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Abstract
In mobile edge computing systems, the energy consumption and execution delay can be reduced dramatically by mobile

edge computation offloading (MECO) . However, due to the limited computing capacity of edge cloud, an energy-efficient

offloading strategy plays a significant role. In this paper, the offloading decision problem for multi-device edge computing

systems based on time-division multiple access is studied. The scheduling of offloading devices at the edge cloud is

considered when modelling the edge computing system. Then, the offloading decision problem is formulated as an energy

consumption minimization problem with the constraint of latency tolerance. It is a mixed integer programming problem of

NP-hardness. To address the problem, a Dynamic Programming-based Energy Saving Offloading (DPESO) algorithm is

designed to obtain the offloading strategy including the offloading option, offloading sequence and transmission power.

First, the MECO with infinite edge cloud capacity is solved by device classification and transmission power decision. Then,

we sort and adjust the offloading devices to meet the latency tolerance for the MECO with finite edge cloud capacity.

Finally, simulation results demonstrate that the DPESO algorithm achieves better energy efficiency than the baseline

strategies and has good scalability.

Keywords Mobile edge computing � Computation offloading � Resource competition � Dynamic programming �
Energy-efficient

1 Introduction

With the dramatical development of the Internet of Things

(IoT) technology, more and more devices running com-

putation-intensive applications access the Internet. How-

ever, devices have limited battery lifetime and computation

resources in general, making them unqualified for pro-

cessing resource-intensive services [1].

Cloud computing has been envisioned as an efficient

way to address the above challenge. By offloading tasks to

cloud infrastructures, cloud computing can enhance the

computation capabilities of devices [2]. Nevertheless, the

weaknesses of cloud computing are revealed with the

emergence of the Internet of Everything (IoE). More than

50 billion terminal devices will access the Internet by 2020

[3]. As a result, cloud resources are not infinite any more,

and the bandwidth limitation may lead to unexpected

latency as well.

Mobile edge computing has been proposed to overcome

the weaknesses [4]. Figure 1 shows the architecture of edge

computing systems. Mobile edge computing can provide

computing power through the resources deployed in the

‘‘edge’’, such as smart gateways, base stations and so on.

Devices usually access the edge cloud via a single-hop

network, so the execution latency and transmission energy

consumption can be reduced. By mobile edge computation

offloading (MECO), tasks can be executed by local devices

and the edge in parallel [5]. However, overmuch offloading

devices may cause a fierce competition for resources,

making it the mainstream to obtain an efficient offloading

strategy.

This paper focuses on designing an energy-efficient

computation offloading algorithm for edge computing
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systems. Assume that computation tasks of multiple devi-

ces belong to the same service which should be completed

within a certain duration, i.e. the latency tolerance [6–8].

Tasks can be executed either by devices (local computing)

or by the edge server (edge computing) [9], and the option

is binary. The algorithm aims at minimizing the total

energy consumption while satisfying the latency tolerance.

The novel contributions of this paper are summarized as

follows:

• Aiming at the inadequacies of edge execution model,

which may lead to resource conflict and resource waste,

we present the scheduling model for edge server. Then,

the optimization problem of minimizing the total

energy consumption is formulated, the solution of

which is more practically feasible and the resource

allocation is more efficient.

• Due to the NP-hardness of the optimization problem,

we transform the problem into an optimization problem

with saved energy maximization as the objective

function and transmission time as the decision variable.

The transformed problem is an analogous packet

knapsack problem, which can be solved by dynamic

programming.

• We propose a Dynamic Programming-based Energy

Saving Offloading algorithm to solve the saved energy

maximization problem. The proposed algorithm makes

decision on offloading option, transmission power and

offloading sequence to achieve rationality of resource

allocation and better energy efficiency.

The remainder of this paper is organized as follows. Sect. 2

reviews related works. Sect. 3 introduces the system

model, followed by the problem formulation in Sect. 4.

Algorithm design is presented in Sect. 5, and simulation

results and analyses are given in Sect. 6. Finally, Sect. 7

concludes the paper.

2 Related works

Numbers of fruitful researches have been carried out on

MECO [4], such as system architectures [5, 10], enabling

technologies [2, 11] and offloading optimization [12]. The

design of offloading control strategies is a key challenge to

exploit advantages of edge computing.

Currently, MECO can be divided into single-user

offloading [13–16] and multi-user offloading [17–19]

according to application scenarios. In single-user offload-

ing, Mao et al. [13] adopted execution latency and task

success rate as performance metrics to evaluate offloading

strategy, then proposed a low-complexity online algorithm

for dynamic offloading decision. You et al. [14] first

optimized local computing and computation offloading

based on the known channel state, then chose the mode

with more energy saving from the above two modes, and

finally extended it to the dynamic channel to realize

asymptotic optimal allocation of computing tasks. Aiming

at the problems of link selection and transmission

scheduling in dynamic environment, Xiang et al. [15]

designed an approximate dynamic Programming algorithm

which can solve the ‘‘curse of dimensionality’’ effectively

to jointly optimize system throughput and energy con-

sumption. Zhang et al. [16] studied the energy-efficient

computation offloading under stochastic wireless channel.

Based on the relationship between the data size and latency

tolerance, the authors identified the optimal operational

region for local execution and edge execution.

In multi-user offlaoding, to guarantee the fairness among

devices, Du et al. [17] formulated the multi-user compu-

tation offloading problem as an optimization problem to

minimize the maximal weighted cost of devices under the

latency tolerance constraint. Then, the offloading decision

is obtained by semi-definite relaxation and random

extraction. Guo et al. [18] explored the contradictory

relationship between energy consumption and task com-

pletion time, and proposed a distributed algorithm to make

decisions on offloading option, CPU frequency and trans-

mission power respectively for each device. On the basis of

the single-user partitioning, Yang et al. [19] used a reward

function to associate task partitioning with task offloading,

and then proposed an offline heuristic algorithm to mini-

mize average completion time for all the users.

Besides, MECO can be divided into binary offloading

[6, 20–22] and partial offloading [7, 23–25] according to

offloading mode. In binary offloading model, the compu-

tation task can be either executed locally or at the edge

server as an integral whole. Liu et al. [6] formulated an

energy consumption minimization problem as a mixed

integer programming problem considering the task depen-

dency. An energy-efficient collaborative task computation

Fig. 1 Mobile edge computing systems
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offloading (ECTCO) algorithm was designed to solve the

problem. In [20], Chen et al. formulated the computation

offloading decision making problem a multi-user game.

The efficient offloading strategy was obtained in a dis-

tributed manner based on game theory. Zhang et al. [21]

introduced the residual energy of devices’ battery as a

weighting factor into the offloading problem. The proposed

iterative search algorithm combining interior penalty

function with D.C. programming achieved low energy

consumption and long lifetime of devices. Dinh et al. [22]

researched an edge computing system consists of a mobile

device and multiple access points. They proofed that when

the mobile device can offload computation tasks to dif-

ferent access points, the CPU frequency can affect the task

allocation decision.

In partial offloading model, the computation task can be

divided into several sub-tasks, some of which are executed

locally while the rest are executed at the edge server. In [7],

You et al. utilized the thought of partial offloading for

obtaining a binary offloading solution of time-division

multiple access (TDMA) and OFDMA edge computing

system. However, few researches consider the scheduling

of offloading tasks at the edge server. Hao et al. [23]

introduced the concept of task caching and established an

optimization problem under the constraints of computa-

tional and storage resources. The alternating iterative

algorithm-based strategy could achieve lower energy con-

sumption. In [24], Ren et al. derived the optimal task

segmentation strategy. Aiming at the piecewise convex

optimization problem, the authors proposed a sub-gradient

algorithm to obtain the optimal resource allocation. Wang

et al. [25] considered devices with flexible CPU frequency

when formulated the joint optimization problem of energy

consumption and latency. The results are extended to the

scenario of multiple edge servers.

In the existing researches on the computation offloading

decision problem, only the execution time is taken into

account in the phase of edge execution, but the impact of

task scheduling is less considered. It may result in an

infeasible optimal solution in practice or a waste of system

resources. Different from the previous studies, taking the

simultaneous availability of different resources and inter-

action among offloading tasks into consideration, we pre-

sent the scheduling model for edge server and formulate

the optimization problem of minimizing the total energy

consumption. The solution of the optimization problem is

more practically feasible and the resource allocation is

more efficient.

3 System model

In this section, the system model including local computing

model, communication model and edge computing model

is introduced. Then, the energy consumption minimization

problem is formulated as a mixed integer programming

problem.

3.1 Scenario description

In this paper, an edge computing system based on TDMA1

is considered. The system consists of an edge server and

n devices with a task, denoted by a set N ¼ f1; 2; . . .; ng.
Devices can access the edge server by wireless channel

(e.g., 5G and WiFi). In TDMA systems, time is divided

into several time slots and each user can only transmit data

in their own specified time slot. It allows multiple users to

share bandwidth and transmission media at different time

slots. The mechanism of TDMA mode determines that the

data transmission process of devices is sequential.

For convenience of description, device i refers to the

device that owns computation task i. The service cannot be

provided until all tasks are completed. To guarantee the

quality of service (QoS), tasks should be completed within

the latency tolerance, denoted as T.

Similar to existing studies [6, 7, 21, 26, 27], the problem

is studied in a quasi-static scenario. The continuous time is

divided into periods of time. The system state remains

unchanged in each period (called a decision cycle). In a

specific decision cycle, the edge server is envisioned to

have completed the task parameter collection before

making offloading decision. The devices with a task in the

system will upload the task parameters, while the devices

without task will keep silent and enter the sleep mecha-

nism, making their energy consumption is ignored. Devices

with computation tasks may vary between different deci-

sion cycles, however, they can all be referred to as ‘‘n de-

vices with a computation task’’.

To obtain an energy efficient offloading strategy, the

edge server needs to collect task parameters. This process

is completed by device profiler [28] and edge server’s

system manager module [29] (such as Rover Toolkit [30]

and Profiler [31]). Device profilers monitor the running

state of mobile devices and the system management mod-

ule is responsible for node awareness. When devices have

tasks, the manager module will notify devices to report the

task parameters to the edge server. Therefore, we assume

that the edge server has a good knowledge of task

parameters such as data size and computation complexity.

1 Although we assume a TDMA scenario, our analysis can be

extended into other access schemes with a minor modification on the

framework.
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The edge server will determine the offloading strategy

based on these information, including the offloading

option, offloading sequence and transmission power.

3.2 System model description

3.2.1 Local computing model

For local computing, computation capability, data size and

computation complexity are assumed to vary from devices

to simulate a heterogeneous system. Let di and ci denote

the data size (in bits) and the computation complexity (in

CPU cycles per bit) of device i, respectively. In addition,

computation capability of device i is represented by CPU

frequency fi. Hence, the local execution time of task i can

be expressed as

tli ¼
di � ci
fi

: ð1Þ

According to [32], the energy consumption per CPU cycle

of processor is e ¼ j � f 2, where j is a constant related to

chip architecture. Thus, the local execution energy con-

sumption of task i is

El
i ¼ j � f 2i � di � ci: ð2Þ

3.2.2 Communication model

When a device is chosen to offload its task, the commu-

nication between the device and the edge server comprises

two phases, i.e. computation offloading and results down-

loading. For computation offloading phase, given the

transmission power pi and the channel gain gi, the data

transmission rate of device i can be calculated according to

Shannon theory [33] as

ri ¼ B � log2 1þ pi � gi
x0

� �
: ð3Þ

Here B means the channel bandwidth and x0 the variance

of complex white Gaussian channel noise. Based on ri, the

transmission time and energy consumption of device i can

be computed as

toi ¼
di
ri
¼ di

B � log2 1þ pi�gi
x0

� � ; ð4Þ

and

Eo
i ¼ pi � toi ¼

pi � di
ri

: ð5Þ

The delay and energy consumption of results downloading

are ignored [7, 21]. First, because the data size of results is

much smaller than that of input, and second, because the

energy consumption is mainly afforded by the edge server,

which is powered by wired supply. Therefore, computation

offloading is considered equivalent to the communication

process in this paper.

3.2.3 Edge computing model

Similar to the local computing model, let fe be the CPU

frequency of edge cloud, then the time of edge computing

for task i is given by

tei ¼
di � ci
fe

: ð6Þ

As all the offloading tasks are executed by an edge server

and the limited edge cloud capacity, the edge server needs

to allocate the computation resources among all offloading

devices efficiently. The execution at the server is treated as

sequential execution in this paper. In fact, serialization or

parallelization of task execution has no effect on the

overall completion time, which is the metric of interest in

the paper. In a real edge computing system, both serial-

ization and parallelization of task execution at the server

are feasible. Evidently, the allocation satisfies the follow-

ing constraints: (1) The completion time of each task

should be shorter than T; (2) The execution cannot start

until the transmission ends for an offloading task; (3) The

execution starts only when the edge server is idle.

To describe the order of task execution at the edge

cloud, the definitions of transmission finishing time of

device i and idle time of edge cloud are given.

Definition 1 The transmission finishing time of device i is

the time when the input data of task has been fully trans-

mitted from device i to the edge cloud, denoted by tfi .

Definition 2 The idle time of edge cloud is the time when

the edge cloud completes executing the current offloading

tasks, denoted by tie.

Then, the first constraint can be expressed as

tfi þ tei � T; i 2 O: ð7Þ

The second and third constraints can be expressed as

tbi � max tfi ; t
i
e

n o
; i 2 O: ð8Þ

Here, O is the set of offloading devices and tbi is the exe-

cution beginning time of device i at the edge cloud.

According to the optimization theory, the order of task

execution at the edge cloud adopts queue mode, i.e., ‘‘first

offload, first executed’’. A directed acyclic graph G ¼
V;Eð Þ shown in Fig. 2 is adopted to model the order of task

execution at the edge cloud, where V ¼ DTi;ECif g
denotes the node set for data transmission DTið Þ and edge
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computing ECið Þ process, and the dependency relationship

among the nodes is represented by the directed arc set in

E. For example, task 2 cannot begin edge computing until

the input data has been transmitted to edge cloud and task 1

has been executed.

Let P ið Þ denote the precursor node set of task i, Then,

the completion time of task i at the edge cloud can be

derived as

tci ¼
toi þ tei ; P ið Þ ¼ ;

max tcj ;
P

j2P ið Þ
toj þ toi

( )
þ tei ; P ið Þ 6¼ ;; i 2 O:

8><
>:

ð9Þ

4 Problem formulation

In this section, the offloading decision problem is formu-

lated, with the objective for the minimum total energy

consumption of devices. A binary variable, ai is defined to

represent the offloading option of device i. ai ¼ 1 if device

i is selected to offload, otherwise ai ¼ 0. Thus, the energy

consumption of device i can be integrated as

Ei ¼ 1� aið Þ � El
i þ ai � Eo

i : ð10Þ

The offloading decision problem can be formulated as

P1 : min
ai

Pn
i¼1

1� aið Þ � j � f 2i � di � ci þ ai �
pi � di
ri

s:t: C1 : tli � T ; i 2 N and i 62 O;

C2 : tci � T ; i 2 O;

C3 : tbi � max tfi ; t
i
e

n o
; i 2 O:

C4 : ai 2 0; 1f g; i 2 N:

ð11Þ

In P1, C1 and C2 are the latency tolerance constraint for

local computing devices and offloading devices respec-

tively; C3 represents the resources competition constraint;

C4 is the value constraint of each device’s offloading

option. Problem P1 is NP-hard to solve [34]. To address the

issue, we adopt a two-stage solution approach. The prob-

lem P2 is obtained by relaxing the constraint of the edge

cloud capacity shown as follows:

P2 : min
ai

Pn
i¼1

1� aið Þ � j � f 2i � di � ci þ ai �
pi � di
ri

s:t: C1 : tli � T; i 2 N and i 62 O;

C2 : tci � T ; i 2 O;

C4 : ai 2 0; 1f g; i 2 N:

ð12Þ

Due to the edge cloud capacity is assumed be infinite, the

execution time of task i at the edge cloud is 0, i.e., C3 are

ignored.

5 Algorithm design

In this section, the computation offloading decision prob-

lem with infinite edge cloud capacity and finite edge cloud

capacity are solved in turn. The original optimization

problem is transformed into an equivalent form with saved

energy maximization as the objective function and trans-

mission time as the decision variable. Furthermore, the

function between the objective function and decision

variables and the monotonicity of the function are given.

Based on dynamic programming theory, the DPESO

algorithm is proposed to solve the computation offloading

decision problem.

5.1 MECO with infinite edge cloud capacity

5.1.1 Device classification

To guarantee the tasks are completed in T, devices that are

not qualified should be selected to offload at first. The

definition of the offloading necessary device is given in

terms of the relationship of the local execution time and

latency tolerancy as follows.

Definition 3 For device i, if tli [ T , then device i belongs

to offloading necessary device, denoted as On. Otherwise,

device i can be selected to local computing as well as

computation offloading.

Accordig to (1), the offloading necessary devices are the

devices which have the poor computation capacity, large

data size and high computation complexity. As we study

the binary offloading model, for the offloading necessary

devices, their offloading option ai ¼ 1 and we need to

determine their transmission power.

5.1.2 Transmission power decision

According to (2), the energy consumption of local com-

puting is a constant for each device. Moreover, according

to (3)–(5), if device i is selected to offload, the energy

consumption can be calculated as

Fig. 2 Order of task execution at the edge cloud
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Eo
i ¼

x0

gi
� 2

di
B�to

i � 1

� �
� toi : ð13Þ

It can be observed that Eo
i is a injective function of toi .

Thus, once the transmission time toi is determined, the

transmission power can be calculated according to (4).

To achieve energy-efficient computation offloading,

edge computing is expected to save energy compared to

local computing. For device i, the energy saved by edge

computing can be expressed as the difference between El
i

and Eo
i , i.e.,

Es
i ¼ El

i � Eo
i

¼ j � f 2i � di � ci �
x0

gi
� 2

di
B�to

i � 1

� �
� toi :

ð14Þ

Theorem 1 For mobile edge computing systems based on

TDMA, the energy saved by edge computing increases as

the extension of transmission time.

Proof Theorem 1 can be proved by derivation. The

derivative of Es
i with respect to toi is

Es0
i toi
� �

¼ x0

gi
� di

B � toi
� 2

di
B�to

i � ln 2� 2
di
B�to

i þ 1

� �
: ð15Þ

Define a variable x ¼ di
�

B � toi
� �

; x� 0, and a function

f xð Þ ¼ x � 2x � ln 2� 2x þ 1, we just need to determine the

positivity of f xð Þ because x0

�
gi � 0. The derivative of f xð Þ

is

f 0 xð Þ ¼ x � 2x � ln 2ð Þ2: ð16Þ

It is evident that for x� 0, we have f 0 xð Þ� 0. Besides, we

have f 0ð Þ ¼ 0. Thus, it can be derived that f xð Þ� 0 for

x� 0, i.e., the derivative of Es
i is non-negative. In other

words, the energy saved by edge computing increases as

the extension of transmission time. h

For the sake of discussion, we first give the definition of

minimum transmission time.

Definition 4 For device i, the transmission time that sat-

isfies Es
i ¼ 0, namely El

i ¼ Eo
i is defined as the minimum

transmission time, denoted by tmi .

According to Theorem 1 and Definition 4, the following

conclusion can be drawn: only when the transmission time

of device i, toi [ tmi , device i tend to offload its task.

Otherwise, it is more efficient to choose local computing.

Futhermore, the objective of P2 can be replaced by

max
Pn

i¼1 E
s
i . We just need to determine the transmission

time for each device. For device i, if toi ¼ 0 then ai ¼ 0,

otherwise, ai ¼ 1.

When the edge cloud has infinite capacity, the time of

edge computing tei ¼ 0 according to (4). The offloading

sequence schematic diagram is shown as Fig. 3. Then, (9)

is reduced to the following form.

tci ¼
X
j2P ið Þ

toj þ toi ; i 2 O: ð17Þ

Then, the constraint C2 can be expressed asP
i2O toi � T . Through the transformation of the objective

and constraint, we found that P2 is very similar to the

packet knapsack problem, the difference is that toi is a

continuous variable rather than a discrete variable.

To determine the transmission time of each user, a time

infinitesimal Dt Dt\\Tð Þ is adopted to discretize toi . If

device i is offloading necessary device, to achieve energy

efficiency, the least transmission time should be tmi . For

device i, the possible values of toi are

toi ¼
tmi ; t

m
i þ Dt; . . .. . .; tmi þ k1 � Dt; tli [ T

0;Dt; . . .. . .; k2 � Dt; otherwise

	
ð18Þ

So, we first allocate the respective tmi to the offloading

necessary devices. The remaining time to allocate is

T 0 ¼ T �
P

i2On
tmi . For offloading necessary devices, we

just need to determine additional redistribution of trans-

mission time over tmi .

The computation offloading decision problem is trans-

formed into a packet knapsack problem which can be

solved by dynamic programming. Each device is treated as

a group and for device i, the possible values of transmission

time are the items in this group and only one certain value

of toi can be selected. The key to solve dynamic program-

ming problem is to find the state transfer equation. For any

possible value of toi , there are two options, i.e., selecting the

value or not selecting the value.

Let E� i½ � t½ � represent the maximum energy consumption

that can be saved when the former i devices using time t to

offload. For device i, if toi is selected to be a certain value in

(18), the saved energy by device can be calculated

Fig. 3 Offloading sequence with infinite edge capacity
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according to (14). Then, the remaining allocatable time is

T 0 � toi . In this case, we can obtain that

E� i½ � t½ � ¼ E� i� 1½ � t � toi

 �

þ Es
i toi
� �

: ð19Þ

Otherwise, if toi is selected to be 0, The remaining allo-

catable time is still t. In this case, we can obtain that

E� i½ � t½ � ¼ E� i� 1½ � t½ �: ð20Þ

Thus, the state transfer equation is as follows

E� i½ � t½ � ¼ max E� i� 1½ � t½ �;E� i� 1½ � t � toi

 �

þ Es
i toi
� �� 

:

ð21Þ

Then, the transmission time of each device can be

obtained by backtracking. But it is worth notice that for

offloading necessary devices, the actual transmission time

has to be plus its tmi . The transmission power can be cal-

culated according to (4). The detailed process is described

in Algorithm 1.

5.2 MECO with finite edge cloud capacity

When the edge cloud has finite capacity, the time of edge

computing cannot be ignored any more. The offloading

sequence schematic diagram describing the finite edge

capacity sees Fig. 4. It can be known from (9) that the

completion time is related to the precursor node set P ið Þ, in
other words, the completion time is related to the sequence

of data transmission. So we can shorten the overall com-

pletion time by adjusting the offloading sequence [35]. If

the edge computing time of the previous offloading device

is longer than own transmission time, the overall comple-

tion time will be prolonged and the overall completion time

is related to the offloading order. In order to make the

overall completion time as short as possible, we need to

manage the order among offloading devices.

For mobile edge computing systems based on TDMA,

there is a channel for data transmission and an edge cloud

for edge computing. In fact, data transmission and edge

computing can be seen as two working procedure, and the

offloading sorting is a two-stage production schedule. To

achieve the shortest overall completion time, Jackson

Algorithm is applied to solve this problem.

Fig. 4 Offloading sequence with finite edge capacity
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The sorted offloading strategy violates the constraint of

latency tolerance, so we need to adjust the above solution.

The completion time of each offloading device can be

obtained according to (9). The devices whose tci exceeds

T will be shifted to local computing. The detailed process

to obtain offloading decision with finite edge cloud

capacity is described in Algorithm 2.

5.3 Complexity of DPESO

Firstly, the complexity of Algorithm 1 to solve the com-

putation offloading decision with infinite edge cloud

capacity is analyzed. The time complexity of the loop to

determine whether device i is offloading necessary device

(line 1-6, Algorithm 1) is O nð Þ. As to the step to determine

the offloading options and transmission power (line 8-20,

Algorithm 1), the number of cycles in the first loop is

n. The second and third loops are the traversal from 0 to

T with a step size of Dt, each of which has T=Dt operations.

Therefore, the complexity of this step is OðnðT=DtÞ2Þ.
After the above step, we can obtain the value of E�½i�½t�ði ¼
1; . . .; n; t ¼ 0;Dt; . . .; TÞ for each i and t, making up the

state space En�ðT=DtÞ. We need to traverse the state space

En�ðT=DtÞ to determine the transmission time for each

device, and it has the complexity of O n � T
�
Dt

� �
. In

summary, the complexity of Algorithm 1 is

O nþ n
T

Dt

� �2

þn � T
Dt

 !
¼ O n

T

Dt

� �2
 !

: ð22Þ

Then, the complexity of the proposed DPESO algorithm to

solve the computation offloading decision with finite edge

cloud capacity is analyzed. Because Algorithm 2 is based

on the results of Algorithm 1, the complexity of Initialize

in Algorithm 2 is OðnðT=DtÞ2Þ. The time complexity of the

loop to calculate the time of edge computing (line 2–4,

Algorithm 2) is O(n). The time complexity of the

offloading sorting (line 5–12, Algorithm 2) is O nlog2nð Þ.
Adjusting the feasibility of the solution is the process of

comparing the completion time of each device with the

latency tolerance, whose time complexity is O(n). In

summary, the complexity of the proposed DPESO algo-

rithm is

O n
T

Dt

� �2

þ2nþnlog2n

 !
¼O n�max

T

Dt

� �2

;log2n

( ) !
:

ð23Þ

Table 1 Simulation parameters setting

Parameters Value

B 2 MHz

x0 10�9

T 100 ms

j 10�27

fe 10 GHz

di 40–200 kb uniformly

ci 100–500 cycles per bit uniformly

fi 0.5–1 GHz uniformly

di 5–30 m uniformly
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6 Numerical simulation

In this section, the performance of the proposed DPESO

algorithm is evaluated by simulation. The simulation set-

tings are first given and the following simulation results

show the efficiency in energy saving.

6.1 Simulation settings

An edge computing system which consists of multiple

devices and an edge server is simulated to run the proposed

DPESO algorithm. The simulation is implemented ran-

domly by Monte Carlo method. The main simulation

parameters are listed in Table 1 unless otherwise specified.

According to the model for cellular radio environment [36],

the channel gain is set as gi ¼ di
�a, where di is the distance

between the edge server and device i and a ¼ 4 is the path

loss factor.

To visually evaluate the performance of the proposed

DPESO algorithm, the following baseline strategies are

simulated for comparison.

• Local computing only (LCO): Except for offloading

necessary devices, all tasks are executed locally.

• Resource equal allocation (REA): The resources are

allocated to offloading devices equally.

• Energy-based priority allocation (EPA): Devices with

high local computing energy consumption has a high

offloading priority, and the transmission time is

allocated based on local computing energy

consumption.

6.2 Performance and analysis

The first part of simulation is the performance of the pro-

posed DPESO versus the number of devices. Fig. 5 shows

the energy consumption of the LCO, REA, EPA and

DPESO strategies under different numbers of devices.

Following observations can be made. First, the energy

consumption of each offloading strategy increases as the

number of devices grows. Second, the energy consumption

of the proposed DPESO strategy is much lower than the

LCO, REA and EPA strategies. For example, when the

number of devices is 50, the DPESO strategy can reduce

52.49%, 45.02% and 18.28% of energy consumption

compared with the strategies of LCO, REA and EPA,

respectively.

To evaluate the DPESO algorithm more comprehen-

sively, two metrics, i.e., the utilization of edge server

(UES) and number of offloading devices (NOD) are

introduced. In Fig. 6(a), it can be observed that the UES of

the DPESO and EPA strategies increases gradually until a

stable value is reached while that of the REA strategy stays

low. Fig. 6(b) shows that for the DPESO and EPA strate-

gies, the NOD first increases to about 20 and then decreases

with the growing number of devices. However, the DPESO

strategy has a slower rate of decline than the EPA. This is

because when the UES reaches a high level, further growth

in the number of devices will increase competition for edge

resources, causing the decline in the NOD. And the DPESO

algorithm well considers the competition among offloading

devices, so it makes more devices benefit from edge

computing. Furthermore, the combination of Figs. 5 and 6

Fig. 5 Average energy consumption versus the number of devices

Fig. 6 a The UES versus the

number of devices; b the NOD

versus the number of devices
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illustrates the DPESO strategy can make full use of the

limited resources.

The second part of simulation evaluates the impact of

system parameters. Edge computing has the advantage over

cloud computing in the better channel quality. So B is

chosen for simulation to evaluate the DPESO algorithm. In

addition, the impact of the latency tolerance of service T is

also evaluated. The number of devices is set to 30 in this

part.

Figure 7 shows the impact of T and B on the average

energy consumption. Experiments are conducted with dif-

ferent value of T ¼ 80; 90; . . .; 150ms and

B ¼ 1; 2; . . .; 7MHz, respectively. In Fig. 7(a), It can be

seen that the energy consumption under the REA and EPA

strategies decline almost linearly with the increasing

T. With respect to the DPESO strategy, the rate of decline

in energy consumption slows down gradually. Further-

more, the DPESO strategy always consumes the least

energy and has the greatest reduction in energy consump-

tion. This is because the relaxation of the latency tolerance

constraint reduces the number of offloading necessary

devices, weakening the competition among offloading

devices and releasing the resources occupied by these

devices.

In Fig. 7(b), as B increases, the energy consumption

performed by every strategy tends to decrease but the rate

of decline slows down gradually. It indicates that the

enriching of a single type of resource is not a sustainable

way to reduce energy consumption. So when deploying the

resources of edge computing systems, people should

coordinate deployment throughout the system. Moreover,

the energy consumption by the DPESO strategy is always

the lowest regardless of channel bandwidth.

In the third part of simulation, the average running time

of the proposed algorithm is evaluated on a computer

equipped with Intel Core i5-7500, 3.40 GHz processor and

8 GB RAM. Table 2 shows the results of average running

time versus the different value of Dt. The number of

devices is set to 30. It can be observed that the average

running time of the algorithm almost decreases exponen-

tially with the increase of Dt, while the average energy

consumption increases. When Dt is selected to be an

Fig. 7 a Impact of the latency

tolerance; b impact of the

bandwidth

Table 2 Average running time

versus Dt
Dt (ms) 0.02 0.05 0.1 0.2 0.5 1 2

Average running time (s) 9.4125 1.5314 0.4722 0.1197 0.0401 0.0183 0.0124

Average energy consumption (mJ) 4.770 4.772 4.779 4.795 5.013 6.125 8.434

Table 3 Average running time

versus number of devices
Number of devices 10 20 30 40 50 60 70 80

Average running time (s) 0.1847 0.3495 0.4722 0.5319 0.6835 0.8291 0.9745 1.1218

Fig. 8 Features of local devices and offloading devices
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appropriate value (0.05–0.2ms), the proposed algorithm

can obtain the almost optimal offloading decision in a

relatively short time.

Table 3 shows the results of average running time ver-

sus the different number of devices. The value of Dt is set
to 0.1ms. It can be observed that the average running time

of the algorithm increases almost linearly with the number

of devices, which further illustrates the scalability of the

algorithm.

In the last part of simulation, the main parameters of

devices are analyzed. Figure 8 shows the means of di; ci; fi
and gi of offloading devices and local computing devices,

respectively.By comparison, it is observed that offloading

devices have larger data size, better channel quality, higher

computational complexity and CPU frequency. This can be

explained by (2) and (13), which illustrate that El
i is posi-

tively correlated with di; ci; fi and Eo
i is negatively corre-

lated with gi. The higher energy consumption of local

computing, the more likely it is to save energy by

offloading. The better channel quality is, the lower trans-

mitting power of device will be, that is, the more inclined

to offload.

7 Conclusions

In this paper, the energy saving problem of computation

offloading decision in multi-device edge computing sys-

tems is studied. Aiming at the inadequacies of edge exe-

cution model, which may lead to resource conflict and

resource waste, we present the scheduling model for edge

server. Then, the computation offloading decision problem

is formulated as an energy consumption optimization

problem with the latency tolerance constraint. In order to

solve the above NP-hard problem, the original optimization

problem is transformed into an analogous packet knapsack

problem. Then, the DPESO algorithm is designed to obtain

the offloading strategy including the offloading option,

offloading sequence and transmission power. Simulation

results show that the DPESO offloading strategy can

achieve the much better performance than the baseline

strategies in terms of energy consumption. Besides, simu-

lations of system parameters demonstrate the good scala-

bility of the DPESO algorithm.
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