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Abstract
Source localization based on the received signal strength (RSS) has received great interest due to its low cost and simple

implementation. In this paper we consider the source localization problem based on the received signal strength difference

(RSSD) with unknown transmitted power of the source using spatially separated sensors. It is well- known that the relative

sensor-source geometry (SSG) plays a significant role in localization performance. For this issue, the fisher information

matrix (FIM) which inherently is a function of relative SSG is derived. Then for different scenarios the SSG based on the

maximization of determinant of FIM is investigated to obtain the optimal sensor placement. Finally, computer simulations

are used to study the performance of various sensor placements. Both theoretical analysis and simulation results reveal the

ability of the proposed sensor- source geometries.

Keywords Source localization � Optimal sensor placement � Fisher information matrix (FIM) � Cramer Rao bound (CRB) �
Sensor-source geometry (SSG) � Received signal strength difference (RSSD)

1 Introduction

Source localization, has been attractive in many research

fields such as wireless sensor networks (WSNs), mobile

communication, microphone array, radio astronomy

[1–13]. Several techniques are available for source local-

ization, including time of arrival (TOA) [14, 15], time

difference of arrival (TDOA) [10, 13], angle of arrival

(AOA) [16, 17], received signal strength (RSS) [16, 18],

frequency doppler, and combination of these techniques

[7–9, 19, 20]. Among these methods, the TOA and TDOA

based methods usually provide better results but they are

expensive to implement [9]. On the other hand, the AOA

based method, requires sensors with multiple antennas or

rotating directional antenna to obtain the AOA of source

[21]. In contrast, the energy based methods using the

received signal strength (RSS) or the received signal

strength differences (RSSD) are attractive due to their low

cost and simple implementation [22–25]. Unlike the RSS-

based localization, the RSSD based localization has not

been adequately investigated. In RSSD method the differ-

ence of the powers measured by a pair of sensors, in a

homogenous environment defines a circle where the source

could lay on it. As a result, the source location is obtained

using the intersection of at least two of such circles [25].

Since the signal power measurements are noisy, therefore

instead of the single cross-point, we encounter with

ambiguous areas. The source location estimation methods

attempt to deal with these uncertainty areas in different

ways. There are several well-known RSSD-based methods

for estimating the location of source. A linear least squares

(LLS) technique was developed by Liu in [22]. In [3], a

minimax optimization and semidefinite programming was

applied to estimate the source location which is efficient for

large signal-to-noise ratio scenarios. Nonlinear least

squares (NLS) method was developed in [25]. A weighted

least squares (WLS) method using the unscented transfor-

mation (UT) was derived in [26]. An important issue that

can severely affect the performance of any localization

algorithm is the relative sensor-source geometry (SSG). In
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[27, 28], the conditions that lead to the optimal sensor

geometry for AOA-localization was derived. In [29], the

optimal geometries of a group of sensors for TDOA-based

localization using both centralized and non-centralized

method was addressed. Two-dimensional sensor placement

using time difference of arrival measurements was studied

in [30]. Optimal sensor arrangement based on RSS was

also studied in [31]. There are also papers that have ana-

lyzed the optimal SSG in heterogeneous sensor networks

[32]. For optimal sensor placement based on the TDOA,

AOA and RSS measurements three optimality criteria are

mainly considered in literature which includes maximiza-

tion of determinant of fisher information matrix (FIM),

maximization of the smallest eigenvalue of FIM, and

minimization of the trace of the inverse of FIM. It is

important that using any of these criteria lead to different

result for optimal sensor placement. In this paper we study

the optimal sensor-source geometry for RSSD based source

localization. For this issue, at the first we derive the FIM

matrix then we use the determinant of FIM as our desired

criterion to obtain the optimal SSG. After that, we use this

criteria in various scenarios and obtain the conditions

which lead to the optimal SSG. The rest of this paper is

organized as follows. In Sect. 2, we introduce our assumed

system model and the required formulations for RSSD

measurements. In Sect. 3, we derive the FIM for our

localization problem. Based on the determinant of FIM, the

optimal sensor placement is discussed in Sect. 4. Simula-

tion results and analysis are provided in Sect. 5. Finally,

Sect. 6 presents the conclusion of this study.

Throughout this paper, vectors and matrices are shown

with bold lowercase and bold uppercase letters; respec-

tively. jAj shows the determinant of matrix A, k � k denotes

the Euclidean norm, and kak2H ¼D aTHa. The (i, j)-th entry

of matrix A is denoted by ½A�i;j, ½a�i represents the ith

element of vector a, and superscript �T denotes the trans-

pose of a vector or a matrix. Finally, Ef�g is used for the

statistical mean of a random variable.

2 The RSSD signal model

We consider a stationary source with unknown location at

p ¼ ½x y�T 2 R2 and N > 3 sensors at known locations si ¼
½xi yi�T for i ¼ 1; 2; . . .;N. Our localization scenario is

illustrated in Fig. 1.

The distance between the source and the ith sensor is

ri ¼ kp� sik and hi ¼ \ðp� siÞ is the bearing angle

between the source and the ith sensor. The RSS at the ith

sensor in the absence of noise whenever the environment is

homogenous can be modeled as [33]

Pi ¼ K0

Pt

rci
for i ¼ 1; 2; . . .;N ð1Þ

where Pt denotes the source transmit power, c is the path

loss exponent, and K0 is the loss component that depends

on the system factor. The path loss exponent c is a function
of the environment and can be a vlaue between 1 and 6 and

we suppose that it is known in this work. Assuming a log-

normal distribution for Pi, then its measured value in dB is

[23]

ePi ¼ 10 logðK0Þ þ Pt � 10c log10 ri þ ei for i ¼ 1; . . .;N:

ð2Þ

Here, ei is the added term due to the noisy measurement

which is assumed to be zero-mean Gaussian with variance

r2i , where Efeiejg ¼ 0 for i 6¼ j. In our assumed system

without loss of generality if we take the Nth sensor as the

reference sensor, then the RSSD between the ith sensor and

the reference sensor will be

eDi¼
D
ePi� ePN þni ¼ 10c log10

rN
ri

� �

þni; for i¼ 1; . . .;N:

ð3Þ

In the above relation, ni ¼
D
ei � eN is the RSSD measure-

ment noise which is the zero-mean Gaussian with variance

ðr2i þ r2NÞ.
Let us define

D¼D 10c log10
rN
r1

� �

� � � 10c log10
rN
rN�1

� �� �T

ð4Þ

n¼D n1 � � � nN�1½ �T ð5Þ

As a result, the RSSD measurement vector can be written

in the following vector form

s1

s2 sN

θ1

r1

θ2

r2

θN

rN

. . .

Source

Fig. 1 An example of a system of sensors for finding the location

transmitter in the region
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eD ¼

eD1

..

.

eDN�1

2

6

6

4

3

7

7

5

¼ Dþ n: ð6Þ

Since Efeiejg ¼ 0 for i 6¼ j and using the following relation

Efninjg ¼ E ð�i� �NÞð�j� �NÞ
� �

¼
r2i þr2N for i¼ j

r2i for i 6¼ j

(

ð7Þ

the covariance matrix of noise vector n can be obtained as

R ¼ EfnnTg ¼ r2n1þ diag r21; . . .; r
2
N�1

� 	

; ð8Þ

where 1is the ðN � 1Þ square matrix with all entries one,

and diagð�Þ represents the diagonalization operator.

3 FIM based on RSSD

In this section we derive the FIM matrix and Cramer-Rao

bound (CRB) matrix for our localization problem. If x is an

unknown vector to be estimated from the measurement

bz ¼ gðxÞ þ w, where w 2 RN is a random vector zero-

mean Gaussian with covariance matrix C, the likelihood

function of x is given as [34]

f
bz
ðbz; xÞ ¼ 1

j2pCj
1
2

exp � 1

2
ðbz � gðxÞÞTC�1ðbz � gðxÞÞ


 �

ð9Þ

For an unbiased estimate bx of x , the CRB matrix gives the

lowest bound for error covariance matrix among any

unbiased estimators [34]. That is

E ðbx � xÞðbx � xÞT
� �

> CRBðxÞ¼D UðxÞ�1: ð10Þ

Here, UðxÞ is the Fisher information matrix which is the

inverse of CRB matrix and its (i, j)th entry is [34],

½UðxÞ�i;j ¼E
o

oxi
lnðf
bz
ðbz; xÞÞ o

oxj
lnðf
bz
ðbz; xÞÞ

� �

¼ ogT

oxi
R�1 og

oxj
þ 1

2
Tr R�1 oR

oxi
R�1 oR

oxj

� �

:

ð11Þ

In the case that the noise covariance matrix C is indepen-

dent of x, we obtain

UðxÞ ¼ ðrxgðxÞÞTC�1ðrxgðxÞÞ; ð12Þ

In the above equation, rxgðxÞ is the Jacobian of gðxÞ.
Based on (12), we obtain the FIM for RSSD localization

problem as follows

U ¼
U11 U12

U21 U22

� �

¼ ðrpDÞTR�1ðrpDÞ ¼ JTR�1J;

ð13Þ

in which J¼D ð$pDÞ is the ðN � 1Þ � 2 Jacobian matrix

which is computed as follows

J ¼ oðDÞ
ox

oðDÞ
oy

� �T

¼
ðz1 � zNÞT

..

.

ðzN�1 � zNÞT

2

6

6

4

3

7

7

5

; ð14Þ

in the above relation zi ¼ b
ri
cos hi sin hi½ �T and b ¼ 10c

ln 10
.

Putting back (14) into (13) and useing R�1 as computed

in Appendix-A, with some mathematical manipulations we

obtain

U ¼
X

N

i¼1

1

r2i
ziz

T
i � a

X

N

i¼1

1

r2i
zi

 !

X

N

i¼1

1

r2i
zi

 !T

: ð15Þ

where a ¼
PN

i¼1
1
r2i


 ��1

. Now, we substitute zi into (15) to

obtain the entries of symmetric FIM as

U11 ¼b2
X

N

i¼1

cos2 hi
r2i r

2
i

� a
X

N

i¼1

cos hi
r2i r

2
i

 !2
2

4

3

5; ð16aÞ

U12 ¼ U21 ¼b2
1

2

X

N

i¼1

sin 2hi
r2i r

2
i

� a
X

N

i¼1

cos hi
rir2i

X

N

i¼1

sin hi
rir2i

" #

;

ð16bÞ

U22 ¼b2
X

N

i¼1

sin2 hi
r2i r

2
i

� a
X

N

i¼1

sin hi
r2i r

2
i

 !2
2

4

3

5; ð16cÞ

The Cramer-Rao lower bound (CRLB) is computed as

CRLB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U11 þU22

jUj

s

: ð17Þ

4 Optimum sensors arrangement

To analyze the relative sensor-source geometry we use the

determinant of Fisher information matrix as our cost

function. In the sequel, we obtain the relative sensor source

geometries which maximize the determinant of FIM.

4.1 Determinant of FIM

The determinant of FIM in (16) can be written as
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Uj j¼b4

4

X

N

i¼1

1

r2i r
2
i

 !2

�
X

N

i¼1

cos2hi
r2i r

2
i

 !2

�
X

N

i¼1

sin2hi
r2i r

2
i

 !2
2

4

3

5

�ab4
X

N

i¼1

cos2hi
r2i r

2
i

X

N

i¼1

sinhi
rir2i

 !2

þ
X

N

i¼1

sin2hi
r2i r

2
i

X

N

i¼1

coshi
rir2i

 !

2

4

�
X

N

i¼1

sin2hi
r2i r

2
i

X

N

i¼1

coshi
rir2i

 !

X

N

i¼1

sinhi
rir2i

 !#

:

ð18Þ

It can be seen that the determinant of the Fisher informa-

tion matrix depends on range vector r¼D ½r1 � � � rN �T and

observation angle vector h¼D ½hi � � � hN �T .

Theorem 1 For arbitrary SSG when frigNi¼1 and frigNi¼1

are known fixed, the maximization of the determinant of

FIM over h is equivalent to following optimization problem

bh ¼ arg min
h

X

N

i¼1

vðhiÞ
r2i r

2
i

�

�

�

�

�

�

�

�

�

�

2

2

þ4a
X

N

i¼1

uðhiÞ
rir2i

�

�

�

�

�

�

�

�

�

�

2

H

ð19Þ

in which uðhiÞ ¼ ½cos hi sin hi�T , vðhiÞ ¼ ½cos 2hi sin 2hi�T

and H ¼
P

N

j¼1

1
r2j r

2
j

uðhj � p
2
Þ uTðhj � p

2
Þ which is positive

definite matrix unless hj are equal.

Proof We rewrite the jUj in (18) as

jUj ¼ b4

4

X

N

i¼1

1

r2i r
2
i

 !2

� b4

4

X

N

i¼1

cos 2hi
r2i r

2
i

 !2

þ
X

N

i¼1

sin 2hi
r2i r

2
i

 !2
2

4

þ4 a
X

N

i¼1

1

r2i r
2
i

sin hi
X

N

j¼1

cos hi
rjr2j

� cos hi
X

N

j¼1

sin hi
rjr2j

 !2
3

5:

ð20Þ

Since jUj > 0 and the first term in the right hand of above

equation is positive, clearly to maximize jUj over h, it is
sufficient to minimize the terms in the bracket in above

equation over h as

arg max
h

jUj � arg min
h

Jðr; hÞ; ð21Þ

where

Jðr;hÞ¼D
X

N

i¼1

cos2hi
r2i r

2
i

 !2

þ
X

N

i¼1

sin2hi
r2i r

2
i

 !2

þ4a
X

N

i¼1

1

r2i r
2
i

coshi
X

N

j¼1

sinhj
rjr2j

� sinhi
X

N

j¼1

coshj
rjr2j

 !2

:

ð22Þ

the above relation can be re-written as

Jðr;hÞ¼
X

N

i¼1

vðhiÞ
r2i r

2
i

�

�

�

�

�

�

�

�

�

�

2

þ4a
X

N

i¼1

coshi
rir2i

X

N

i¼1

sinhi
rir2i

" #

H

X

N

i¼1

coshi
rir2i

X

N

i¼1

sinhi
rir2i

2

6

6

6

6

4

3

7

7

7

7

5

¼
X

N

i¼1

vðhiÞ
r2i r

2
i

�

�

�

�

�

�

�

�

�

�

2

þ4a
X

N

i¼1

uðhiÞ
rir2i

�

�

�

�

�

�

�

�

�

�

2

H

:

ð23Þ

h

4.2 Optimal SSG for some special scenarios

In this subsection we study the optimal sensor placement

for various scenarios.

Theorem 2 In the case where the distances frigNi¼1 are

known fixed, the maximum attainable value of determinant

of FIM is jUjmax ¼
b4

4

PN
i¼1

1
r2i r

2
i


 �2

which is obtained if and

only if the following two equalities holds.

X

N

i¼1

vðhiÞ
r2i r

2
i

¼0; ð24aÞ

X

N

i¼1

uðhiÞ
rir2i

¼0: ð24bÞ

Proof From (18) and (22) we can write

Uj j ¼ b4

4

X

N

i¼1

1

r2i r
2
i

 !2

�J r; hð Þ

2

4

3

5 6
b4

4

X

N

i¼1

1

r2i r
2
i

 !2

ð25Þ

it is easy to see that the maximum of jUj is obtained

whenever the two norms in (23) are zero, hence the optimal

conditions (24) are obtained. �

In this paper the geometries which satisfy these

conditions are called as the optimal geometries. On the

other hand the geometries which cannot satisfy the

conditions Eqs (24), but jUj is maximized with the proper

adjustment of hif gNi¼1 , are called as the sub-optimal

geometries. It is easy the following corollary from the

conclude of theorem-2.

Corollary 1 For equal sensor-source ranges (i.e., when

r1 ¼ � � � ¼ rN ¼ r), and equal noise variances

r1 ¼ � � � ¼ rN ¼ r, the upper bound of determinant of

FIM is

jUj 6 b4N2

4r4r4
: ð26Þ
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where the equality holds if and only if

X

N

i¼1

uðhiÞ ¼ 0; ð27aÞ

X

N

i¼1

vðhiÞ ¼ 0; ð27bÞ

and in this scenario we have

CRLB ¼ 2rr

b
ffiffiffiffi

N
p : ð28Þ

h

Corollary 2 For N > 3 with the equal sensor-source ran-

ges r1 ¼ � � � ¼ rN ¼ r and equal noise variances

r1 ¼ � � � ¼ rN ¼ r, equiangular sensor separation is the

optimal geometry.

Proof By defining the complex number

V ¼D ejh1 þ � � � þ ejhN , we can write

P

N

i¼1

cos hi ¼ Vj j cos\V ;

P

N

i¼1

sin hi ¼ Vj j sin\V;
ð29Þ

where j � j and \ show the magnitude and the angle of a

complex number, respectively. To satisfy the condition

(27a), vj j should be zero, which is obtained when his have a
uniform distribution on ½0; 2p�. Similarly, to satisfy (27b),

2his should have a uniform distribution on 0; 4p½ �.1 h

Corollary 3 For N > 6, when the sensor ranges and noise

variances are equal, consider that we have partitioned the

N sensors into q groups fm1; . . .; mqg, then an optimal

geometry of sensors is obtained if each subset of sensors

fmig satisfies the conditions in (27) regardless of the rel-

ative arrangement of individual groups.

Proof The conditions (27) can be written as

X

N

i¼1

uðhiÞ ¼
X

q

k¼1

X

i2mk
uðhiÞ; ð30aÞ

X

N

i¼1

vðhiÞ ¼
X

q

k¼1

X

i2mk
vðhiÞ ð30bÞ

Since for each subset mi we have
P

i2mi
uðhiÞ ¼ 0 and

P

i2mi
vðhiÞ ¼ 0, hence the conditions (27) are satisfied. h

Corollary 4 For N ¼ 3 with the different sensor-source

ranges and equal noise variances the determinant of FIM

can be obtained as

jUj ¼ b4

3r4ðr1r2r3Þ2
r3 sinðAÞ � r2 sinðBÞ � r1 sinðA� BÞ½ �2

ð31Þ

in which, A ¼ h2 � h1;B ¼ h3 � h1.

To obtain the optimal angular sensor separation, by

taking the partial derivative of jUj with respect to A and B,

optimal geometry can be obtained when either

r3 cosðAÞ ¼ r2 cosðBÞ ¼ r1 cosðA� BÞ ð32Þ

or

r3 sinðAÞ ¼ r2 sinðBÞ þ r1 sinðA� BÞ ð33Þ

h

To obtain optimal sensor placement for different sensor-

source ranges using the gradient of FIM determinant, we

can update the sensor configuration, so as to yield an

increase in the specified convex combination of the FIM

determinant.

5 Computer simulations

In this section, first, we present simulation results for two

scenarios with equal sensor ranges and different sensor

ranges. Then, we compare the performance of purposed

optimal sensor placemnt for N=3,6 with other placements.

Furthermore we present optimal placement based on the

A-optimality and D-optimality. Finally we study the effect

of sensor ranges on optimal sensor placement. In our

simulation we assume c ¼ 2; ðr1 ¼ r2 ¼ . . . ¼ rN ¼
�20dBÞ and we consider the sensor with angle h1 ¼ 0� as
the reference.

5.1 Equal sensor ranges

At first, we study optimal sensor geometries for N ¼ 3; 4

with the equal sensor ranges ðri ¼ 1000m; i ¼ 1; 2; 3; 4Þ.
Figure 2 presents the determinant of FIM and the corre-

sponding contour plot versus h2 and h3 for N ¼ 3 with the

equal sensor ranges. As Fig. 2b shows, the maximum value

of jUj is attained when h2 ¼ 120�, h3 ¼ 240� which vali-

date the Corollary 1. Since the maximum value of jUj is
1.2807, which is equal to the upper-bound of Corollary 1,

this solution is optimal geometry.

Figure 3 shows the jUj as function of h3 and h4 for

N ¼ 4, h1 ¼ 0�; h2 ¼ 90� with the equal sensor ranges.

Similar to the above example, equiangular sensor sep-

aration (i.e., h3 ¼ 180�; h4 ¼ 270�) gives the optimal

1 We have to mention that for N > 6 with equal sensor ranges, the

optimal geometry is not unique and equiangular sensor separation is a

special case of infinitely many optimal geometries.
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sensor geometry where jUj ¼ 2:2768. Two optimal

geometries for N ¼ 3; 4 are illustrated in Fig. 4.

5.2 Different sensor ranges

Here, we study SSG when the sensors are located at dif-

ferent distances to the source. At first, we consider N ¼ 3

and r1; r2; r3ð Þ ¼ ð1000m; 1000m; 800mÞ. Figure 5,

shows the determinant and contour plot of FIM versus h2
and h3. As Fig. 5b shows the maximum value of jUj is
1.7495, which is attained whenever

h2; h3ð Þf g 2 125�; 242�ð Þ; 235�; 118�ð Þf g:

Since this maximum cannot reach to the upper bound of

Theorem-2 (i.e., 1.806), these solutions are sub-optimal

geometries. Two distinct sub-optimal geometries are

illustrated in Fig. 6.

The determinant of FIM and corresponding contour plot

versus h3 and h4 for N ¼ 4 are illustrated in Fig. 7.

The bearing angle pairs h3; h4ð Þf g which maximize the

determinant of FIM are given by the set of

h3; h4ð Þf g 2 178�; 273�ð Þ; 280�; 185�ð Þf g. Here, the max-

imum value of jUj cannot reach to the upper bound of

Theorem 2 (i.e.,4.8496), which two distinct sub-optimal

configurations are illustrated in Fig. 8.

5.3 Comparison of different sensor placements

In this part, we consider a region 1000 m � 1000 m where

the sensors are located at the stationary positions on the

circle around the origin ½0; 0�T with radios 1000 m, then we

plot the FIM determinant in this region. To study the

performance of different of sensor placements, we compute

two criteria including, the average jUj as AVjUj and the jUj
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at the origin as jUjð0;0Þ. We know the higher level of jUj or
AVjUj give a batter performance.

Figure 9a shows the jUj for N ¼ 3 with equiangular

sensor separation 120�. Figure 9b shows the jUj for

h1 ¼ 0�; h2 ¼ 60�; h3 ¼ 120�. By Comparing two place-

ments, equiangular sensor separation gives a better per-

formance due to the higher AVjUj and higher jUjð0;0Þ,
which validates the Corollary 1.2

Figure 10 shows jUj for two placements with N ¼ 6

sensors. As Fig. 10 illustrates, the first placement with

equiangular sensor separation 60� gives a better perfor-

mance in average due to higher AVjUj. On the other

hand when the source is located at the origin, the two

placements give equal performance due to equal jUjð0;0Þ
which validates the Corollary 1, because in the second

placement, the sensors are partitioned into two sets

fs1; s2; s3g and fs4; s5; s6g with equiangular sensor sepa-

ration 120�.

5.4 Optimal placement based on D-optimality
and A-optimality

Here we consider two criteria for optimal sensor placement

including maximization of determinant of FIM (D-opti-

mality), and minimization of the trace of the inverse of

FIM (A-optimality). D-optimality criterion minimizes the

volume of the uncertainty ellipsoid for the source estima-

tion [27]. A-optimality criterion, which consists in mini-

mizing the trace of the CRLB matrix, suppresses the

average variance of the estimation error, this creation

introduced in Eq. (17). Now, we consider three sensors

such that the source is located at the origin ½0; 0�T . Fig-
ure 11(a) shows the plot of CRLB as a function of h21 and
h31. The optimal angels which minimizing CRLB are either

ðh21; h31Þ ¼ ð128�; 244�Þ or ðh21; h31Þ ¼ ð230�; 116�Þ. In

Fig. 11(b), the plot of jUj is provided. The optimal angle

that maximizing jUj are either ðh21; h31Þ ¼ ð125�; 243�Þ or
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Fig. 4 a Optimal SSG for

N ¼ 3; b optimal SSG for
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2 Although some places in the Fig. 9b have better performance

respect to the corresponding places in Fig. 9a but in average the

sensor configuration in Fig. 9a gives a better performance for all

region.
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ðh21; h31Þ ¼ ð235�; 118�Þ. We observe that D-optimality

and A-optimality, yield different sensor placements,

whereas it has been shown in AOA-optimization geometry,

the A-optimality is equivalent to the D-optimality [27].

5.5 Effect of sensor ranges on the performance
of optimal placement

We study the effect of sensor ranges on the performance of

optimal geometry using determinant of FIM. Based on

previous statement, we know the higher level of jUj gives
the better performance because it leads to minimization of

uncertainty ellipsoid. We consider optimal geometries for

N ¼ 3; 4; 5, where the source is located at the center of

these sensors. Then we plot the CRLB curves versus dif-

ferent sensor ranges in Fig. 12. As can be seen, with

increasing the sensor ranges the jUj will be minimized.

This means that with increasing the sensor ranges the

uncertainty area of the source estimation will be

maximized.

6 Conclusion

In this paper, we provided a characterization of optimal

sensor placement for RSSD based source localization using

the maximization of determinant of FIM. We derived the

necessary and sufficient conditions to obtain the optimal

sensor placement for different scenarios. The results of this

paper can be used to place the sensors around the source in

order to obtain the best performance for source localiza-

tion. Simulation results showed that the optimal sensor

placement has a good performance compared to the other

placements. Future work can focus on extending the results
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of this paper to optimal trajectory control for moving

RSSD sensor platforms and the optimal sensor geometries

for heterogeneous sensor networks.

Appendix A

Using the matrix inversion lemma [35]

Aþ BCDð Þ�1 ¼ A�1�A�1B C�1þDA�1B
� 	�1

DA�1;

ð34Þ

where

A ¼ diag r21; :::; r
2
N�1

� �

; B ¼ 1 ::: 1½ �T ; C

¼ r2N ; andD ¼ BT

Hence the inverse of R in Eq (8) can be written as

R�1 ¼ A�1 � a s sT ; ð35Þ

where a ¼
PN

i¼1
1
r2i


 ��1

and s ¼
1

r21
:::

1

r2N�1

� �T

.
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