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Abstract
Accurate and efficient detection of the radio-frequency spectrum is a challenging issue in wireless sensor networks

(WSNs), which are used for multi-channel cooperative spectrum sensing (MCSS). Due to the limited battery power of

sensors, lifetime maximization of a WSN is an important issue further sensing quality requirements. The issue is more

complex if the low-cost sensors cannot sense more than one channel simultaneously, because they do not have high-speed

Analogue-to-Digital-Convertors which need high-power batteries. This paper proposes a novel game-theoretic sensor

selection algorithm for MCSS that extends the network lifetime assuming the quality of sensing and the limited ability of

sensors. To this end, an optimization problem is formulated using the ‘‘max–min’’ method, in which the minimum

remaining energy of sensors is maximized to keep energy balancing in the WSN. This paper proposes a coalition game to

solve the problem, in which sensors act as game players and decide to make disjoint coalitions for MCSS. Each coalition

senses one of the channels. Other nodes, that decide to sense none of the channels, turn off their sensing module to reserve

energy. First, a novel utility function for the coalitions is proposed based on the remaining energy and consumption energy

of sensors besides their detection quality. Then, an algorithm is designed to reach a Nash-Equilibrium (NE) coalition

structure. The existence of at least one NE, converging toward one of the NEs, and the computational complexity of the

proposed algorithm are discussed. Finally, simulations are presented to demonstrate the ability of the proposed algorithm,

assuming the systems using IEEE802.15.4/Zigbee and IEEE802.11af.

Keywords Coalition formation game � Game theory � Multi-channel spectrum sensing � Wireless sensor network

1 Introduction

Spectrum sensing is a functionality that is done to monitor

the spectrum activities of primary users (PUs), i.e. detect-

ing the frequency channels that are utilized by the PUs [1].

This functionality is performed by battery-equipped low-

cost frequency sensors in a wireless sensor network (WSN)

[2]. Since one sensor might not be able to reliably detect

weak signals due to fading or shadowing effects, cooper-

ative spectrum sensing (CSS) is proposed based on the

combination of the detection results, from spatially dis-

tributed multiple sensors [1].

The limited energy of sensors due to their battery size

and weight limitations makes the network lifetime as an

important issue in WSN, especially for CSS application.

Several methods are reported in the literature to address

this issue in the CSS application [3]. An efficient way for

extending a WSN lifetime is reducing the number of

cooperative sensing nodes meanwhile guaranteeing the

sensing quality. This solution can be performed through

node selection [4], censoring [5], or voting [6] schemes.

Most of the works have been done on energy-efficient node

selection for CSS, focus on energy conservation or lifetime

maximization in CSS for sensing only one channel [4, 7].

In multi-channel cooperative spectrum sensing (MCSS)
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scenario, where the under monitor bandwidth is composed

of many non-adjacent channels, the node selection

becomes more complicated, because the sensors cannot

sense more than one channel in a sensing duration. This

challenge is caused by the sensors’ hardware limitations,

i.e. the low-cost sensors cannot sense more than one

channel simultaneously, because they do not have high-

speed Analogue-to-Digital-Convertors (ADCs) which need

high-power batteries [8, 9]. In [10], a survey was provided

on various aspects of cognitive multi-channel wireless

sensor networks. A practical method for the MCSS is

monitoring the channels separately [9]. In this method,

sensors cooperate to sense all the channels. However, most

of the works have been done on node selection for MCSS

focus on detection quality or throughput maximization

[11–13]. For instance, an algorithm for scheduling the

sensing nodes into different groups to perform MCSS was

proposed in [11], but in their algorithm, the main goal was

throughput maximization, therefore, all the sensing nodes

do sensing in each of the network lifetime durations.

Clustering is another method for selecting the sensing

nodes for MCSS, e.g. [12] introduced a clustering

scheme for energy management in WSNs. It has been

shown that if a cluster head and its member nodes col-

laboratively perform channel sensing, it provides more

accurate channel sensing and needs less energy than CSS in

a non-clustered WSN. This scheme saves energy because

of reducing the transmission energy of sensors (they send

their sensing results to the cluster head behalf sending to a

fusion center (FC)). However, in the proposed scheme, in

each of the network lifetime durations, all the nodes per-

form sensing which leads to higher false alarms and more

energy. Another energy-efficient MCSS scheme was pro-

posed in [13], in which first, sensors are allocated to dif-

ferent channels based on their detection probability, and

then the thresholds of energy detectors are justified to

conserve energy. In this scheme, all the nodes perform

sensing in each of the network lifetime durations, too.

However, in WSN, the lifetime extending problem needs to

balance the energy consumption between sensors besides

energy conservation and to maintain the detection quality.

Therefore, solving the problem by channel and sensor

selection is an NP-complete problem, in a WSN perform-

ing MCSS while assuming the limited ability of sensors in

sensing more than one channel. In [14], for solving the

problem, a sensor selection algorithm was proposed.

However, the method needs to determine the priority of

channels for assigning cooperative sensors, which makes

the solution very complex. In this paper, we propose an

efficient tool to solve the sensor assignment problem with

lower computational complexity.

Game Theory (GT) is a powerful method, in allocation

issues, for modeling the interaction and cooperation

between players, especially in multi-user scenarios

[15, 16]. Making coalitions using GT, i.e. coalition for-

mation game (CFG), for cooperation in the multi-user

networks has been a high-interest topic. CFG is exactly

good at making the game players (which are the sensors in

the paper) cooperate to obtain the maximum utility [17].

Several works have been done addressing its application

for solving problems in MCSS scenarios, too. For instance,

in [18], CFG was used to solve the problem of throughput

maximization by making overlapping coalitions of the

sensing nodes. In their proposed scheme for MCSS, it was

assumed that every sensing node has multiple EDs and can

sense more than one channel, simultaneously, which is

costly and impossible for some limited applications. It has

also been considered that nodes sense none of the channels

if they have no data for transmission; however other nodes

should sense all the channels simultaneously; hence this

scheme is not energy efficient. Another scheme for MCSS

using CFG was proposed in [19] which investigated the

problem of throughput maximization. In the proposed

scheme, sensing nodes make coalitions and every coalition

cooperatively senses a part of the spectrum; if it was

detected idle, in the coalition, a randomly-selected node

sends data on the idle detected part of the spectrum.

Although this scheme assumed the limitation of nodes in

sensing more than one channel and used the CFG for

making disjoint coalitions, the energy of nodes was not

considered and all the sensors perform sensing in each of

the network lifetime durations. In [20], CFG was used for

clustering and determining cluster heads and fusion rules

for combining the detection results of cooperative nodes to

reduce the detection errors. Also, [21] is another recent

work that has used CFG to improve the detection perfor-

mance of MCSS, where the sensing nodes select PUs, form

groups, and share their sensing results to provide the

maximum communication opportunity for themselves. In

[22], a scheme for MCSS combining CFG with a genetic

algorithm was proposed to select the optimal coalition

heads to improve the detection performance. In this

scheme, the consumption energy decreases because only

the coalition head sends the combined detection results to

the FC, on behalf of all the coalition members. In [23],

using CFG, a distributed cooperative spectrum sensing and

accessing scheme was proposed which takes into account

both the sensing accuracy and energy efficiency in the

utility of coalitions. The scheme needs selecting a decision

node for every coalition and sharing the received SNR of

the nodes in each coalition. However, the utility of each

coalition was defined as the ratio of the opportunistic usage

of the channel to the energy consumption for sensing the

channel. In fact, in their proposed scheme, sensing nodes

are partitioned into groups that provide higher throughput

for them, and also all the nodes do sensing simultaneously.
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However, in [22, 23], extending the network lifetime was

not the main goal and all the nodes do sensing in each of

the network lifetime durations, that it is not necessary for

some applications, because it increases the false alarm

probability.

In [24], to enhance the network lifetime, a framework

combining hierarchical clustering and CFG was intro-

duced. In the proposed framework, first, sensors are clas-

sified into different clusters and a cluster head is selected

for each cluster. Then, in each cluster, sensors make

coalitions using CFG. In each coalition, only one node

senses the channel. In the framework, the coalition for-

mation is based on the node’s probability of accessing the

channels, although the proposed framework reduces the

number of sensing nodes and thereupon it extends the

network lifetime. Also, in [24], each cluster selects a

channel for sensing based on the probability that the

selected node in the coalition can access the channel, i.e.

the consumption energy, remaining energy and detection

quality of nodes are not considered, which is completely

different from our problem. The proposed framework in

[24] is also introduced for a large WSN with the capability

of frequency re-use, which is completely different from our

assumed system model. In [25], CFG was used for select-

ing sensing and transmission nodes in a multi-channel

cognitive radio network. In the proposed scheme, the

nodes, that sense a particular channel with non-identical

sensing times, form a coalition in which a coalition head is

selected to determine whether or not the channel is idle.

The coalition head transmits over the sensed channel if the

channel is idle. The main goal of the scheme is improving

the average throughput meanwhile reducing interference

with PUs and energy efficiency. However, in the scheme,

all the nodes perform sensing; thus, the energy efficiency is

achieved due to determining variable sensing times, not at

reducing the number of sensing nodes.

Because of the efficient results of using CFG in coop-

erative problems, in this paper, the method is investigated.

We propose a novel sensor selection algorithm based on

CFG for lifetime maximization of WSNs performing

MCSS when the sensing quality and limited ability of

sensors in multi-channel sensing are considered, which is

different from other existing MCSS problems. The main

contribution of this paper is:

1. In this paper, we notice the energy consumption

balancing in WSN besides energy conservation, while

most of the works focused on reducing the energy or

increasing the throughput in these networks, at the time

this paper is being written. A novel and low-complex-

ity algorithm based on CFG is proposed for sensor

assignment in a WSN, while some constraints on the

sensing quality are satisfied. In the proposed algorithm,

the sensors play a coalition game and calculate the

reward of joining every coalition for sensing the

channels. Then, they decide to join a coalition for

sensing a channel or to sense none of the channels for

energy conservation. However, the assumed network

model and the objective problem, in this paper are

completely different from the existing works which

have used CFG [18–25], and also from other existing

studies on MCSS issues [11–13]. The network model

and the objective problem in [14] is similar to this

paper, but the convex method was used to solve the

problem in [14]; the method needs to determine the

priority of channels for assigning cooperative sensors,

which makes the solution very complex. Here, CFG is

used to solve the problem and the computational

complexity of the proposed algorithm is discussed and

its efficiency is compared through simulations.

2. Designing a proper utility function is a key challenge in

a CFG. Another novelty of this paper is finding a

proper utility for describing the coalition’s values for

convergence of the proposed algorithm toward an

efficient Nash-equilibrium (NE). The next important

issue in CFGs is how to divide the benefits of the

coalition between the members. In this paper, we use

Shapley value and define a reward function for each

player to move them toward selecting a coalition with

the most total benefit for the system.

3. However, showing that the proposed game has a NE

and also analyzing the convergence of the proposed

game toward a stable NE is not easy to prove because

of the high number of players and choices for them.

Therefore, another novelty of the paper is that we

model the proposed CFG to the ordinal potential game

(OPG), with defining a proper potential function for the

proposed game, to show that the proposed CFG reaches

a stable NE. Since OPG is an exhaustively analyzed

game, we can use its property to prove that the

proposed algorithm adjusts the behavior of sensors

toward Nash-stable coalitions with balancing energy

consumption in the network, a reasonable detection

probability, and a low false alarm probability. Also, the

computational complexity order of the proposed algo-

rithm is discussed. Simulations are conducted for

performance evaluation, which demonstrates the effi-

ciency of the proposed algorithm in lifetime extension

in comparison with the similar existing works [13, 14].

We assume two notable applications for evaluating the

proposed algorithm: IEEE802.15.4/Zigbee and

IEEE802.11af. Power-saving and extending the net-

work lifetime are from the main issues of these

applications.
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The proposed algorithm in the paper can be used for

extending lifetime of a WSN performing MCSS with

applications that the recharge of sensors is difficult or

impossible, such as military networks or out of rural-area

WSNs, e.g. a WSN performing CSS for sensing TV-white

space spectrum for wireless regional area network

(WRAN). The rest of this paper is organized as follows: In

Sect. 2, the system model is expressed. Section 3 formu-

lates the lifetime maximization problem and describes the

problem as a coalition game. In Sect. 4, the GT-based

algorithm is proposed. Then, the convergence of game to

the Nash stability is proved and the complexity of the

proposed algorithm is discussed. The simulation results are

presented in Sect. 5. Finally the conclusions are presented

in Sect. 6.

2 System model

This paper focuses on the centralized MCSS, i.e. a common

kind of cooperation in which there is a fusion center (FC)

that receives the local sensing results from spatially dis-

tributed nodes and makes the final decision about the status

of the channels [26]. We consider a WSN composed of

N frequency sensors and an FC as shown in Fig. 1. The

under monitor frequency spectrum is composed of

M channels with the same bandwidth, which are used by

M PUs. It is assumed that every PU can use only one of the

channels.

It is assumed that each sensor cannot sense more than

one channel at the same time, but a sensor can sense dif-

ferent channels in different sensing times. For this scheme,

every sensor is equipped with a receiver circuit which

composed of a synthesizer, a narrowband filter, and an

energy detector. The simple and low-cost receiver circuit is

plotted in Fig. 2. In this receiver, the synthesizer tunes

frequency based on the decision of the sensor to the center

frequency of the selected channel (for instance the m-th

channel is selected for sensing by sensor n), such that a

sensor senses only one channel in every sensing period. If a

sensor selects none of the channels for sensing, it turns off

its sensing module at the sensing period. Therefore, for

MCSS, a scheme is proposed in which the WSN can

simultaneously sense all the channels. Energy detector

(ED) is used in the receiver of sensors due to the detector

low complexity.1 The signal energy in the m-th channel is

measured by the n-th sensor as: Tm;n ¼ 1
K

PK
k¼1 xm;n kð Þ
�
�

�
�2,

in which xm;n kð Þ denotes the k-th sample of the received

signal from the m-th channel that is observed by the n-th

sensor, and K is the number of samples which is calculated

as fs, where fs is the Nyquist sampling rate of the ED

according to the under-monitor channel bandwidth, and d is

the sensing time. Then, the signal energy is compared with

a threshold, c, to generate one decision bit, i.e. Dm;n. This

bit shows the detected status of the channel by the n-th

sensor, as follows:

Dm;n ¼ 1; if Tm;n � c
Dm;n ¼ 0; if Tm;n\c

�

ð1Þ

When this decision bit is one, it states that the channel is

busy, and when the decision bit is zero, it means that the

channel is idle. Two hypotheses for the state of every

channel are defined. The first, i.e. H0;m, says that the m-th

channel is free, and the second, i.e. H1;m, says that the

channel is busy. Hence; the xm;n kð Þ is written as:

H1;m; xm;n kð Þ ¼ gm;n � sm kð Þ þ vm;n kð Þ
H0;m; xm;n kð Þ ¼ vm;n kð Þ

�

ð2Þ

in which the k-th sample of the PU signal on the m-th

channel is denoted by sm kð Þ, that is assumed to be an i.i.d

Fig. 1 A sample of system model

Fig. 2 The receiver circuit of every sensor

1 This assumption does not have an effect on the proposed algorithm,

and it can be extended to the other existing proper detectors, easily.
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random Gaussian process with zero mean and variance r2
Sm

.

The additive white Gaussian noise with zero-mean and

variance r2
0 is denoted by vm;n. It is assumed that sm and

vm;n are independent. The channel gain between the m-th

PU and the n-th sensor is denoted by a random variable

gm;n. We consider the path loss, Rayleigh fading and

shadowing effects to model the PU-sensor channel [14].

Hence; under the assumed channel model, the n-th sensor

received signals to noise ratio (SNR) from the PU which

uses the m-th channel, i.e. SNRm;n, is obtained as [7]:

SNRm;n ¼
pt gm;n
�
�

�
�2r2

Sm

r2
0

ð3Þ

in which pt denotes the transmission power of PUs. It is

assumed that every sensor knows the instantaneous

received SNR from all the channels.2

There are two important metrics for the spectrum

sensing quality of a sensor which are called false alarm

probability (FP) and detection probability (DP). The FP

states the probability that a sensor decides a channel is busy

when the channel is free. The DP states the probability that

a sensor detects a PU signal if the PU is transmitting

actually. Therefore, the local FP and DP of a sensor about

the status of the m-th channel are, respectively as [7]:

Pfm;n ¼ P Dm;n ¼ 1jH0;m

� �
¼ Q

c

r2
0

� 1

� �
ffiffiffiffiffiffi
dfs

p
� �

ð4Þ

Pdm;n ¼ P Dm;n ¼ 1jH1;m

� �

¼ Q
c

r2
0

� SNRm;n � 1

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dfs

2SNRm;n þ 1

s !

ð5Þ

Here Q :ð Þ denotes the complementary distribution

function.

As mentioned, due to fading or shadowing effects and

also limited sensing range of sensors, selecting only a

single sensor for sensing every channel may fail to detect

the PU signals correctly [9]. To improve the sensing

quality, we assume a centralized CSS scheme, in which all

sensing nodes send their decision bits to an FC, and the FC

uses the logic OR rule to fuse the decisions of sensors to

make the final decision about busy or idle status of the

channels (For a comparison on the CSS methods and the

fusion rules for CSS see [26]). Because of hardware limi-

tations of sensors in sensing more than one channel, in

every sensing duration, all the nodes should be classified

into disjoint groups and every group of sensors senses only

one channel. In this paper, the cooperative sensors for

sensing the m-th channel are inserted in a set Jm, where the

sets are non-overlapping for m = 1,…,M. After sensing

duration, the selected cooperative nodes send their decision

bits to the FC. Thus, the global detection probability (GDP)

(Pdm) and the global false alarm probability (GFP) (Pfm ) for

the m-th channel are respectively calculated as:

Pdm ¼ 1 �
Y

n2Jm
1 � Pdm;n

� �
ð6Þ

Pfm ¼ 1 �
Y

n2Jm
1 � Pfm;n

� �
ð7Þ

The Eqs. (6) and (7) shows that when the number of

cooperative nodes increases, both the GDP and GFP

increases. The higher GDP leads to reduce the data loss of

the occupied channels, but the higher GFP leads to lower

ability to detect empty channels. Therefore, if all sensors

participate in sensing, it leads to high energy consumption

and more GFP about the channels without increasing sig-

nificant GDP [1]. In this paper, sensor assignment is done

until reasonable GDP is provided for sensing the channels;

hence the sensors which decide to sense none of the

channels are inserted in a set J0.

The energy consumption of a sensor in a WSN mainly

depends on two factors: the sensing energy, and the

transmission energy. Therefore, the energy consumption of

the n-th sensor is calculated as [7]:

ECn ¼ Es þ Etn ð8Þ

The sensing energy, i.e. Es, is the amount of energy that

a sensor consumes to sense a channel and to make its

decision about the status of the channel (for synthesizer and

detector circuit). It is assumed that Es is constant, and it is

the same for all sensors (It is assumed that all sensors,

which decides to participate in CSS, pick samples with a

similar sampling rate in a fixed sensing duration, although

the results can be extended to the different assumption such

as different sensing times or different bandwidth for dif-

ferent channels). The Etn denotes transmission energy

which is the energy to send the decision bit to the FC

reliably, and it is calculated as [7]:

Etn ¼ Et�elec þ eamp � d2
0;n; ð9Þ

in which Et�elec is the energy used for the electronic cir-

cuits of a sensor transmitter, eamp is the amplifying coef-

ficient, and d0;n is the distance between the n-th sensor and

the FC.

In the next section, with the aim of lifetime maximiza-

tion, a sensor selection problem is raised for MCSS under

GDP and GFP constraints.2 There are studies on the SNR estimation of nodes in spectrum

sensing networks, but it is not the goal of this paper. Although the

assumption seems unrealistic for some scenarios, it does not affect the

proposed algorithm, and the algorithm steps can be done based on the

average SNR or Packet Reception Ratio, similarly [26].
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3 The GT-based problem

This paper investigates lifetime maximization for a WSN

performing MCSS. There are different definitions for the

lifetime of a WSN based on the network application

[27, 28]. One of the most used definitions of a WSN life-

time is the time at which a group of sensors runs out of

energy [14]. We here define the network lifetime as:

Definition 1 (The WSN lifetime) The lifetime of the fre-

quency sensor network is the time until the number of live

sensors drops below L � N where 0\L� 1, [27].

The reason behind this definition is that when only some

of the nodes have enough energy, the duty of spectrum

sensing can be performed. In this paper, a lifetime maxi-

mization scheme is proposed based on sensor selection.

This scheme selects sensors for sensing different channels

in different sensing durations, under some detection quality

constraints. The reason behind such constraints is that the

purpose of this network is to monitor the spectrum activi-

ties. Therefore, the GDP and GFP are limiting the sensor

selection problem. A high GDP must be achieved to reduce

the amount of interference with the PUs. Also, when a false

alarm occurs, it is decided that a PU is transmitting, while

the channel is free, therefore a high GFP is highly unde-

sirable. In an ideal CSS, it should be GDP = 1 and

GFP = 0 for every channel, but such perfect CSS is

impossible in actual systems because, from (6) and (7), it is

concluded that increasing the GDP leads to increase the

GFP. Therefore, we define an upper-bound for GFP and a

lower-bound for GDP denoted by a and b, respectively.

The lifetime maximization problem is presented as:

problem 1 max
Jm

lifetime 8m 2 0; . . .;Mf g ð10 � 1Þ

subject to;

1: Pfm � a 8m 2 1; . . .;Mf g ð10 � 2Þ
2: Pdm � b 8m 2 1; . . .;Mf g ð10 � 3Þ

3: Jm \ Jm0 ¼ ;;
[M

m¼0

Jm ¼ 1; . . .;Nf g

8m;m0 2 0; . . .;Mf g; m 6¼ m0
ð10 � 4Þ

The third constraint states that one sensor cannot sense

more than one channel in a sensing duration. We use the

‘‘max–min’’ method for optimizing the network lifetime

[28]. In this method, the minimum remaining energy of

sensors is maximized. Thus, the sensors that have the lower

remaining energy are not being selected for sensing. It

leads to the remaining energy level of sensors keep bal-

anced, and consequently to extend the network lifetime.

The remaining energy of sensors and the minimum of

remaining energy of sensors are denoted by En and Eth,

respectively. Now, the problem is written as:

problem 2 max
Jm

min Enf g
n

¼ Eth

� 	

8m; n ð11 � 1Þ

subject to;

1: Pfm � a 8m 2 1; . . .;Mf g ð11 � 2Þ

2: Pdm � b 8m 2 1; . . .;Mf g ð11 � 3Þ

3: Jm \ Jm0 ¼ ;;
[M

m¼0

Jm ¼ 1; . . .;Nf g

8m;m0 2 0; . . .;Mf g; m 6¼ m0
ð11 � 4Þ

It is noted that this is a non-convex and NP-complete

problem, and finding the optimal solution needs an

exhaustive search with high complexity. In [14], a method

for solving this problem was proposed. However, it needs

to determine the priority of channels for assigning coop-

erative sensors, which makes the solution very complex.

We seek a more efficient method that will solve the

problem with lower computational complexity. GT is

useful in analyzing the mutual interactions among multi-

users [17]. Because of the efficient results of using GT in

multi-channel problems [15, 25], the method is investi-

gated in this paper. Since the assumed problem is a

cooperative problem and a sensor may not sense a channel

with enough detection probability, therefore, we use a kind

of cooperative game. CFG is a good cooperative game at

making the game players (which are the sensors in the

paper) cooperate to obtain the maximum utility for the

system [17]. This paper proposes that sensors play a CFG

and based on their reward decide to join a coalition to

cooperatively sense a channel or do not participate in the

MCSS. The game is denoted as:

g ¼ N ; Anf gn2N ; u Jmð Þf gJm�N

n o
ð12Þ

in which N ¼ 1; . . .;Nf g denotes the players of the game

which are the sensors. An ¼ an0; an1; . . .; anMf g ¼
0; 1; . . .;Mf g is the set of available actions of player n

(an0 ¼ 0 means sensing no channel and anm ¼ m means

participating in CSS of the m-th channel). An action profile

(a1; . . .; aN) shows the selected actions by the N players,

when an 2 An. In every CFG, there is a utility function that

describes the value of every possible coalition. The value

of a coalition Jm in sensing the channel m is denoted by

u Jmð Þ. In the game, we want to select sensors for sensing M

channels such that the detection quality of sensing satisfies

the constraints (11-2) and (11-3). For reducing the energy

consumption and the false alarm probability, some sensors

are selected and others turn off their sensing module for a

sensing-time-duration. Therefore, the number of coalitions

is fixed and equal to M ? 1: M coalitions for sensing M
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channels and one coalition for the sensors which sense

none of the channels (coalition zero). Therefore, the

number of coalitions is fixed and equal to M ? 1. Also,

from the constraint (11-4), the coalitions are mutually

disjoint. In this paper, u Jmð Þ must be an increasing function

of GDP and Eth within the coalition Jm and a decreasing

function of the GFP and the energy consumption of sensors

in the coalition. Also, it is assumed that if a sensor decided

to sense no channels, its utility would be zero, because the

sensors that select actions an0 (we name it as coalition

zero), receive no gain meanwhile spend no cost. A suit-

able utility function for a coalition Jm for cooperatively

sensing channel m is proposed as (See ‘‘Appendix 1’’):

in which, E Jmð Þ denotes the sum of energy consumption of

sensors in the coalition Jm, min Eð Þ denotes the minimum

energy consumption for sensing a channel which is equal

the energy consumption of only one node with the lowest

energy consumption. The maximum energy consumption is

for the case that all the sensors sense a channel, which is

denoted by max Eð Þ. The initial energy and the minimum

remaining energy of sensors in the previous step of the

game are denoted by E0 and Eth;0, respectively. The coef-

ficient # ¼ 0:5min Eð Þ
max Eð Þ�min Eð Þ.

In this paper, it is assumed that each sensor n can select

a coalition in two possible ways: The first is adding to the

coalition when all the other nodes don’t change their

coalitions. The second is adding to the coalition when a

node n0 removes from the coalition, it means that the n0 is

replaced by the player n. In this way, the removed sensor

goes to coalition zero. In both ways, the player n receives a

reward or penalty for selecting the coalition Jm. We

determine the reward based on the Shapely value [29]. This

reward value determines how much benefit results in a

coalition value if the player adds to the coalition. For the

first possible way of the assumed game, the reward is

calculated as:

Ren Jmð Þ ¼ u Jm þ nf gð Þ � u Jmð Þ ð14Þ

in which u Jmð Þ is the utility of the coalition Jm before the n-

th sensor is added to, and u Jm þ nf gð Þ denotes the utility of

the coalition after the n-th sensor is added to. For the

second possible way of the assumed game, the reward is

calculated, similarly, as:

Ren Jmð Þ ¼ u Jm þ nf g � n0f gð Þ � u Jmð Þ ð15Þ

when u Jm þ nf g � n0f gð Þ denotes the utility value of the

coalition when a sensor n0 in the coalition is replaced by

the sensor n. If the sensor decision increases the coalition

value, it gains a positive reward. If the sensor decision

decreases the coalition value, it gains a negative reward

which means penalty.

4 The GT-based sensor assignment
algorithm

In this section, an algorithm is proposed for the CFG, with

the goal of lifetime extension of MCSS in the WSN. Also,

the main properties of the algorithm are discussed.

4.1 The GT-based coalition formation algorithm

In each period of network lifetime: first live sensors select

channels for sensing or take action an0, randomly. Then,

the live sensors start to play the game such that: every node

calculates its reward from joining in any of the coalitions

and also it calculates its reward from replacing each sensor

participating in the coalitions. If there is a coalition which

its utility is more than the current coalition the sensor

changes its decision because this change makes a positive

reward for the sensor, based on (14) or (15). Playing the

game continues to reach a stable state. In the stable state,

no sensor changes its decision. After the game reaches a

u Jmð Þ ¼

if Pdm Jmð Þ� b; Pfm Jmð Þ� a

1 þ Eth; if Eth [Eth;0

max Eð Þ � E Jmð Þ
max Eð Þ � min Eð Þ ; if Eth ¼ Eth;0

#
max Eð Þ � E Jmð Þ
max Eð Þ � min Eð Þ ; if Eth\Eth;0

8
>>>><

>>>>:

if Pdm Jmð Þ\b or Pfm Jmð Þ[ a

�min Eð Þ
max Eð Þ

E0 � Eth

E0

; if Eth [Eth;0

�E Jmð Þ
max Eð Þ ; if Eth ¼ Eth;0

�1 � E0 � Eth

E0

� E Jmð Þ; if Eth\Eth;0

8
>>>>>><

>>>>>>:

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

ð13Þ
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stable state, the remaining energy of sensors is updated,

and the FC orders the selected nodes to sense their allo-

cated channels. If the algorithm converges to an accept-

able answer that satisfies all the constraints, we calculate

the iteration as a successful period of the lifetime. Then,

the numbers of off sensors are calculated. The program

continues until the off-sensor-number is higher than

(1 - L)N. The Fig. 3 presents a pseudo-code for the

algorithm.

It is concluded that assuming the algorithm, sequences

of improvement steps of the game do not run into cycles,

but reach a Nash equilibrium (NE) after a finite number of

steps [17]. An action profile (a1; . . .; aN) is a strategy NE if

and only if no player can improve its utility by deviating

unilaterally [30]. In the following subsection, we describe

the concept of converging toward NE for the proposed

algorithm.

4.2 Proof of converging toward NE

For the assumed problem, the straightforward analysis of

the algorithm convergence toward NE is complicated;

therefore, we use the ordinal potential game (OPG), to

show that the proposed CFG reaches a stable NE, in

‘‘Appendix 2’’. Here, we use a potential approach for

analyzing the game. The intuition behind the approach is

that it tracks the changes in the rewards when some player

deviates, without taking into account which one. Also,

there are some other reasons which make interest in the

potential games: (1) in the finite potential games, all exe-

cutions of the players’ dynamics terminate; (2) at each step

of the players’ dynamics the potential strictly increases; (3)

each finite potential game has NE [31]. To this end, in this

paper, a potential function for the game is defined and the

properties of the potential game are used. First, the defi-

nition of a special type of potential game, ordinal potential

game (OPG), is given. Then, it is proved that the game is

an OPG. Finally, we prove the proposed game converges to

a NE.

Definition 2 (Ordinal potential game) A game g ¼

N ; Anf gn2N ; u Jmð Þf gJm�N

n o
is an OPG if there is a

function U such that every move of the players to increase

their selfish benefit increases the potential function, too

[32].

Theorem 1 The proposed coalition game is an OPG.

Proof See ‘‘Appendix 2’’. h

Theorem 2 The proposed coalition game has at least one

NE and converges to a NE.

Proof Here, we use the following properties of OPGs: (1)

at each step of the players’ dynamics the potential of OPGs

strictly increases; (2) OPGs do not take a repeating circle

and stop at one point, certainly; (3) if the potential function

of OPGs has a limited upper bound, these games converge

to a NE in a finite number of steps. The proof of the

mentioned properties of OPGs was exhaustively presented

in [31, 33]. To this end, in ‘‘Appendix 1‘‘, in (22), we

define the potential function of the proposed game as the

sum of the utilities of all the coalitions. Since the utility

function, defined in (13), has a finite upper bound (the

limited measure of the utility function is discussed in

‘‘Appendix 1‘‘), the defined potential function has a limited

upper bound. Therefore, according to the above-mentioned

properties, the CFG proposed in the paper has at least one

NE, also, it is concluded that the proposed game converges

to a NE in a finite number of steps. In our model, Nash

equilibria are the fixed points of the dynamics defined by

improvement steps of sensors. h

Fig. 3 The GT-based algorithm
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4.3 Analysis of the stability concept
of the proposed game

In CFGs, first, a proper utility function for each coalition

should be defined to represent the amount of profit that

each coalition receives. This function must be defined so

that the players tend to make coalitions [17]. We defined

the utility function of the game in (13) more discussion on

the proposed function is presented in ‘‘Appendix 1‘‘. The

next important issue is how to divide the benefits of the

coalition between the members [17]. For the issue, there

are many solutions, such as core, Shapley value, and

nucleus, etc. [17]. The core solution for the assumed

problem of the paper is very complicated and one does not

necessarily find a rational allocation of sensors. The

nucleus solution is also much more sophisticated than

Shapley, and it is difficult to deal with at a high number of

players and choices. Therefore, the Shapley solution is

used in this paper for dividing the benefits of the coalitions

between the members. Shapley value should take into

account the player’s contribution to the benefits of their

coalition. In this paper, based on Shapley value, in (14) and

(15), we defined a reward function for each player to move

them towards selecting a coalition with the most total

benefit for the system. Since the straightforward analysis of

the proposed CFG for the assumed problem is complicated,

we defined a proper potential function in (22) and used the

OPG properties to show that the reward function (which

was based on the Shapley value) moves the game to a

stable NE, in ‘‘Appendix 2‘‘.

4.4 Analysis of computational complexity
of the proposed algorithm

Now the computational complexity of the proposed algo-

rithm, in each period of network lifetime, is described. In

an iteration of the game, a sensor is selected for playing

when other nodes remain on their last decision. The

selected sensor calculates the following metrics:

1. The sensor calculates his reward from adding to any

coalition, from (14): To this end, first, the sensor

calculates the utility of the M current coalitions,

without itself [uðJmÞ is the utility of the coalition Jm
before the n-th sensor is added to, and it is calculated

from (13) for M coalitions, with a computational

complexity of O(M)]. Next, it calculates the utility of

the M coalitions, when it joins them [u Jm þ nf gð Þ
denotes the utility of the coalition Jm after the n-th

sensor is added to, and it is similarly calculated from

(13) for M coalitions, with a computational complexity

of O(M)]. Then, it calculates its reward from joining all

the M coalitions, from (14), with a computational

complexity of O(M). Therefore, this step has a

computational complexity of O(3M).

2. The sensor calculates its reward from joining each of

the coalitions from (15), when another sensor is

removed: Here, the number of calculations is equal to

the number of sensors that are in coalitions for sensing

a channel, in the last step of the game. Because the

number of sensors is not a fixed number in different

steps of the game, we consider the highest possible

limit for the number of computations. If no sensor is in

coalition zero, the numbers of sensors that can be

replaced with the player will be (N - 1). Also, it is

noted that the number of live sensors reduces from N to

L N during the network lifetime. Therefore, in every

step of the game, at most, (N - 1) times the reward

function from (15) is calculated. Since calculating the

reward function from (15), for a sensor replacing with

the player is O(2), this step has a computational

complexity of O(2(N - 1)).

3. The player selects the best strategy (which provides the

highest reward) from the all possible strategy space,

with a computational complexity O(1).

Therefore, the computational complexity for each player

is O(max(2(N - 1),3M)). Because in WSN the number of

the sensors is more than the number of channels, the

computational complexity is O(2(N - 1)), for each player

in each period of network lifetime.

5 Simulation results

This section shows the simulation results using MATLAB.

Monte-Carlo method is used with 1000 iterations. We

designed simulation environments with fixed and variable

parameters. The parameters that do not affect the perfor-

mance of the algorithm are assumed fixed, mainly includ-

ing the PU’s signal parameters such as the signal

modulation, sampling frequency of the signal (it is equal to

the Nyquist frequency) and the threshold level of the

detectors (it is assumed as a coefficient of the noise power).

The variable parameters are those that affect the algorithm

performance of such as the number of sensors or channels.

Here, the network lifetime is defined as the number of

iterations, in which more than 25% of sensors are kept

alive, multiplied by the duration between the sensors

selections (because the duration is assumed fixed for all

iterations, we just plot the iterations number).

The performance of the proposed GT-based algorithm

(we call it as GT in simulation plots) is compared with a

random sensor selection algorithm, a detection based sen-

sor selection algorithm, and a lifetime-based sensor selec-

tion algorithm that has been proposed in [14]. The reasons
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behind these comparisons are: The random algorithm has

the lowest complexity order; The detection based algorithm

finds acceptable solution, if there is, meanwhile the com-

plexity order of the algorithm is low, also many other

algorithms for sensor selection or sensor scheduling for

CSS have been proposed on this basis such as [13] (We call

it as DBSS3); The proposed algorithm in [14] has compu-

tational complexity of order of the GT-based algorithm

when the order of channels for sensor allocation to them is

not determined optimally. The algorithm has a higher order

of complexity than the GT-based algorithm if the optimal

channel ordering is done (We call it as CONVEX because

the algorithm uses the convex optimization method). We

provide simulations assuming the following cases for

evaluating these algorithms:

5.1 Case study1: IEEE 802.15.4/Zigbee

A square region with a length of 200 m is assumed in

which an FC is located in the center, N sensors and M PUs

are distributed identically, in which the number of sensors

varies from ten to eighty and the number of channels varies

from two to eight. The IEEE 802.15.4/Zigbee is used for

the cognitive sensors [34]. The first part of sensing energy

is used in the synthesizer circuit which is equal to 86 nJ

[35]. Because the typical circuit power consumption of

ZigBee is approximately 40 mW, the energy consumed for

listening is approximately 40 nJ, for sensing time d ¼ 1 ls.

The processing energy related to the signal processing part

in the decision bit transmit mode, for a data rate of 250 kb/

s, a voltage of 2.1 V, and current of 17.4 mA is approxi-

mately 150 nJ/bit. Since every sensor sends one bit per

decision to the FC, the sensing energy is Es ¼ 276 nJ.

Assuming a data rate of 250 kb/s and a transmit power of

20 mW, Et�elec ¼ 80 nJ. The amplifier gain to satisfy a

receiver sensitivity of - 90 dBm is eamp ¼ 40:4 pJ=m2.

Also, the threshold level for GDP and GFP are set as

b ¼ 0:99; a ¼ 0:01. These parameters and the other used

parameters for simulations are presented in Table 1.

In Fig. 4, the network lifetime is plotted versus the total

number of sensors. It shows that the GT algorithm extends

the WSN lifetime more than the others. In a lower number

of sensors, it provides (about 60%) more iterations than the

convex algorithm (for N = 10, the lifetime of the GT and

the convex algorithms are about 800 and 500 iterations,

respectively). When the total number of sensors increases:

the network lifetime of all the algorithms increases,

because the number of sensors with high DP increases; the

number of lifetime iterations for the convex and GT-based

algorithms are closer because the difference between con-

sumption energy of sensors decreases and also the ratio of

sensors number to the channel number decreases; the

number of lifetime iterations for the GT algorithm is much

higher than the random and the DBSS algorithms because

the algorithms ignore remaining energy and consumption

energy of sensors.

For the lifetime maximization, we maximized the min-

imum remaining energy of the nodes. In Fig. 5, the average

Eth is shown during the lifetime iterations. The GT and the

convex algorithms have the highest Eth in similar iteration

numbers, because in these algorithms, the remaining

energy of nodes is considered in sensor selection. It means

that in these algorithms, there is equilibrium between the

remaining energies of the sensors while the other algo-

rithms have less Eth due to not considering this parameter

in sensor selection. It is clear that DBSS has the least Eth,

because in this algorithm, the sensing nodes with highest

DP are selected in sequential iterations of the network

lifetime, which leads to fast decreasing in Eth. The GT

algorithm selects sensors such that the Eth of this algorithm

is higher than the convex algorithm, since the convex

algorithm needs to select the priority of channel for

assigning sensors, which is done in an efficient but non-

optimal way [14].

Since the aim of the WSN is monitoring the spectral

activities of the PUs, so the proper algorithm must extend

lifetime while the answer leads to acceptable GDP and

Table 1 The values of simulation parameters [34]

fc ¼ 2:45 GHz r2
z = 3 db r2

0 = 10�11 W pt = 20 mW

E0 ¼ 0:2 mJ Es ¼ 276 nJ Et�elec ¼ 80 nJ eamp ¼ 40:4 pJ=m2
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Fig. 4 The average lifetime versus the total number of sensors

(M = 4)
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GFP. We show that although the proposed algorithm

focuses on the energy metrics, it does not ignore the

detection accuracy. Therefore, a success rate metric is

defined to show the ability of the algorithms in satisfying

the GDP and GFP constraints. Figures 6 and 7 show the

success rate of the proposed algorithm respect with the

convex algorithm, at the different number of sensors and

number of channels, respectively. The success rate is cal-

culated as the ratio number of iterations that an algorithm

finds an acceptable answer to the total number of iterations

that the algorithm provides. Both plots show that the suc-

cess rate of the GT algorithm is higher than the convex

algorithm. At a fixed number of channels, increasing the

total number of sensors improves the success rate of both

the algorithms that is because of increasing the number of

sensors with higher DP for being selected. The similar

changes are also seen when the total number of sensors

increases, at a fixed number of channels. Also, the differ-

ence between the success rates of the algorithms is greater

when the total number of sensors decreases at a fixed

number of channels, or when the number of channels

increases at a fixed number of sensing nodes. The reason

for this behavior is that the number of sensors with higher

DP increases, hence the probability of existing an accept-

able solution is more; therefore, an algorithm, that can

extend the lifetime more, would be more successful.

In Fig. 8 the average success percentage of finding

acceptable answers for the algorithms is plotted, respect to

the number of iterations. The number of total nodes is

considered 10 and 20 for sensing four channels. Since

DBSS selects the sensors with maximum DP for spectrum

sensing (i.e. if the problem has an answer, DBSS can find

it), the algorithm has the highest success percentage in

initial iterations. When the number of iterations increases,

the remaining live nodes have less DP, or most of the

sensors run out of energy; hence, DBSS cannot satisfy the

detection performance while GT and convex algorithms

select the sensors according to their remaining energy and

DP. It means that the GT and convex algorithms increase

the network lifetime and more nodes are alive; hence, the

remaining live nodes can maintain the GDP constraint for

more iterations, i.e. the GT algorithm has a higher success

percentage in average. Also, the plot shows that in initial
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Fig. 5 The average minimum remaining energy of sensors during

lifetime iterations (N = 40, M = 4)
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iterations, the GT and convex algorithms have similar

success percentage, but when the number of iterations

increases, the GT algorithm has higher success percentage

in respect with the convex algorithm, because the convex

algorithm assigns sensors with a sub-optimum order of

channels and therefore when the number of live sensors

decreases, this channel order gets more important.

In Fig. 9, the average energy consumption of sensors for

MCSS, in an iteration of the network lifetime, is plotted at

the different number of sensors. In this plot, the energy

consumption is averaged over the iterations which satisfy

all the problem constraints. We know that the random

algorithm selects sensors completely random, therefore

when the number of nodes increases, the average energy

consumption for the random algorithm increases because it

can select more sensors to satisfy GDP constraint. When

the number of nodes is 10, the other algorithms have

almost the same average energy consumption, because

there is a lower number of possible selections. It is noted

that the GT algorithm provides the highest lifetime and

success ratio with similar average energy consumption.

When the number of nodes increases from 10 to 20, there

are more sensors for being selected to satisfy GDP con-

straint, hence, the average energy consumption for the

other algorithms increases, but when the number of nodes

increases from 20 to higher numbers, the average energy

consumption for the algorithms decreases, because there

are more sensors with higher DP, and with lower number of

selected nodes the GDP constraints are satisfied. For the

case that the number of sensors is 20, there is the greatest

difference between the GT algorithm and the DBSS and

convex algorithms. However, the proposed algorithm pro-

vides the highest lifetime and success ratio with the lowest

average energy consumption, because it selects the sensors

for MCSS according to their consumption and remaining

energies and DP.

In Fig. 10, the number of deactivated sensors, i.e. the

sensors which don’t have enough energy to sense none of

the channels, is plotted during the lifetime iterations. This

metric for the proposed GT algorithm is the lowest. It

means that the GT algorithm selects sensors with higher

remaining energy which further extends the network
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lifetime. The DBSS is the first algorithm, which its off-

sensors number goes up, because the selected sensors may

consume high energy while having the highest DP, but in

continuing it has gentle slope respect to the other bench-

mark algorithms. However, the DBSS algorithm provides a

lower lifetime than the convex and the GT algorithms, and

it is shown that the number of off-sensors is higher than the

75% of sensors, in a lower iteration number than the GT

and the convex algorithms.

5.2 Case study 2: IEEE 802.11af

This standard recently gets high attention in cognitive radio

system studies. Since the IEEE 802.11af system operating

the TV white spaces would use frequencies below 1 GHz,

this would allow for greater distances to be achieved.

However, power-saving is a major issue for IEEE 802.11af

that will be used for many (Internet of Things) IoT appli-

cations. Many of the nodes will need to run using batteries

and these need to be able to run for weeks. The proposed

algorithm in this paper can be used for this technology, too.

For this case, we assume a square region with a length of

1000 m in which an FC is located in the center, and N

sensors, which their number varies from 50 to 200, are

distributed identically. It is assumed that the M = 7 TV

channels, with bandwidth 6 MHz regulatory domain, on

the frequency spectrum f = 470–512 MHZ with the trans-

mitter’s power pt = 40 mW are sensed by the sensors

[36–38].

In Fig. 11, the network lifetime, assuming the second

case, is plotted versus the total number of sensing nodes. In

this case, the performance of the GT proposed algorithm is

very close to the convex algorithm. However, the proposed

algorithm extends the network lifetime more than the

random and the DBSS algorithms because the algorithms

ignore the remaining energy and consumption energy of

sensors. The reason for the similarity of the performance of

the GT and convex algorithms is that when the number of

sensors goes up (respect with the number of channels) and

also the distances between sensing nodes and the PUs is

high, the detection quality of sensors and the energy of

sensors is more similar. The possible choices of the algo-

rithms are similar. Also, in this case, because the number of

sensors increases more than the number of channels the

effect of determining the priority of channels for the con-

vex algorithm reduces. Therefore, the lifetime of the

algorithms, which both of them consider the energy and the

detection probability of sensors, are close.

In Fig. 12, the convergence of the GT algorithm is

plotted. The two first plots show the changes in the mini-

mum of remaining energy of all the sensors in the network,

and the energy consumption of candidate sensors for the

MCSS at different iterations of the game. The next four

plots show the changes in the GDP of coalitionist sensors

for CSS of different channels at different iterations of the

game. It shows that the energy consumption of cooperative

sensors during the game is a descending curve. Also, the

GDP of all channels reaches a final measure higher than b.

The simulations present the efficiency of the game

theory in selecting appropriate sensors in a WSN, such that

the network lifetime is maximized while the detection

quality of selected sensors is acceptable. It is noted that the

optimal exhaustive search finds optimal sensors for the

problem with the computational complexity order of O

M þ 1ð ÞN
� �

which takes a long time in each sensing per-

iod. The complexity order of the random and DBSS algo-

rithms is O(1), but their solution leads to a short lifetime.

The computational complexity order of the GT algorithm is

O(2(N - 1)) which is much less than the exhaustive

search. The convex algorithm finds answers to the problem

with the computational complexity order of O(N.M) [14].

Simulations showed that the GT algorithm finds more

efficient answers for the problem with lower computational

complexity order than the convex algorithm.

6 Conclusion

In this paper, to lifetime extending, a novel algorithm for

cooperative node selection in a WSN was proposed, in

which some sensors cooperatively sense spectrum activities

in multiple channels while others go into a sleep mode to

save energy. This algorithm can be used for applications

that the recharge of sensors is difficult or impossible. Also,

it was assumed that the sensors cannot sense more than one
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channel in a sensing duration. Based on the network duty

and the sensor limitations, the lifetime maximization

problem was constrained, to guarantee the necessary

detection probability and low false alarm probability. The

optimal solution for the problem is an exhaustive search

with a high order of computational complexity, in each

sensing period. In this paper, for solving the problem a

CFG was proposed in which sensors act as game players

and decide to make coalitions to sense the channels or not

while guaranteeing the detection quality constraints. The

selected sensors are activated to sense the channels and

others put into a sleep mode to save energy. A novel effi-

cient utility function was designed to make sure that the

game is converged to astable NE. The properties of the

used game and its convergence proof were discussed. Then,

an efficient algorithm with a computational complexity

order of O(2(N - 1)), to reach a proper Nash-stable coali-

tion structure was concluded. The proposed algorithm was

compared with other comparable algorithms of lifetime

extending in such a network. Through simulations, it was

demonstrated that the proposed algorithm extends the

network lifetime more, e.g. up to four times of the random

algorithm and up to 1.6 times of the detection based

algorithm in a scenario assuming four channels. Also, the

lifetime of the GT algorithm is 60% more than the lifetime

of the convex algorithm, in a network with a low number of

sensors. These results are compared when the success rate

of the GT algorithm is more than the success rate of the

convex algorithm (up to 30% for N = 40, M = 8), which

means that the proposed algorithm extends the network

lifetime while it provides sufficient detection quality.

Appendix 1

We want to define a suitable value function for coalitions in

the proposed game such that it conducts the game to a

proper NE, which maximizes the Eth, while it must capture

the tradeoff between the GDP, the GFP, the Eth and energy

consumption. Based on the [31], for a finite OPG, the rank

of a strategy is a proper candidate for the value of the

strategy. This rank of a strategy is measured by counting

the number of other strategies that have lower benefits than

the strategy.

Now we use this idea to define a coalition utility for the

proposed game. We define zero value for the coalition

number of zero, i.e. the coalition of sensors which sense

none of the channels. The result of selecting this zero value

is that if sensors spend no cost, they receive no gain. Also,

if a coalition does not satisfy at least one of the constraints

(Pdm Jmð Þ\b or Pfm Jmð Þ[ a or both), its value is defined

negatively because forming the coalition causes to con-

sume energy but it cannot provide adequate detection

quality. If a coalition satisfies all the constraints
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Fig. 12 Convergence of the proposed algorithm (in an iteration of network lifetime, N = 40, M = 4)
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(Pdm Jmð Þ� b and Pfm Jmð Þ� a), its value is defined

positively.

Based on the lifetime maximization goal of the problem,

the value of a coalition must be an increasing function of

Eth and a decreasing function of the energy consumption of

sensors in the coalition. Between coalitions with positive

values, the lower E Jmð Þ and higher Eth, the more utility. So

when a player wants to make a decision, it first determines

the effect of its decision on the Eth. If its decision increases

the Eth in respect to the previous round of the game (the

minimum of remaining energy of sensors after the previous

sensor has played is denoted by Eth;0), selecting the deci-

sion causes more utility. If its decision does not change the

Eth level of sensors, the utility of selecting the decision

only depends on the E Jmð Þ; hence, the decision with the

lower E Jmð Þ has more utility. Of course, these decisions

have a lower utility than the decision which increases the

Eth. Therefore, we have defined the utility of the coalition

when the sensor decision provides Eth [Eth;0 as 1 þ Eth,

which has a measure greater than one. Then, the utility of

the coalition when the sensor decision provides Eth ¼ Eth;0

as
max Eð Þ�E Jmð Þ
max Eð Þ�min Eð Þ, which is:

min Eð Þ
max Eð Þ � min Eð Þ\

max Eð Þ � E Jmð Þ
max Eð Þ � min Eð Þ\1 ð16Þ

The strategies that a sensor decision reduces the Eth and

causes to Eth\Eth;0 has the lower utility, hence we define

its value as
0:5min Eð Þ

max Eð Þ�min Eð Þ
max Eð Þ�E Jmð Þ
max Eð Þ�min Eð Þ, because:

0\
0:5min Eð Þ

max Eð Þ � min Eð Þ
max Eð Þ � E Jmð Þ
max Eð Þ � min Eð Þ

\
0:5min Eð Þ

max Eð Þ � min Eð Þ\
max Eð Þ � E Jmð Þ
max Eð Þ � min Eð Þ\1

ð17Þ

A similar ordering of coalition values is done for the

strategies that have a negative value. If a sensor decision

increases the Eth (i.e. Eth [Eth;0), selecting the decision

has more utility. Therefore, we have defined the utility of

the coalition as
�min Eð Þ
max Eð Þ

E0�Eth

E0
, which has a measure lower

than zero, in which E0 denotes the initial energy of sen-

sors. The upper and lower bounds of the utility value are:

�1\
�min Eð Þ
max Eð Þ \

�min Eð Þ
max Eð Þ

E0 � Eth

E0

\0 ð18Þ

Then, the utility when the sensor decision provides

Eth ¼ Eth;0 as
�E Jmð Þ
max Eð Þ, which is:

�1\
�E Jmð Þ
max Eð Þ\

�min Eð Þ
max Eð Þ ð19Þ

The strategies that a sensor decision reduces the Eth and

causes to Eth\Eth;0 has the lower utility, hence we define

its value as �1 � E0�Eth

E0
� E Jmð Þ, because:

�3\� 1 � E0 � Eth

E0

� E Jmð Þ
max Eð Þ\� 1 ð20Þ

Finally, the utility value of every coalition is defined as:

Appendix 2

We define the following potential function for the proposed

game:

U J0; . . .; JMð Þ ¼
XM

l¼1

u Jlð Þ ð22Þ

in which Jl is the current coalition of sensors that coop-

eratively sense channel l. Given any coalition Jm, an

improvement step of player n is a change of its strategy

from an ¼ m to an ¼ m0, such that the reward utility of

u Jmð Þ ¼

if Pdm Jmð Þ� b; Pfm Jmð Þ� a

1 þ Eth; if Eth [Eth;0

max Eð Þ � E Jmð Þ
max Eð Þ � min Eð Þ ; if Eth ¼ Eth;0

0:5min Eð Þ
max Eð Þ � min Eð Þ

max Eð Þ � E Jmð Þ
max Eð Þ � min Eð Þ if Eth\Eth;0

8
>>>><

>>>>:

if Pdm Jmð Þ\b or Pfm Jmð Þ[ a

�min Eð Þ
max Eð Þ

E0 � Eth

E0

; if Eth [Eth;0

�E Jmð Þ
max Eð Þ ; if Eth ¼ Eth;0

�1 � E0 � Eth

E0

� E Jmð Þ; if Eth\Eth;0

8
>>>>>><

>>>>>>:

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

ð21Þ
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player n increases. This move is performed in two possible

ways. The first way is adding to the coalition m0 when other

nodes in the coalition remain. In this ways, the player n

does the move when he receives more reward, i.e.:

Ren Jm0 þ nf gð Þ[Ren Jm þ nf gð Þ
! u Jm0 þ nf gð Þ � u Jm0ð Þ[ u Jm þ nf gð Þ � u Jmð Þ ð23Þ

Now the potential function of the game before and after

the move of player n are called as U1 and U2, respectively.

The measures of potential function are calculated as:

U1 ¼
XM

l¼1

u Jlð Þ ¼ u Jm0ð Þ þ u Jm þ nf gð Þ þ
XM

l ¼ 1

l 6¼ m;m0

u Jlð Þ

ð24Þ

U2 ¼
XM

l¼1

u Jlð Þ ¼ u Jm0 þ nf gð Þ þ u Jmð Þ þ
XM

l ¼ 1

l 6¼ m;m0

u Jlð Þ

ð25Þ

Therefore, the change in the potential function of the

game is calculated as:

DU ¼ U2 � U1

¼ u Jm0 þ nf gð Þ þ u Jmð Þ � u Jm0ð Þ � u Jm þ nf gð Þ[ 0

ð26Þ

The second way for the player n is adding to the

coalition m0 when a node n0 in the coalition removes. This

move is done if:

Ren Jm0 þ nf g � n0f gð Þ�Ren Jm þ nf gð Þ
! u Jm0 þ nf g � n0f gð Þ � u Jm0ð Þ[ u Jm þ nf gð Þ � u Jmð Þ

ð27Þ

Now the measure of U2 is calculated as:

U2 ¼
XM

l¼1

u Jlð Þ

¼ u Jm0 þ nf g � n0f gð Þ þ u Jmð Þ þ
XM

l ¼ 1

l 6¼ m;m0

u Jlð Þ

ð28Þ

Therefore, the change in the potential function of the

game is calculated as:

DU ¼ U2 � U1

¼ u Jm0 þ nf g � n0f gð Þ þ u Jmð Þ � u Jm0ð Þ
� u Jm þ nf gð Þ[ 0 ð29Þ

Hence; an improvement step of an individual player

increases also the potential function, in both possible ways.

This is concluded that the proposed game is an OPG.
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