-01

SCA 2.06E ? 00 2.38E ? 00 2.21E ? 00 2.19E ? 00 7.55E-02

AFPA 1.03E ? 00 1.08E ? 00 1.06E ? 00 1.06E ? 00 1.25E-02

CEC06 FPA 8.94E ? 00 1.16E ? 01 1.04E ? 01 1.05E ? 01 7.77E-01

GWO 7.78E ? 00 1.20E ? 01 1.06E ? 01 1.07E ? 01 9.26E-01

SSA 1.71E ? 00 8.55E ? 00 4.69E ? 00 4.49E ? 00 1.76E ? 00

CS 7.73E ? 00 1.01E ? 01 9.18E ? 00 9.25E ? 00 6.53E-01

SCA 9.20E ? 00 1.18E ? 01 1.08E ? 01 1.10E ? 01 6.45E-01

AFPA 8.25E ? 00 1.16E ? 01 1.03E ? 01 1.03E ? 01 7.95E-01

CEC07 FPA 2.65E ? 01 4.93E ? 02 2.84E ? 02 2.94E ? 02 8.92E ? 01

GWO -1.34E ? 02 1.02E ? 03 4.69E ? 02 4.30E ? 02 3.61E ? 02

SSA -1.27E ? 02 7.61E ? 02 2.69E ? 02 2.43E ? 02 2.24E ? 02

CS -1.50E ? 02 3.63E ? 02 1.41E ? 02 1.51E ? 02 1.17E ? 02

SCA 3.66E ? 02 1.05E ? 03 7.04E ? 02 7.31E ? 02 1.70E ? 02

AFPA -4.56E ? 01 1.81E ? 02 7.83E ? 01 8.56E ? 01 6.45E ? 01

CEC08 FPA 4.96E ? 00 6.24E ? 00 5.66E ? 00 5.67E ? 00 3.27E-01

GWO 3.39E ? 00 6.83E ? 00 5.09E ? 00 5.14E ? 00 9.83E-01

SSA 2.49E ? 00 6.38E ? 00 5.05E ? 00 5.05E ? 00 7.80E-01

CS 4.59E ? 00 5.80E ? 00 5.31E ? 00 5.28E ? 00 3.13E-01

SCA 4.68E ? 00 6.62E ? 00 5.96E ? 00 6.01E ? 00 5.02E-01

AFPA 2.94E ? 00 5.63E ? 00 4.59E ? 00 4.86E ? 00 8.36E-01
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AFPA’s results are better for the worst, average, and

median values attained. AFPA is better than others in the

case of CEC05, in terms of all performance metric

obtained. SSA’s and AFPA’s results are better compared

with competitive algorithms for function CEC06 and

CEC07 functions respectively. AFPA’s results for function

CEC08 are better for the worst, average, and median values

obtained, however, the results of SSA achieved best fitness

function value. AFPA’s results are competitive with other

algorithms for function CEC09 and CEC10.

Figure 2 displays the box-plots of competitive algo-

rithms for CEC 2019 benchmark functions. The box-plots

here are used to measure algorithm efficiency in terms of

fitness values. It can be shown that in most cases the pro-

posed AFPA is cost-effective as median of fitness values

for AFPA is lower. Therefore, AFPA’s overall perfor-

mance is found to be consistent with other algorithms for

optimization.

5 Location determination using single
anchor node

The concept of deploying a single AN in the sensor field is

used to locate target nodes. These nodes are deployed into

three different layers, anchors are placed at the top,

whereas at the bottom and middle layer TNs are deployed

randomly. These ANs transmit a beacon signal that helps

the TNs to locate themselves. As TNs fall within the range

of AN, then by using the beacon signal, TNs obtain the

RSSI information of an anchor and then calculating

Euclidean distance between AN and TN. After calculating

Euclidean distance six VAs are projected at 60 degrees

each using umbrella projection concept to locate TNs, as

shown in Fig. 3. For locating TNs in 3D scenario,

minimum 4 anchors are required (as shown in Fig. 4), one

anchor and three VAs are used to obtain the centroid. Then

using this centroid information, Adaptive FPA algorithm is

applied for optimization.

By using this concept of VAs, LoS issues are also

minimized to a greater extent.

di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxt � xÞ2 þ ðyt � yÞ2 þ ðzt � zÞ2

q
ð19Þ

where ðxt, yt; ztÞ represents the TN position and (x,y; zÞ
represents current location of the AN.

The centroid position ðxc, yc; zcÞ is calculated using AN

and the respective virtual ANs (xv1, yv1; zv1Þ, ( xv2,

yv2; zv2Þ; and xv3; yv3; zv3ð Þ as shown in Fig. 5.

The centroid coordinates are determined as

ðxc;yc; zc;Þ

¼ xþ xv1 þ xv2 þ xv3
3

;
yþ yv1 þ yv2 þ yv3

3
;
zþ zv1 þ zv2 þ zv3

3

� 	

ð20Þ

After obtaining the centroid, random particles are

deployed as shown in Fig. 6. Adaptive FPA is used to

locate all the moving TNs and to estimate the coordinates

as xs;ys; zs;: The fitness function is obtained by calculating

mean square error between actual and estimated coordi-

nates distances of actual and estimated nodes as given in

(21) is minimized.

f ðxs;ys;zs;Þ ¼
1

M

X ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxe � xiÞ2 þ ðye � yiÞ2 þ ðze � ziÞ2

q
� d^i

� �2

ð21Þ

Here xi; yi; zi represents the location of placed beacon

node and xe; ye; ze represents the estimated location of TNs

(M[ 4 to compute 3D location).

Other meta-heuristic algorithms perform in the similar

fashion to localize themselves.

Table 2 (continued)

Function Parameters Best Worst Average Median SD

CEC09 FPA 3.70E ? 00 6.28E ? 00 4.72E ? 00 4.58E ? 00 6.46E-01

GWO 2.61E ? 00 7.70E ? 00 4.52E ? 00 4.49E ? 00 1.02E ? 00

SSA 2.36E ? 00 2.73E ? 00 2.49E ? 00 2.47E ? 00 9.24E-02

CS 2.56E ? 00 3.09E ? 00 2.78E ? 00 2.76E ? 00 1.31E-01

SCA 1.11E ? 01 3.89E ? 02 1.09E ? 02 9.02E ? 01 8.22E ? 01

AFPA 2.42E ? 00 4.72E ? 00 3.02E ? 00 2.96E ? 00 5.23E-01

CEC10 FPA 2.02E ? 01 2.06E ? 01 2.04E ? 01 2.04E ? 01 9.49E-02

GWO 2.03E ? 01 2.06E ? 01 2.05E ? 01 2.05E ? 01 8.86E-02

SSA 2.00E ? 01 2.03E ? 01 2.00E ? 01 2.00E ? 01 8.87E-02

CS 2.01E ? 01 2.03E ? 01 2.03E ? 01 2.03E ? 01 5.31E-02

SCA 2.03E ? 01 2.07E ? 01 2.05E ? 01 2.05E ? 01 7.70E-02

AFPA 1.01E ? 01 2.06E ? 01 1.98E ? 01 2.04E ? 01 2.35E ? 00
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Each algorithm obtains the optimum location as shown

in Fig. 7, and localization error is calculated as given in

(22)

Et ¼
1

NL

X ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxe � xtÞ2 þ ðye � ytÞ2 þ ðze � ziÞ2

q
ð22Þ

where NL represents localized TNs.

6 Results and discussions

In this research work, a novel approach of using a single anchor

with their projection in hexagonal directions to obtain 3D

locations of TNs using various meta-heuristic optimization

algorithms. Using MATLAB software, various meta-heuristic

algorithms are tested for 80 TNs deployed atmiddle and bottom

Fig. 2 Convergence graph and

boxplot for CEC 2019 test suite
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layer (40 each). The results were performed in WSN field with

single AN on theMacBookAir i5 with 4 GBRAMprocessing.

A cubic structure with different properties of TNs and three-

layer structure is considered. In this, three-layer arrangement at

the topmost layer a singleANandat bottomandmiddle layer 40

TNs are deployed randomly. For obtaining 3D coordinates at

least four anchors (one anchor and minimum three VAs) are

required. Whenever, the moving TNs fall within the range of

AN, the above said scenario is considered. An umbrella pro-

jection is formed with the help of anchor and VAs is formed for

determining the 3D positions of target nodes.

Various meta heuristic algorithms are applied in this

research for obtaining 3D coordinate. Different parameters

chosen formeta-heuristic algorithms are as shown inTable 3.

Fig. 2 continued
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In mobility based scenario, various meta-heuristic

algorithms are evaluated in the following section. The TNs

are deployed initially in a random fashion at bottom and

middle layers and at the top most layer is equipped with

AN. AN is fixed while mobility is applied for TNs. The

fitness function is calculated using the average of local-

ization error. The results of various meta-heuristic algo-

rithms are shown in Figs. 8, 9, 10, 11, 12, 13, 14, 15, 16.

From these results, it is clear that the anchor forms

umbrella projection pattern with VAs and TN to determine

the 3D positions. By using VA concept, the problem of

LoS is minimized to greater extent. From these observa-

tions it is quite clear that Adaptive FPA outperforms in

context of other meta-heuristic optimization algorithms and

have faster convergence rate.

In static scenario, a smaller range and only few anchors

are considered. All TNs get localized using this AN and

referred as pseudo anchor once it is localized. Then pseudo

anchors and initially deployed anchors collectively work

together to locate the other unlocated TNs. In static

deployment the convergence rate is slow and requires a

greater number of rounds to locate all TNs. Whereas in

dynamic scenarios, AN with higher range is considered and

more number of TNs are located in shorter time.

Fig. 3 Umbrella projection for deploying anchor and virtual anchors

Fig. 4 Anchor and projection of VA in 3D environment

Fig. 5 Calculating centroid in 3D scenario

Fig. 6 Adaptive FPA deployed around centroid

Fig. 7 Target estimation using adaptive FPA
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Initially, anchors and TNs are deployed in similar

fashion for all meta-heuristic algorithms. To compare the

results in mobility scenario various performance metrics

are considered as described in Table 4. The convergence

time of Adaptive FPA is quite less as compared to other

competitive algorithms tested for the same scenario.

7 Conclusions and future scope

Range based and range free localization techniques are the

popular available techniques to locate unknown nodes. In

this research, range-based techniques along with various

meta-heuristic algorithms are used to obtain 3D coordi-

nates of TNs using single AN concept. Anchor node and

the VAs form an umbrella projection for locating all TNs.

Whenever the moving targets fall within the scope of AN,

three VAs and anchor itself works unitedly to locate the

TNs (as minimum 4 nodes are required to obtain 3D

positions). In this approach, node is estimated with least

Table 3 Parameter settings
Algorithm Parameters

PSO NP = 30; D = 3; Imax = 100; c1, c2, c3 = 1.494; w = 0.729

HPSO NP = 30; D = 3; Imax = 100; c1, c2, c3 = 1.494; g = 0.1; w = 0.729

BBO NP = 30; D = 3; Imax = 100; pm = 0.05

FA NP = 30; D = 3; Imax = 100;a ¼ 0:2; c ¼ 0:96

GWO NP = 30; D = 3; Imax = 100; a ¼ 2 to 0½ �; C ¼ 0 to 2½ �
NMRA NP = 30; D = 3; Imax = 100; a ¼ 0:5; c ¼ 1; w = adaptive;b0 ¼ 1;bmin ¼ 0:2

NMRV 3.0 NP = 30; D = 3; Imax = 100;k ¼ U 0; 1ð Þ
FPA NP = 30; D = 3; Imax = 100; ps = 0.5

Adaptive FPA NP = 30; D = 3; Imax = 100; pt = Dynamic and adaptive

Here, NP is the population size, D is dimension of problem, Imax is number of iterations

Fig. 8 Target node movement using BBO

Fig. 9 Target node movement with HPSO

Fig.10 Target node movement with FA
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Fig.11 Target node movement with HPSO

Fig.12 Target node movement with GWO

Fig.13 Target node movement with FPA

Fig.14 Target node movement with NMRA

Fig.15 Target node movement with NMRV 3.0

Fig.16 Target node movement with adaptive FPA
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localization error along with lesser computational time in

Adaptive FPA. The computation time for PSO and HPSO

is of the order of one fourth of the second, but for BBO and

FA, the convergence rates are higher (close to a second)

Table 4 Comparison of meta-heuristic algorithms

Optimization Number of movements Localization error (max) Localization error (min) Average error Number of located targets

PSO 1 3.9358 0.0554 0.9958 80

2 5.3379 0.0831 0.9839 80

3 5.0108 0.0800 0.9267 80

4 5.1655 0.0367 0.9757 80

5 5.1325 0.0812 0.9612 80

HPSO 1 3.1204 0.1044 0.6742 80

2 5.0134 0.0647 0.4876 80

3 4.8279 0.0976 0.4032 80

4 5.2376 0.0230 0.5546 80

5 5.2134 0.0316 0.5324 80

BBO 1 5.8904 0.1822 1.1892 80

2 5.3500 0.3318 1.2560 80

3 5.5989 0.1822 1.1585 80

4 5.6348 0.1528 1.2818 80

5 5.9014 0.1911 1.1916 80

FA 1 6.1101 0.1922 2.2234 80

2 6.3120 0.3412 2.3124 80

3 6.6990 0.1923 2.4651 80

4 6.8912 0.1627 2.5123 80

5 6.9036 0.2010 2.2013 80

GWO 1 3.1101 0.0944 0.6442 80

2 4.9834 0.0547 0.4776 80

3 4.8134 0.0876 0.3932 80

4 4.7976 0.0430 0.4946 80

5 4.9776 0.0513 0.4713 80

NMRA 1 4.686 0.0989 0.6949 80

2 5.7366 0.1544 0.4928 80

3 4.7559 0.0994 0.4621 80

4 5.6522 0.1581 0.5498 80

5 4.5094 0.0989 0.4923 80

NMRV 3.0 1 3.1101 0.0944 0.6442 80

2 4.9834 0.0547 0.4776 80

3 4.8134 0.0876 0.3932 80

4 4.7976 0.0430 0.4946 80

5 4.9776 0.0513 0.4713 80

FPA 1 3.1304 0.1044 0.6712 80

2 5.0234 0.0637 0.4866 80

3 4.8179 0.0966 0.4022 80

4 5.2476 0.0220 0.5536 80

5 5.2234 0.0336 0.5314 80

Adaptive FPA 1 3.1101 0.0964 0.4315 80

2 4.3983 0.0437 0.4132 80

3 4.8032 0.0721 0.2741 80

4 4.7679 0.0412 0.2671 80

5 4.3108 0.0403 0.2512 80
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respectively whereas for Adaptive FPA the convergence

time is only 0.1234 s.

The implemented algorithm can be used in a variety of

applications, such as animal tracking, logistics, monitoring

of coal mine workers and industrial applications. The

limitation of this work is that the algorithm is relying only

upon a single AN for locating TNs in 3D environment and

due to power issues if a single AN gets non-operational, the

network gets terminated. So, there is trade-off using the

concept of single AN, as only a single AN is required to

locate TNs in 3D environment which is cost effective.

Appendix

See Table 5.
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