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Abstract
Cross-modal retrieval aims to search the semantically similar instances from the other modalities by giving a query from

one modality. Recently, generative adversarial networks (GANs) has been proposed to model the joint distribution over the

data from different modalities and to learn the common representations for cross-modal retrieval. However, most of

existing GANs-based methods simply project original representations of different modalities into a common representation

space, and ignore the fact that different modalities share the common characteristics and on the other side each modality

has the individual characteristics. To address this problem, in this paper, we propose a novel cross-modal retrieval method,

called representation separation adversarial networks, which explicitly separates the original representations into common

latent representations and private representations. Specifically, we minimize the correlation between the common repre-

sentations and private representations to ensure independence of them. Then, we reconstruct the original representations

via exchanging the common representations of different modalities to encourage the information swap. Finally, the labels

are utilized to increase the discriminant of common representations. Comprehensive experimental results on two widely

used datasets show that the proposed method achieved better performance than many existing GANs-based methods, and

demonstrate that explicitly modeling the private representation for each modality can improve the model to extract

common latent representations.

Keywords Cross-modal retrieval � Adversarial learning � Common representation � Private representation �
Representation separation

1 Introduction

In social network, lots of multi-modal data, such as, image,

video, text, audio are mixed together and endow semantic

correlations. Many single-modality approaches have been

proposed to understand those data, such as image classifi-

cation or retrieval [1, 2], sentence semantic matching [3]

and answer selection [4, 5]. There is immediate need to

analyze those data across different modalities, such as

retrieving similar instances from the other modalities giv-

ing a query from one modality [6], i.e., cross-modal

retrieval. In recent years, cross-modal retrieval has gaining

lots of attentions [7–10]. The main challenge for cross-

modal retrieval is how to measure the similarity between

the data from different modalities because of the semantic

gap, heterogeneity and diversity within them.

To mitigate this problem, an intuitive way is to learn a

common latent representation space, in which the
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similarity between data from different modalities can be

measured directly. For example, the classical methods are

to learn linear projection by maximizing the correlations

between the pair-wise data from different modalities. Such

as, canonical correlation analysis (CCA) [11] was adopted

to project text features and image features into a low-di-

mensional common subspace for cross-modal retrieval

[12]. Furthermore, some extensions of kernel-based meth-

ods [13, 14] have been proposed to model more complex

correlations among different modalities. However, the

main drawback of those methods is that they are simply to

project the original representation into a common space

and neglect the unique property of each modality.

Thanks to the successful applications of deep neural

network (DNN), a large number of DNN-based methods

have been proposed to cross-modal retrieval. For instance,

deep canonical correlation analysis (DCCA) [15] combined

deep network with CCA for cross-modal retrieval. The

correspondence autoencoder (Corr-AE) [16] was proposed

to model the correlations of different modalities through

incorporating representation learning and correlation

learning. Cross-modal multiple deep networks (CMDN)

[17] was proposed by constructing hierarchical network

structure to model the correlations of inter-modality and

intra-modality.

Recently, some GANs-based cross-modal retrieval

methods [6, 18] have been proposed. For example, adver-

sarial cross-modal retrieval (ACMR) [6] proposes to learn

the discriminative and modality-invariant common repre-

sentations by adversarial learning. Cross-modal generative

adversarial networks for common representation learning

(CM-GANs) [18] exploits the cross-modal correlation by

the weight-sharing constraint. However, most of the

existing DNN-based [16, 17, 19–22] and GANs-based

works [6, 18] simply project original representations into a

common representation space and ignore the specific

information in each modality. In fact, data from different

modalities have some common characteristics and also

have private characteristics for each modality. Because

those data come from different modalities and have

inconsistent distributions. An intuitive way is to introduce a

private subspace to capture modality specific properties,

and introduce a common subspace to capture the properties

shared by different modalities [23].

In this paper, we propose a novel cross-modal retrieval

method, called Representation Separation Adversarial

Networks (ReSAN), which separates the original repre-

sentations into common representation and private repre-

sentation. Figure 1 shows the framework, which includes

two sub-networks, i.e., image sub-networks and text sub-

networks. First, to separate the original representation, we

minimize the correlations between common and private

representation to encourage them to be independent. At

shown in the red box with dotted lines in the Fig. 1, we

hope that common representations only contains the com-

ponents shared by different modalities, while private rep-

resentations only contains the unique components of each

modality. Then, we reconstruct the original representations

by exchanging the common representation to encourage the

information swap across modalities. Finally, we use

semantic information to make the common representation

to be discriminative and modality-invariant. The main

contributions of this work can be summarized as follows:

• We propose a representation separation adversarial

networks for cross-modal retrieval, which explicitly

splits the original representations into common repre-

sentations and private representations.

• We propose a modality-variant common representation

learning strategy, which can exchange the information

among modalities during learning processing.

• We evaluate the proposed method ReSAN on cross-

modal retrieval and the results demonstrate it obtained

best performance compared to most existing methods.

The rest of paper is organized as follows. We first briefly

review the related works in Sect. 2, and present the pro-

posed method in Sect. 3. Then, we derive the algorithm in

Sect. 4, and conduct experiments in Sect. 5. Finally, we

conclude this paper in Sect. 6.

2 Related works

Since generative adversarial networks (GANs) [24] have

been proposed in 2014, it has been used in a wide appli-

cations, such as image style transformation [25, 26], image

synthesis [27, 28], object tracking [29] and zero-shot

learning [30, 31]. The original GANs consists of a gener-

ative model G and a discriminative model D. The gener-

ative model aims to generate fake data and capture the

distribution over real data, discriminative model aims to

discriminate the real data and generated data. G and D play

the minimax game on V(G, D) as follows:

min
G

max
D

VðG;DÞ ¼Ex� pdataðxÞ½logDðxÞ�

þ Ez� pzðzÞ½logð1� DðGðzÞÞÞ�
ð1Þ

where x denotes the real data and z is the noise input. Wang

et al. [6] first introduce the GANs into cross-modal

retrieval and proposed adversarial cross-modal retrieval

(ACMR), which learns modality-invariant and discrimi-

native common representations through adversarial learn-

ing. Wu et al. [32] proposed cycle-consistent deep

generative hashing for cross-modal retrieval, which learns

a couple of hash mappings by cycle-consistent adversarial

learning without paired input-output examples. Peng
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et al. [18] proposed cross-modal generative adversarial

networks for common representation learning (CM-GANs),

which considers both inter-modality and intra-modality

adversarial learning in a more effective manner to learn

common representation. Although those methods exploit

the cross-modal correlation by adversarial, however, they

ignore private components of the original representations.

Recently, domain separation networks (DSNs) [33] is

proposed for transfer learning [34]. It explicitly separate

the representations of different domain into two parts: one

is the private component and the other is the shared com-

ponent across domains. The experimental results demon-

strate its success in unsupervised domain adaption

scenario. Yang et al. [23] propose shared predictive cross-

modal deep quantization (SPDQ), which construct a shared

subspace and two private subspaces to adequately exploit

the intrinsic correlations among multiple modalities.

Inspired by those works, this paper is dedicated to separate

the original representations into common representation

and private representation explicitly and exploit common

latent semantic representations. Different from works [23],

we achieve this idea under the framework of generative

adversarial networks.

3 Proposed method

3.1 Notations and problem statement

3.1.1 Notations

To simplify the notations, we focus on two modalities, i.e.,

image modality and text modality. Assuming N instances

of image-text pairs, we denote the whole dataset as

O ¼ fðvi; tiÞgNi¼1, where vi is the i-th image feature vector,

ti is the i-th text feature vector. For each pair of data ðvi; tiÞ,
the semantic label is assigned by vector

yi ¼ ½y1i ; y2i ; . . .; ydi �, where d is the total number of cate-

gories, y
j
i ¼ 1 if ðvi; tiÞ belongs to the j-th class while y

j
i ¼

0 otherwise.

3.1.2 Problem statement

Since the image feature vectors and text feature vectors

typically have different statistical properties, they cannot

be directly compared. To address this problem, we propose

to learn the transform function cvi ¼ f ðvi;� vÞ for image

modality, and cti ¼ gðti;� tÞ for text modality, respectively.

cvi and cti denote image and text representation in common

representation space, � v and � t are the parameters of the

a close up of a cat laying on grass near a 
shoe.
A cat is in the grass chewing on a 
shoestring. 
an image of a cat that is playing with a 
shoe.
A cat playing with a shoe in a grassy field.
The cat is laying in the grass next to a 
shoe. 

Image
CNN

Text BoW

Image modality

Text modality

1 0 … 0 1

S

1 0 … 0 1

Image Feature 
Extraction

Text Feature 
Extraction

Adversarial  Loss

Semantic Preserve Loss

private space of 
text modality

private space of 
image modality

Common space 

Fig. 1 The flowchart of the proposed representation separation

adversarial networks (ReSAN) for cross-modality retrieval, which

includes two sub-networks. The upper sub-network is the image

representation learning network, while the below one is the text

representation learning network
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two functions, respectively. After that, we can measure

their similarity by calculating the cosine distance between

cvi and c
t
i. We expect the cosine distance of the semantically

similar image-text pairs is smaller than that of the

semantically dissimilar image-text pairs.

3.2 Model

Inspired by GANs’ strong ability in modelling data distri-

bution and learning discriminative representations, we

utilize GANs to model the distribution over the data of

different modalities and to learn the common representa-

tions. In this paper, we introduce two generative adver-

sarial networks: GANv for image modality and GANt for

text modality.

3.2.1 Generative model

Image representation Generator Gv and text representation

GeneratorGt take image-text paired features hv and ht as the

inputs, respectively. Through several fully-connected layers,

the same length representations rv and rt are obtained for

image modality and text modality. Then, image representa-

tions rv are separated into common representation cv and

private representation pv, while text representations rt are

also separated into common representation ct and private

representation pt, as shown in Fig. 1.

Ideally, we expect that the representations in common

space only include the semantic information shared by

images and texts, while the private representation only

contains their own specific information. To achieve this,

we minimize the cosine distances between representations

in common space and private space for each modality. This

can be formulated as follows:

LSpace� ¼
1

K

XK

i¼1
\c�i ; p

�
i [

2 ð2Þ

where � 2 fv; tg, represents different modalities, \a; b[
is the inner product of a and b, K is the number of instance

in one batch.

To ensure the effectiveness of separation and improve

the information swap among modalities, we reconstruct the

original representations by exchanging the common rep-

resentations among modalities. Specifically, we concate-

nate image private representation pv and text common

representations ct as the input of several fully-connected

layers to reconstruct the image representations r̂v. Simi-

larly, we concatenate text private representation pt and

image common representations cv as the input of several

fully-connected layers to reconstruct text representations

r̂t. The reconstruction loss can be formulated as follows:

LRecon� ¼
1

K

XK

i¼1
ðr̂�i � r�i Þ

2 ð3Þ

where � 2 fv; tg.
To exploit the common semantics from inter-modality

and intra-modality, we denote the inter-modality similarity

matrix of image and text as Svv and Stt, the intra-modality

similarity matrix as Svt. For image modality Svv, we set

Svvij ¼ 1 if image vi and image vj are the same class, and

Svvij ¼ 0 otherwise. Similarly, for text modality Stt, Sttij ¼ 1

if text ti and text tj are the same class, and Sttij ¼ 0 other-

wise. For Svt, we define Svtij ¼ 1 if image vi and text tj

belong to the same class, and otherwise Svtij ¼ 0.

Based on the above notations and discussion, the

objective function of image modality is defined as follows:

LSv ¼ �
1

K

XK

i;j¼1
ðSvtijHij � logð1þ eHijÞÞ

� 1

K

XK

i;j¼1
ðSvvij Cij � logð1þ eCijÞÞ

ð4Þ

where Hij ¼ cosðcvi ; ctjÞ, Cij ¼ cosðcvi ; cvj Þ, cosða; bÞ is the

cosine function used to compute the similarity between a

and b.

Similarly, the objective function of text modality can be

formulated as follows:

LSt ¼ �
1

K

XK

i;j¼1
ðSvtijHij � logð1þ eHijÞÞ

� 1

K

XK

i;j¼1
ðSttijUij � logð1þ eUijÞÞ

ð5Þ

where Uij ¼ cosðcti; ctjÞ. The first term in equations (4) and

(5) is the negative log likelihood of the cross-modal simi-

larities with the likelihood function defined as follows:

PðSvtij jcvi ; ctjÞ ¼
rðHijÞ when Svtij ¼ 1

1� rðHijÞ when Svtij ¼ 0

(

where rðHijÞ ¼ 1

1þe�Hij
.

It is easy to find that minimizing this negative log likeli-

hood is equivalent to maximize the likelihood, which can

make the similarity between cvi and ctj to be large when

Svtij ¼ 1, and to be small when Svtij ¼ 0. The second term in (4)

and (5) measure the inter-similarity of the image and text

modality, respectively. Therefore, Eqs. (4) and (5) encourage

to learn more discriminative common representations.
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3.2.2 Discriminative model

Two discriminators are designed to distinguish the repre-

sentations from common representation space. The image

representation discriminator Dv tries to distinguish the

image representations cv as the real data from representa-

tions ct as fake data. The text discriminator Dt tries to

distinguish the representations ct as the real data from the

representations cv as fake data. Based on this, the adver-

sarial loss for image modality can be defined as follow:

Ladvv ¼ Ecv �Pcv
½logðDvðcvÞÞ� þ Ect �Pct

½logð1� DvðctÞÞ�
ð6Þ

Similarly, adversarial loss for text modality can be defined

as follow:

Ladvt ¼ Ect �Pct
½logðDtðctÞÞ� þ Ecv �Pcv

½logð1� DtðcvÞÞ�
ð7Þ

After the adversarial learning, ultimately the discriminators

cannot identify the representations come from which

modality. The cross-modal correlations could be well

learned and the discriminative common properties are

simultaneously captured.

3.3 Objective function

With the above definitions, the whole objective function

can be formulated as follows:

min
Gv;Gt

max
Dv;Dt

LGANv
ðGv;Gt;DvÞ þ LGANt

ðGv;Gt;DtÞ ð8Þ

where LGAN� ¼ Ladv� þ aLSpace� þ bLRecon� þ cLS� ,
� 2 fv; tg, a, b and c are the regularization parameters.

4 Algorithm

4.1 Optimizing discriminative model

Following [6], we adopt stochastic gradient method to

optimize the discriminator. For the image pathway, image

discriminator is conducted to maximize the log-likelihood

to correctly discriminate common representations. It is

trained by ascending their stochastic gradient with the

following equation:

hDv
 hDv

þ l � rhDv

1

K

XK

i¼1
½logðDvðcvi ÞÞ þ logð1� DvðctiÞÞ�

ð9Þ

where hDv
are parameters of image discriminative model, l

is learning rate. Similarly, for the text discriminator in text

pathway, it is trained by ascending their stochastic gradient

with the following equation:

hDt
 hDt

þ l � rhDt

1

K

XK

i¼1
½logðDtðctiÞÞ þ logð1� Dtðcvi ÞÞ�

ð10Þ

where hDt
are parameters of text discriminative model.

4.2 Optimizing generative model

For the image generator, it is trained by descending their

stochastic gradient with the following equation:

hGv
 hGv

� l � rhGv

1

K

XK

i¼1
logðDtðcvi ÞÞ þ aLSpacev þ bLReconv þ cLSv

" #

ð11Þ

For the text generator, similarly, it is updated parameters

by descending the stochastic gradient as follows:

hGt
 hGt

� l � rhGt

1

K

XK

i¼1
logðDvðctiÞÞ þ aLSpacet þ bLRecont þ cLSt

" #

ð12Þ

The details of the whole procedure is summarised in

Algorithm 1.
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5 Experiments and results

To evaluate the proposed method, we conduct experiments

on the Wikipedia and the NUSWIDE-10k datasets. In

Sect. 5.1, we describe the datasets and evaluation, fol-

lowing by the implementations details in Sect. 5.2. In

Sect. 5.3, we show the experimental results and analysis.

5.1 Datasets and evaluation

5.1.1 Datasets

The Wikipedia [35] and the NUSWIDE-10k [36] datasets

are widely used for cross-modal retrieval. The Wikipedia

dataset consists of 10 categories, 2866 instances (image-

text pairs), in which 2173 image-text pairs are randomly

selected for training, the rest of 693 image-text pairs are for

testing. The NUSWIDE-10k includes 10 categories and

contains 10,000 image-text pairs, in which 8000 image-text

pairs are randomly selected for training and the 2000

image-text pairs are selected for testing. We adopt 4096d

vector extracted by the fc7 layer of VGGNet [37] as image

feature, text features are 3000d bag-of-words (BoW) vector

in Wikipedia and 1000 BoW in NUSWIDE-10k dataset.

The statistical results of those two datasets are summarised

in Table 1.

5.1.2 Evaluation

In this paper, we use mean Average Precision (mAP) to

evaluate the cross-modal retrieval performances.

mAP ¼ 1

N

XN

i¼1
APðqiÞ

where AP(�) computes the average precision, N is the

number of query samples and qi represents the i-th query

sample. The larger the mAP value is, the better the retrieval

performance is. We conduct two different tasks including

retrieving text using image as query (Img2Txt) and

retrieving image using text as query (Txt2Img), and report

the performance of mAP. The results of ACMR are

obtained by implementing the code provided by the

authors, and the others are reported from the published

papers.

5.1.3 Compared methods

To show the effectiveness of our method, we selected

following representative methods for comparison,

Table 1 The details of two datasets, where ‘‘/’’ in column ‘‘Instances’’ represents the number of training/test image-text pairs

Dataset Instances Categories Image feature Text feature

Wikipedia 2173/462 10 4096d VGG 3000d BoW

NUSWIDE-10k 8000/1000 10 4096d VGG 1000d BoW
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including traditional methods, DNN-based methods and

GANs-based methods.

Traditional methods:

• CCA [38]: It learns linear projection by maximizing the

correlation between pairwise data of different

modalities.

• LCFS [39]: It learns two projection matrices with

sparsity penalties to select relevant and discriminative

features from the coupled feature spaces

simultaneously.

• JRL [40]: It integrates graphs regularization and semi-

supervised information to jointly learn representation

for different modalities.

DNN-based methods:

• Bimodal-AE [41]: It proposes a novel application of

deep networks to learn features over multiple

modalities.

• Corr-AE [16]: It models jointly the cross-modal corre-

lation and reconstruction information.

• CMDN [17]: It models inter-modal invariance and

intra-modal discrimination jointly in a multi-task

learning framework.

GANs-based method:

• ACMR [6]: It seeks an effective common subspace

based on adversarial learning.

FC
Raw image 
feature

Raw text
feature

Image private 
representa�on

Image common 
representa�on

Text private 
representa�on

Text common 
representa�on

40

40

40

40
Text_dim

Image_dim

80

80

Image reconstruc�on 
representa�on

Text reconstruc�on 
representa�on

Leaky relu

Fig. 2 The structural details of the representation separation adversarial networks (ReSAN)

Table 2 The mAP of different methods on the Wikipedia dataset for

Img2Txt and Txt2Img

Methods Img2Txt Txt2Img Avg.

CCA [38] 0.267 0.222 0.245

LCFS [39] 0.455 0.398 0.427

JRL [40] 0.453 0.400 0.426

Bimodal-AE [41] 0.314 0.290 0.302

Corr-AE [16] 0.402 0.395 0.398

CMDN [17] 0.488 0.427 0.458

ACMR [6] 0.515 0.471 0.493

ReSAN (ours) 0.526 0.487 0.507

The best accuracy values are given in bold
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i2t

our

t2i

ACMR

our

CCA

ACMR

CCA

QueryTask Method Top 10  Results

Details of Giant 
O�er reproduc�on 
and life cycle are 
scarce, and cap�ve 
animals have 
provided much of 
the informa�on. …

Like most seabirds, 
the majority of 
procellariids breed 
once a year. There 
are excep�ons; many 
individuals of the 
larger species…

The genus 
''Sarcoramphus'', 
which today 
contains only the 
King Vulture, had a 
wider distribu�on in 
the past. …

Ankylosaurians and 
ornithopods were 
also becoming 
more common, but 
prosauropods had 
become ex�nct . …

This sea eagle gets 
both its common 
and scien�fic names 
from the dis�nc�ve 
appearance of the 
adult's head. …

Males display during 
the breeding season 
at a lek in a 
tradi�onal open 
grassy arena. The Ruff 
is one of the few 
lekking species …

The solitary Short -
beaked Echidna 
looks for a mate 
between May and 
September. …

Fossils of dromaeosaurids 
more primi�ve than 
''Velociraptor'' are known 
to have had feathers 
covering their bodies, and 
fully developed, feathered 
wings.…

The albatross diet is 
predominantly 
cephalopods, fish, 
crustaceans and offal, 
although they will also 
scavenge carrion and feed 
on other zooplankton. …

A mature Sumatran Rhino 
stands about 120 –145 
cen�metres (3.9 –4.8 �) high 
at the shoulder, has a body 
length of around  and weighs 
500–800 kilograms (1100 –
1760 lb), …

This sea eagle gets 
both its common 
and scien�fic 
names from the 
dis�nc�ve 
appearance of the 
adult's head. …

Fossils of dromaeosaurids 
more primi�ve than 
''Velociraptor'' are known 
to have had feathers 
covering their bodies, and 
fully developed, feathered 
wings.…

The genus 
''Sarcoramphus'', 
which today 
contains only the 
King Vulture, had a 
wider distribu�on in 
the past. …

''Myxobolus 
cerebralis'' has a 
two- host life -
cycle involving a 
salmonid fish 
and a tubificid 
oligochaete.  …

The Ruff is a migratory 
species, breeding in 
wetlands in colder regions 
of northern Eurasia, and 
spends the northern 
winter in the tropics, 
mainly in Africa. …

Males display during 
the breeding season 
at a lek in a 
tradi�onal open 
grassy arena. The Ruff 
is one of the few 
lekking species …

Dinosaur 
evolu�on a�er 
the Triassic 
follows changes 
in vegeta�on 
and the loca�on 
of con�nents. …

Like most 
seabirds, the 
majority of 
procellariids 
breed once a 
year. There are 
excep�ons ,…

The melaleuca tree 
causes the most 
destruc�on of any plant 
species, taking large 
amounts of water and 
leaving marsh areas 
desiccated. …

In early June, 
�ltmeter 
measurements 
had shown that 
the volcano was 
infla�ng,…

A�er years of piping 
raw sewage directly 
into the waterway, 
Portland built its first 
sewage treatment 
plant next to the lower 
slough in 1952. …

The main predator of 
the Common Blackbird 
is the domes�c cat, but 
foxes and predatory 
birds, such as the 
Sparrowhawk and other 
accipiters, …

When Shackleton 
was selec�ng the 
crew for his 
Antarc�c expedi�on 
in ''Nimrod'', Joyce 
was one of his 
earliest recruits.…

Some nuthatches, 
such as the Eurasian 
Nuthatch and the 
North American 
species, have 
extensive ranges and 
large popula�ons,…

''P. p. pyrrhocorax'', 
the nominate 
subspecies and 
smallest form, is 
endemic to the Bri�sh 
Isles, where it is 
restricted to Ireland , …

The albatross diet is 
predominantly 
cephalopods, fish, 
crustaceans and offal, 
although they will also 
scavenge carrion and feed 
on other zooplankton. …

This sea eagle gets 
both its common 
and scien�fic 
names from the 
dis�nc�ve 
appearance of the 
adult's head. …

Fig. 3 Examples of the bi-modal retrieval results on Wikipedia dataset by the CCA, ACMR and ReSAN, the results with green borders are

correct, while those with red dotted borders are wrong (Color figure online)

(a) Original image data (b) image representations for ACMR (c) image representations for OUR

(d) Original text data (e) text representations for ACMR (f) text representations for OUR

Fig. 4 t-SNE visualization for ten semantic categories in the Wikipedia test dataset. Different number represents different semantic category
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5.2 Implementation details

The proposed method consists of two sub-networks, one for

image modality and the other for text modality. As shown

in the Fig. 2, the generative model of image modality is a

four fully connected layer network with Leaky ReLU

activation function, which projects the raw image features

into a common subspace. We use a fully connected layer

map the 2048 dimensional vector from the middle layer to

the image private representation space. Then, we con-

catenate image private representation and text common

representation to reconstruct the image representation with

a fully connected layer. The generative model for text

modality is similar to image modality. Each discriminative

Table 3 The mAP of different methods on the NUSWIDE-10k

dataset for Img2Txt and Txt2Img

Methods Img2Txt Txt2Img Avg.

CCA [38] 0.189 0.188 0.189

LCFS [39] 0.383 0.346 0.365

JRL [40] 0.426 0.376 0.401

Bimodal-AE [41] 0.327 0.369 0.348

Corr-AE [16] 0.366 0.417 0.392

CMDN [17] 0.492 0.515 0.504

ACMR [6] 0.529 0.547 0.538

ReSAN (Ours) 0.536 0.569 0.553

The best accuracy values are given in bold

(a) image→text on the Wikipedia (b) text→image on the Wikipedia

(c) image→text on the NUSWIDE-10k (d) text→image on the NUSWIDE-10k

Fig. 5 The PR curves of ACMR and ReSAN on Wikipedia and NUS-WIDE-10k dataset
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model consists of two fully connected layers: the neurons

number in the first layer is 128, and the second layer is 1.

The mini-batch size is set to 64. Moreover, the a, b and c
are empirically set to 0.1, 0.1 and 1, respectively.

5.3 Experimental results

5.3.1 Results on Wikipedia dataset

Table 2 shows the mAP of different methods on this

dataset. From that, we can see that LCFS and JRL obtained

the similar results, which are much better than the tradi-

tional CCA method. GAN-based methods such as ACMR

and ReSAN obtained better results than other traditional

methods and DNN-based methods. Among them, our

method achieved the best performance on this dataset.

Furthermore, we show the top-10 results retrieved by

CCA, ACMR, and ReSAN on Wikipedia dataset in Fig. 3.

From that, we can see that four results are wrong for

CCA. ACMR and our method have obtained good retrieval

performance in the task of Img2Txt. For the task of

Txt2Img, the CCA retrieved some wrong images, which do

not belong to geography category. For ACMR, there is a

wrong result. Compared to ACMR, the results retrieved by

ReSAN are more related to the semantic category although

there is also a wrong result. The reason might be that CCA

measures the global correlation between data from differ-

ent modalities. However, our method and ACMR explore

the semantic information of each modality data based deep

convolutional network, which can reduce the semantic gap

effectively and generate more discriminative

representations.

Furthermore, we visualize the learned representations on

the Wikepedia dataset for ACMR and ReSAN using

t-SNE [42] in Fig. 4. We apply min–max normalization to

make the distribution of each category to be more clear.

From that, we conclude the learned representation by our

method are more discriminative compared to other method.

Specifically, we can see from the figure that the represen-

tation generated for images on some classes (biology,

geography, sport, warfare) are relatively concentrated.

Because our method separate the original representation

into common representation and private representation.

Compared with the original representation, the common

representation obtains more modality independent seman-

tic information which is more helpful to reduce the

modality gap. This demonstrates the effectiveness of the

representation separation.

5.3.2 Results on NUSWIDE-10k dataset

The results on NUSWIDE-10k are presented in Table 3.

From this Table, we obtain following observations: (1) JRL

achieved best performance among the traditional methods,

and demonstrate the advantages of jointly using supervised

information and graph regularization, (2) Among the DNN-

based methods, ACMR and our method obtained the best

performances.

Figure 5 shows the PR curves of ACMR and ReSAN on

Wikipedia and NUS-WIDE-10k dataset. From that, we can

see the PR of ReSAN is better than that of ACMR on

Wikipedia dataset. For NUS-WIDE-10k dataset, ReSAN

achieved comparable results with ACMR.

5.3.3 The effectiveness of different terms

In the proposed method, adversarial learning aims to model

the joint data distribution of different modalities, while

representation separation is to learn common semantic

representations for cross-modal retrieval. To demonstrate

their contribution for improving the retrieval performance,

we denote the ReSAN as three different model, without

adversarial learning as (ReSAN-D), without representation

separation as (ReSAN-P), without reconstruction as

(ReSAN-C). The results are shown in the Table 4. From

that, we can see that three different components effectively

improve the retrieval performance with different levels.

Table 4 The contribution for different terms in ReSAN on the

Wikipedia and NUSWIDE-10k dataset

Method Wikipedia NUSWIDE-10k

Img2txt Txt2img Avg. Img2txt Txt2img Avg.

ReSAN-P 0.512 0.462 0.487 0.471 0.505 0.488

ReSAN-D 0.475 0.437 0.456 0.517 0.542 0.530

ReSAN-C 0.511 0.472 0.492 0.529 0.557 0.543

ReSAN 0.526 0.487 0.507 0.536 0.569 0.553

The best accuracy values are given in bold

\1
00

0s
am

pl
e

Calculate the representations Retrieval 

0.127

0.071

0.022
0.032

Fig. 6 Running time of ReSAN and ACMR
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Among them, the representation separation and recon-

struction plays important roles for the retrieval

performance.

5.3.4 Running time of ReSAN

Figure 6 shows the running time of ReSAN and ACMR. It

can be seen that our method takes longer time to compute

representations than that of ACMR. In fact, it can be done

off-line. During the retrieval stage, our method is faster

than ACMR. This is very important in real applications.

6 Conclusion

In this paper, we proposed a representation separation

adversarial networks for cross-modal retrieval method,

which explicitly splits the original representations into

common representation and private representation for each

modality. To learn modality-variant common representa-

tion, we proposed exchanging strategy the common rep-

resentations among different modalities. Furthermore, we

adopt the label information to increase the discriminant

ability for the common representations. The experimental

results on two wide datasets demonstrate as follows:

modeling the unique part for each modality can effectively

improve the robustness of the common representations. In

the future, we will apply this representation separation

approach for the unsupervised scenarios.
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