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Abstract
The fundamental challenge for randomly deployed resource-constrained wireless sensor network is to enhance the network

lifetime without compromising its performance metrics such as coverage rate and network connectivity. One way is to

schedule the activities of sensor nodes and form scheduling rounds autonomously in such a way that each spatial point is

covered by at least one sensor node and there must be at least one communication path from the sensor nodes to base

station. This autonomous activity scheduling of the sensor nodes can be efficiently done with Reinforcement Learning

(RL), a technique of machine learning because it does not require prior environment modeling. In this paper, a Nash

Q-Learning based node scheduling algorithm for coverage and connectivity maintenance (CCM-RL) is proposed where

each node autonomously learns its optimal action (active/hibernate/sleep/customize the sensing range) to maximize the

coverage rate and maintain network connectivity. The learning algorithm resides inside each sensor node. The main

objective of this algorithm is to enable the sensor nodes to learn their optimal action so that the total number of activated

nodes in each scheduling round becomes minimum and preserves the criteria of coverage rate and network connectivity.

The comparison of CCM-RL protocol with other protocols proves its accuracy and reliability. The simulative comparison

shows that CCM-RL performs better in terms of an average number of active sensor nodes in one scheduling round,

coverage rate, and energy consumption.

Keywords Coverage redundancy � Coverage rate � Network connectivity � Reinforcement learning � Nash Q-learning �
Node activity scheduling

1 Introduction

In general terms, the main objective of an energy-efficient

coverage-connectivity algorithm in wireless sensor net-

work (WSN) is to monitor the area of interest and transmit

the sensing results to the base station with a minimum

number of sensor nodes [1, 2]. To accomplish this objec-

tive three types of solutions have been proposed in the

literature: node deployment optimization [3, 4], node

scheduling [4–6], and cover-set formation [7, 8]. Node

deployment optimization is defined as to control the

number of sensor nodes for deployment. WSN comprises

of two types of sensor nodes: static and mobile. A WSN

comprises of static sensor nodes is inflexible because it is

not capable of handling topology change due to sensor

node failure. On its contrary, a WSN having mobile sensor

nodes are flexible due to its dynamic behavior. There are

real-time applications of WSNs such as border surveil-

lance, harsh geographic surveillance, and disaster man-

agement where the number of deployed nodes can’t be

controlled. To handle such situation node activity

scheduling protocols have been proposed [4–8]. According

to these protocols, the nodes can be in any one of three

modes i.e. active, hibernate, and sleep. The active nodes in

each scheduling round form a cover set. The objective of
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each cover set is to provide maximum coverage and con-

nectivity with a minimum number of sensor nodes.

These node scheduling protocols have disadvantages in

terms of unwanted computational energy consumption and

resource utilization such as: tolerating the overhead of

communication among nodes before the actual scheduling

phase and storage of the scheduling information so that

nodes can be completely in sleep mode otherwise the nodes

have to be in hibernate mode. In hibernate mode, the nodes

can turn off their processing unit, but cannot turn off its

radio (transceiver). Therefore, there is a need for a node

scheduling protocol, which can intelligently manage the

node’s activity scheduling. This problem can be efficiently

solved with the help of machine learning algorithms. These

algorithms enable the sensor node to learn its action

without being explicitly programmed. This is the one

application of computational intelligence in WSN. Com-

putational intelligence is a boon for other WSN challenges

such as coverage and connectivity maintenance [9–12],

data aggregation [13–15], cluster formation [15, 16],

energy management [17], routing [18], node duty cycling

at MAC layer [19, 20], and security [21]. It provides

autonomy, flexibility, and robustness to WSN.

Kulkarni et al. [22] has done an extensive survey of

computational intelligence in WSNs and presented the

work of various researchers in this field in a concise

manner. At first, the challenges in WSNs such as wireless

ad hoc nature, energy limitation, physical distribution,

localization, quality of service management, and security

are very well explained. A brief overview of various

models of machine learning algorithms such as neural

networks, fuzzy logic, evolutionary algorithms, swarm

intelligence, artificial neural networks (ANN), and rein-

forcement learning is presented. This paper also explains

how computational intelligence has been hybridized to

mitigate the various challenges of WSNs. To the best of

our knowledge, this paper is the best survey paper for the

beginners, who want to pursue their research in the field of

computational intelligence in WSNs.

Wireless sensor network comprises of a set of sensor

nodes, where each node is considered as an agent for

intelligent computations. Each sensor node has a learning

ability [10, 22]. Therefore, WSN is known as a multiagent

system. Reinforcement learning is the only machine

learning algorithm possible in such a scenario because it

does not require any environment model. Reinforcement

learning (RL) is a type of machine learning where an agent

learns and takes actions during their learning process to

gain long-term reward [23]. A reward can be either a

positive reward or a negative reward. Reward function

optimizes the correctness of action selection in a given

state. The identification of relevant actors in a particular

state is only possible after executing all states-actions

combinations. Out of n number of executions only

m combinations are considered, which can maximize the

global reward. The execution of these combinations is

known as a Markov Decision Process (MDP). MDP is a

discrete-time stochastic control process that provides

mathematical modeling for decision making, where out-

comes are completely or partially random in nature [24].

The environment of RL is modeled as a Markov Decision

Process.

Reinforcement learning applies to both single and

multiagent systems. It has been stated earlier that WSN

is multiagent system because of the autonomous distribu-

tion of sensor nodes. Each sensor node acts as an agent.

The potential of extensive learning and the disintegration

of a complex problem for better rewards are the key

advantages of multiagent reinforcement learning [25].

However, in a multiagent system, the agents have less

knowledge about their neighboring agents. At first, the

agents learn about each other and then behave appropri-

ately. Reinforcement learning has been tailored in various

algorithms of WSNs such as data aggregation, routing,

dynamic channel allocation, and resource management

[26]. Yau et al. [27] have briefly summarized the applica-

tions of reinforcement learning in wireless sensor net-

works. This paper presents an implementation of one of the

reinforcement learning algorithms i.e. Nash Q-learning to

solve the problem of coverage and connectivity. The

overall objective of reinforcement learning in WSN is to

take the right decision at the right time.

1.1 Contribution

This paper focuses on the problem of energy efficient

coverage and connectivity maintenance. From the litera-

ture, it has been concluded that a very few amount of

research work have been done on coverage and connec-

tivity maintenance using computational intelligence. In the

present scenario, a quality amount of research is going on

to embed intelligence into diverse issues and applications

of WSN. Keeping in view of these objectives, this paper

has proposed a coverage and connectivity maintenance

protocol based on reinforcement learning (CCM-RL). The

main contributions of this paper are listed below.

1. The sensor nodes are deployed to achieve the coverage

up to threshold level and there must be at least one

communication path among the sensor nodes. This

protocol enables the sensor nodes to take right decision

at right time.

2. The learning ability resides inside each sensor node

learns their best action to maximize the coverage rate

and maintain the connectivity among active node. The

purpose behind this is to activate only a subset of
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sensor nodes so that energy consumption can be

minimized. To fulfill this objective, the sensor nodes

do not need to communicate through notification

messages. These nodes autonomously learn their best

action using Nash Q-learning algorithm.

3. This paper provides a mechanism to eliminate the

coverage redundancy among nodes by customizing the

sensing range of overlapped sensor nodes. The sensor

nodes customized their sensing range after learning

their best action. The advantage of this work is to

preserve the resources of WSN such has battery power

and memory by mitigating the redundant packet

generation for same spatial points, avoiding network

congestion and contention.

4. CCM-RL provides a solution to preserve the desired

coverage rate, connectivity among sensor nodes, and

minimizes the total energy consumption.

The rest of the paper is classified as follows. Section 2

discusses concise review of the algorithms proposed in the

literature. The WSN model and related assumptions are

explained in Sect. 3. Section 4 presents a concise overview

of reinforcement learning, Nash Q-learning and definitions

related to reinforcement learning in WSN. The proposed

protocol Coverage Connectivity Maintenance based on

Reinforcement Learning (CCM-RL) is explained in

Sect. 5. Section 6 presents the performance evaluation of

CCM-RL and its comparison to existing protocols respec-

tively. The conclusions are discussed in Sect. 7.

2 Literature review

For the past two decades, a quality amount of research

work has been done to improvise the performance of

wireless sensor networks in terms of various parameters

such as: coverage [1–8, 28], connectivity [1, 2, 28], net-

work congestion [29], packet delivery rate [20], energy

consumption [30], and security [31]. This paper empha-

sizes on coverage, connectivity, and energy consumption

parameter. The coverage is categorized as target coverage,

area coverage, and barrier coverage [32]. The network

connectivity parameter is considered with only a few

coverage protocols, whereas energy consumption is com-

puted for each protocol. This is done so far because sensor

nodes are tiny and resource-constrained devices with lim-

ited memory and battery power. Energy consumed by the

wireless sensor nodes for sensing, computational process-

ing, and communication has a direct and indirect impact on

the WSN’s lifetime [33]. However, it has been identified by

many researchers that random deployment, coverage

redundancy, redundant communications, and idle listening

are responsible for unwanted energy consumption and

reduce the network’s lifetime. Sensor node activity

scheduling is the prime solution, where a subset of sensor

node is active and ensures the coverage rate up to a

threshold level and connectivity among sensor nodes. The

rest of the sensor nodes are in sleep mode to prevent

unwanted energy consumption. A lot of researchers have

contributed towards the solution of this problem. More

et al. [34] have reviewed the key coverage protocol and

also illustrated various open challenges such as heteroge-

neous nodes with obstacles, node failure probability, lim-

ited node mobility, coverage degree, and optimization of

wake-up rate of sleeping nodes for energy-efficient cov-

erage protocol. Cardei et al. [35] have proposed a solution

to solve the problem of coverage redundancy in target

coverage and stated this problem as an Adjustable Range

Set Cover (AR-SC) problem. According to them, there still

exists coverage redundancy after successful node activity

scheduling.

Nowadays, to design smart networks and communica-

tions with resource optimization and energy management,

intelligence has been embedded in the sensor nodes.

Although sensor nodes are resource constrained devices,

artificial intelligence and data mining techniques have

given them the potential to reach a new level of compu-

tation, learning and reasoning [20]. The first step of a

learning algorithm requires information about the envi-

ronment and internal structure. This information is pro-

vided by the sensor nodes. For a succinct understanding of

how to hybridize reinforcement learning systems in wire-

less sensor network, a lot of researchers published very

good research papers [22, 26, 27, 36]. Seah et al. [9] have

considered two main parameters i.e. coverage and energy

consumption for a large sensor network. This is the first

paper where the authors have solved coverage and energy

consumption issues using a reinforcement learning algo-

rithm. The authors have proposed a Q-learning based

coordinated algorithm (COORD) to identify the coordina-

tion among sensor nodes so that area coverage can be

maximized as well as total energy expenditure can be

minimized. The deployed sensor nodes are multiagent.

Each autonomous agent has its reward function and thus

aims at maximizing its discounted reward. The learning

steps are given reward based on action taken by the sensor

node to cover the maximum grid points.

The Probabilistic Coverage Protocol [37] has been

proposed for node activity scheduling where the sensor

nodes are considered to be localized at a distance of s from

each other and have a probabilistic sensing range. The

main advantage of PCP is that it can perform coverage

computation on both binary and probabilistic sensing

models. The Scheduling Algorithm based on Learning

Automata (SALA) [10] has been proposed to cover the

periodic events and dynamic target points with a minimum
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number of sensor nodes. The periodic event distribution is

based on the Poisson distribution. In SALA, each sensor

node is embedded with the set of learning automata. The

learning automata enables the sensor node to learn maxi-

mum sleep time without compromising the dynamic target

detection rate. The learning of sleep time has been

dependent on the target trajectory. The key emphasis of

SALA is to successfully cover the dynamic event and

target points with a minimum number of sensor nodes.

These nodes maximize the detection rate to reduce the

energy consumption rate. SALA has not shown that whe-

ther the active sensor nodes in each scheduling round have

connectivity among themselves and there is no network

partitioning.

Mohamadi et al. [38] have proposed a scheduling

algorithm based on learning automata where the sensor

nodes have learnt the appropriate sensing range to cover all

target points in each cover set and maximize the network

lifetime. They have stated this problem as Maximum

Network Lifetime with Adjustable Sensing Range

(MNLAR). The sensor nodes are equipped with learning

automata based on pruning rules to learn their appropriate

sensing range to form a cover set in each scheduling round.

Sleep scheduling with Predictive Coverage Redundancy

Check (SPRC) [39] has been proposed to solve the problem

of coverage redundancy cause due to the random deploy-

ment of sensor nodes in abundance to achieve maximum

coverage. In reality, it caused wastage of network resources

and also increase the network cost. The scheduling algo-

rithms have to perform repeated coverage redundancy

checks. Therefore, SPRC proposed an analytical model to

predict the need for coverage redundancy check before

each scheduling round to minimize the computational

scheduling energy consumption. Reinforcement Learning

based Sleep Scheduling for Coverage (RLSSC) [11] has

been proposed to optimize the selected action of the sensor

nodes in each scheduling round using Q-learning. The

conventional approach has been applied to schedule the

activities of the sensor nodes. RLSSC is a two-step

scheduling algorithm. In the first step, it has identified the

coverage redundancy among sensor nodes. Secondly, sen-

sor nodes have learnt their best action based on Q-learn-

ing. These algorithms entirely emphasize on maximizing

the coverage and minimizing the energy consumption,

however, the connectivity among nodes is completely

ignored for successful communication among nodes.

Mostafaei et al. [12] have proposed a Partial Coverage

with Learning Automata (PCLA) protocol, which has

focused on issues such as partial coverage and continuous

monitoring of the target point. The main objective of

PCLA is to minimize the active number of sensor nodes for

desired area coverage and connectivity among sensor

nodes. PCLA provides a probabilistic framework to select

the most eligible sensor nodes for desired area coverage

and network connectivity. Though PCLA has been

designed for large scalable wireless sensor networks, but it

does not present any solution for handling coverage

redundancy.

Coverage Contribution Area (CCA) [5] is a centralized

and distributed coverage protocol that has been proposed to

solve the k-coverage problem in random deployment of

sensor nodes. The residual energy and the spatial density of

the sensor nodes is the eligibility criteria for the sensor

nodes to become active in a scheduling round. However,

CCA neither incorporated any learning mechanism for

node activity scheduling nor provided any solution to

preserve connectivity among sensor nodes. A brief para-

metric comparison of existed protocols based on machine

learning and CCM-RL to solve the problem of coverage

and connectivity is presented in Table 1.

3 Network model

In this paper, the sensor nodes are deployed to cover a

hostile region up to a threshold level and maintain network

connectivity. Figure 1 represents the network model of

WSN. The sensor nodes are randomly deployed inside

remote hostile region. At the time of deployment, the

sensor nodes have uniform sensing and communication

range. The hostile region also comprises obstacles which

can disrupt the sensing and communication power of the

sensor nodes. The nodes nearer to the base station com-

municates with the base station. This network model can be

applicable in providing barrier coverage where scheduling

algorithm divided the sensing task among the sensor nodes

[40].

This paper proposes a node activity scheduling protocol

where each sensor node autonomously learns its best action

through reinforcement learning in each scheduling round.

To do so, each sensor node is equipped with learning

ability. In Algorithm 1, for a scheduling round the sensing

range of the sensor nodes is customized according to the

requirement and the resultant sensing range is marked as

Rfinal. To achieve this objective a network is designed with

the following assumptions.

1. A wireless sensor network is built to perform moni-

toring and surveillance task in remote hostile region. It

comprises of a set of N static sensor nodes that are

randomly deployed inside the sensing region of area As

with high density.

2. Each sensor node Si (i = 1,2,3,…,N) is well aware of

its location using predefined localization algorithm

[41].
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3. In the beginning of the algorithm, these sensor nodes

have uniform sensing range Rs and communication

range Rc. Rc is less than or twice to that of the sensing

range (Rc B 2Rs). The coverage area CAi provided by

Si is represented as a circle.

4. The sensing region of area As is divided into a G

number of square grids of length l (l = 29Rs) where

G ¼ As

l�l
.

5. Initially, the status of all deployed sensor nodes is

active and have the same amount of energy E. This

paper has incorporated simple energy consumption

model [42] to process and communicate b-bit of

packets over a distance d, d � Rc.

4 Reinforcement learning

The objective of reinforcement learning in WSN is to

autonomously maintain the coverage and connectivity of

randomly deployed sensor nodes. The best combination of

state and actions is considered from a defined set of states

and actions. Reinforcement learning is applicable because

Table 1 Parametric comparisons between protocols

Algorithm Deployment

type

Coverage

redundancy

check

Sensing range

customization

Node

activity

scheduling

Coverage

maintenance

Connectivity

maintenance

Energy

modelling

Machine learning

technique

COORD

[9]

Deterministic 7 7 7 4 7 4 Reinforcement

learning (Q-

learning)

PCP [37] Uniform

random

4 7 4 4 7 4 NA*

SALA

[10]

Random 7 7 4 4 7 4 Learning automata

MNLAR

[38]

Deterministic 7 4 4 4 7 4 Learning automata

(pruning rule)

SPRC

[39]

Random 4 7 4 4 7 4 NA

RLSSC

[11]

Random 4 7 4 4 7 4 Reinforcement

learning (Q-

learning)

PCLA

[12]

Random 7 7 4 4 4 4 Learning automata

CCA [5] Random 7 7 4 4 7 4 NA

CCM-RL Random 4 4 4 4 4 4 Reinforcement

learning (Nash

Q-learning)

NA* not applicable

Fig. 1 Wireless sensor network

model
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of the lack of trained data and enough expertise about the

constraints and issues of WSN. Therefore, the sensor nodes

learn what to do and how to form an optimum combination

of state and action to maximize the numerical reward. The

learning is dependent on two terms i.e. exploration and

exploitation. Exploration is about going through the entire

environment to capture more information that can help in

reward maximization. On the other hand, exploitation is to

utilize already known information to maximize the

rewards. In WSN, the network designers have the crystal-

clear idea about the desired output and RL achieves that

desired output in terms of rewards.

In reinforcement learning, the environment gives states

to the agents and then agents perform a suitable action to

maximize the global reward. Reinforcement learning is

modelled as a Markov Decision Process (MDP). The

schematic diagram of reinforcement learning is shown in

Fig. 2.

4.1 Nash Q-learning

Q-learning is a model-free reinforcement learning algo-

rithm. The purpose of Q value in Q-learning is to learn an

optimum policy for an agent to choose its best action that

can maximize the overall reward value. The change in the

state of the environment is entirely based on agent’s current

action. Q-learning algorithm has been proven to be a boon

for single agent system as it has simple updating approach

in which an agent starts with random initial values of

Q(s,a). The Q-values in any discrete time step t

(t = 1,2,3…,n) are updated using Eq. 1 and stored in the

form of a matrix.

Qtþ1ðst; atÞ ¼ ð1� atÞQt ðst; atÞ
þ rt þ cmax

a
Qtðstþ1; aÞ

h i
ð1Þ

In Eq. 1, s 2 S is set of states, a 2 A is set of actions and

rt is the reward while transiting from state st to st?1. a is

learning rate (0\ a � 1) and c is discount factor (0\ c
� 1). Learning rate defines the extent of new information

overriding the previous information. At a = 0, agent learns

nothing and a = 1 agent considers only recent information.

The small value of a (a[ 0) represents exploration.

Therefore, in stochastic environment the values of a = 0.1

is considered for exploration. Discount factor defines the

importance of future rewards. The larger value of c rep-

resents that agent is going to explore the entire

environment.

In real time there are many complex problems that

require multiple agents to achieve global optimality.

Therefore, extended Q-learning algorithms such as Dis-

tributed-Q learning [43], Friend-or-foe Q-learning [44],

Nash-Q learning [23], Correlated-Q learning [45], Mini-

max-Q learning [46] and Optimal adaptive learning (OAL)

[47] have been proposed to tackle the multiagent system. In

multiagent reinforcement learning (MARL) the agents

learn by interacting dynamically with their environment as

shown in Fig. 2. The global state of the environment is

governed by the actions of all agents. There is one chal-

lenge in MARL related to the behavior of agents. The

agents can behave as cooperatively, competitively or neu-

trally [25].

Hu et al. [23] have extended the single agent Q-learning

to multiagent systems for stochastic environment. The

authors have proposed a Q-learning based distributed non-

cooperative multiagent reinforcement learning algorithm

where each agent simultaneously and independently tries to

maximize the expected sum of discounted rewards. These

discounted rewards are represented by Nash Q-values.

Each agent follows Nash equilibrium strategies for the next

time interval. For a multiagent system the very first step is

to recognize the joint actions for a given state. The

Q-function is Q(s,a1, a2,…,an) instead of Q(s,a). The future

rewards are based on agents’ joint optimal strategy.

In Nash Q-learning algorithm, the agents are indexed as

i. The first step of Nash Q-learning algorithm is to assume

the random Q-values at t = 0. At time t the agent i iden-

tifies its current state and take action accordingly to get

positive reward. Afterward, it identifies actions taken by

other agents, their rewards and the next state s*. At time t

the agent i updates its Q-value using Eq. 2.

Qi
tþ1ðs; a1; a2. . .; anÞ ¼ ð1� atÞ Qi

t ðs; a1; a2. . .; anÞ
þ at rit þ cNQi

tðs�Þ
� �

ð2Þ

where a is learning rate (0\ a � 1) and c is discount

factor (0\ c � 1). NQt
i(s*) is given by Eq. 3.

NQi
tðs�Þ ¼ p1ðs�Þ. . .pnðs�Þ:Qi

tðs�Þ ð3Þ

Nash Q-learning algorithm incorporates joint actions

and updates its Q-value based on Nash equilibrium strategy

specified by all agents over current Q-values. Using Nash

Q-learning the agents achieve global optimality faster than

single agent Q-learning.
Fig. 2 Reinforcement learning and its environment
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4.2 Formal definitions

Definition 1 An agent takes suitable action in discrete

time steps t = 0,1,2,…,n. Each sensor node autonomously

acts as an agent.

Definition 2 The entire sensing area As is an environment.

It provides state information to the multiagent (sensor

nodes) resides inside the sensing area As. The environment

takes the agent’s current state and action as input, and

returns the output as a numerical reward as shown in

Fig. 2.

Definition 3 Local state SL represents the same type of

information. For coverage, there are two local states of a

sensor node: {SL1 = Coverage Redundancy, and SL2 = Isolate}.

The sensor node can be in any one of the states. For net-

work connectivity maintenance, the two local states of a

sensor node are {CSL1 = Connected to 1-hop neighbor,

and CSL2 = not connected}.

Definition 4 Global state SG represents the global objec-

tive of the multi-agent system. For coverage {SG = cover-

age rate} and for connectivity {CSG = Connectivity among

sensor nodes}.

Definition 5 Action A is the set of all possible activities;

an agent can perform (A 2 Ai). For coverage the possible

set of actions is: {A1 = active, A2 = sleep, and A3 = cus-

tomize the sensing range} and for connectivity the possible

set of actions is: {CA1 = active, and CA2 = hibernate}.

Actions are selected either using �-greedy method or

Boltzmann exploration [25]. �-greedy is advantageous in

choosing the best action with probability 1-� or random

action with probability �, whereas, Boltzmann exploration

uses a temperature parameter T to balance exploration and

exploitation [24]. In this paper, the actions are selected

using the �-greedy method.

Definition 6 Reward r is the feedback by which the suc-

cess or failure of an agent’s selected action is measured.

For example: the coverage rate provided by the active

sensor nodes is reward. If the coverage rate Cr is greater

than or equals to threshold coverage rate s (Cr � s), then it

is a positive reward otherwise negative reward. Reward can

be categorized as local reward and global reward. Coverage

area provided by an agent is stated as local reward and the

coverage rate provided by the active number of sensor

nodes in one scheduling round is stated as global reward.

The illustration of local and global reward is shown in

Fig. 3.

Definition 7 Coverage rate Cr is the total amount of area

covered by active sensor nodes to that of the sensing area

As.

Cr ¼
PNactive

i¼1 pR2
final i

As

ð4Þ

Definition 8 Network connectivity Nc states that there

must exist at least one communication link between active

sensor nodes.

Definition 9 For coverage maintenance, if the distance

d between Si and Sj is less than 2Rs (d(Si, Sj)\ 2Rs), then Sj
is said to be the neighboring node SNN of Si. For connec-

tivity maintenance, if the distance d between Si and Sj is

less than 2Rc (d(Si, Sj)\ 2Rc), then Sj is said to be the

1-hop neighboring node of Si.

Definition 10 Convergence time CT is the time taken by

the learning algorithm to achieve its global optimality.

Definition 11 Active node ratio is defined as the total

number of active nodes Nactive to that of the total number of

deployed sensor nodes N.

Definition 12 Policy p is state action mapping probability.

It is an approach that an agent applies to identify the next

best action based on current state.

Definition 13 Threshold value sets a level in achieving the

particular goal. In this paper, the threshold value s repre-

sents the minimum value set for achieving the coverage

rate. The active sensor nodes must provide coverage up to

the threshold level.

Fig. 3 Representation of local reward and global reward
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5 Coverage connectivity maintenance based
on reinforcement learning (CCM-RL)
protocol

This section presents the complete description of the pro-

posed CCM-RL protocol. This protocol presents rein-

forcement learning based an energy-efficient node activity

scheduling algorithm for randomly deployed sensor nodes.

CCM-RL helps in maintaining the desired coverage rate

and connectivity provided by the active sensor nodes in

each scheduling round. Nash Q-learning [23], an algorithm

for multiagent reinforcement learning is applied for node

activity scheduling. A WSN comprises N number of static

sensor nodes where each sensor node acts as an agent. Due

to N number of sensor node, a WSN is defined as a mul-

tiagent system. It is difficult and time-consuming to

achieve a global optimal path with a single agent

Q-learning algorithm. Therefore, Nash Q-learning algo-

rithm is applied for minimum convergence time. Along

with activity scheduling of nodes, CCM-RL also considers

two other issues of random deployment i.e. coverage

redundancy and partial coverage.

5.1 CCM-RL protocol description

The CCM-RL protocol comprises of two phases: (1)

Learning phase for coverage maintenance, and (2) Learn-

ing phase for connectivity maintenance. The complete

description of these two phases is presented in Sects. 5.1.1.

and 5.1.2.

5.1.1 Reinforcement learning for coverage maintenance

The learning process in a sensor node starts immediately

after the random deployment of the sensor nodes. The

agents explore the entire environment. At time t = 0, the

learning rate a, discount factor c, and random Q-values are

initialized. The learning process starts at time t from any

randomly selected sensor node Si. Si identifies all of its

neighboring nodes SNN and observes its local state SL (SL 2
SL1, SL2). SL 2 SL1 represents that Si is in the coverage

redundancy state. Si then computes the amount of coverage

redundancy among its neighboring nodes using Euclidean

distance formula. Afterward, Si choose the best action A

{A1 = active, A2 = sleep, and A3 = customize the sensing

range} and (A 2 A1, A2, A3) to mitigate the coverage

redundancy. If the selected action is either A1 or A3 then the

coverage area CAi CAi ¼ pRfinal i
2

� �
provided by Si is

assigned as positive reward. SL 2 SL2 represents that Si is in

an isolated state. Si need not to perform any action and the

coverage area CAi CAi ¼ pRs i
2

� �
of Si is assigned as

positive reward. The Q-values are updated iteratively using

Eq. 2 to achieve global optimality. Figure 4 represents the

flow chart of the above description.

If the global reward is greater than the threshold level

after scanning N sensor nodes, then the learning is said to

be convergent and the time required to achieve this is

known as convergence time. Otherwise, the entire process

is repeated to achieve the goal. To achieve the coverage

rate Cr (Cr C s) is the global optimality of the learning

algorithm. The output of this phase is the total number of

active sensor nodes and their coverage rate. It becomes the

input for connectivity maintenance phase as shown in

Fig. 5.

The pseudo code of node activity scheduling for cov-

erage maintenance is presented in Algorithm 1. This

algorithm presents the step by step procedure for one

scheduling round. The similar steps are executed for the

rest of the scheduling rounds. The sensor nodes, which are

active in one scheduling round will be in sleep mode for the

next scheduling round. At the beginning of the algorithm

all important parameters are initialized. Each sensor node

is assigned with a unique ID S_ID. The Si sensor nodes

with unique IDs are stored in active_sensors and uncov-

ered_set. Initially, all sensor nodes are active. At the

beginning of a scheduling round, a random sensor node Si
is selected and all of its neighbors are identified. The

neighboring nodes SNN are stored in the ascending order of

their distance from Si in a list. Si picks the first node from

the list. There exists coverage redundancy because of the

minimum distance between Si and SNN. The algorithm then

computes a variable to customize the sensing range by

x units. This helps in mitigating the coverage redundancy.

If the sum of coverage area provided by Si and SNN after

customizing their sensing range by x units is larger than the

coverage provided by max(coverage(Si), coverage(SNN)),

then reduce the sensing range of both the sensor nodes by

x units. Si and SNN are kept in active mode. Otherwise, put

the sensor node that provides minimum coverage in sleep

mode. This process is repeated for all deployed sensor

nodes. At the end of the scheduling round, the coverage

rate is computed. If the coverage rate provided by active

sensor nodes is greater than the threshold coverage rate s,
then the scheduling round is saved. Otherwise, Algorithm 1

is executed again with any other randomly selected sensor

node.
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Fig. 4 Learning phase for coverage maintenance using Nash Q-learning
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Fig. 5 Learning procedure for connectivity maintenance using Nash Q-learning
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5.1.2 Reinforcement learning for connectivity maintenance

The total number of active sensor nodes acquired from

Algorithm 1 is the input for connectivity maintenance

phase. The main purpose behind this phase is to maintain at

least one communication link between active sensor nodes

and mitigate the network partitioning. Figure 5 presents the

flow chart for connectivity maintenance.

At time t = 0, Q-values, learning rate a, and discount

factor c are initialized. At time t, the learning process is

started with any randomly selected sensor node from ac-

tive_sensors. Identify its 1-hop neighbors and perform a

suitable action from the action set CA {CA1 = active, and

CA2 = hibernate} and (CA 2 CA1, CA2). If the active

sensor node does not have any 1-hop neighbor, then

identify the most eligible Seligible node from uncovered_set

and then perform a suitable action from the action set CA.

The total number of active sensor nodes is the global

reward obtained from this phase. Algorithm 2 represents

the pseudo code of node activity scheduling for connec-

tivity maintenance.

Algorithm 3 presents the pseudocode for coverage

connectivity maintenance based on reinforcement learning

CCM-RL. The rewards are observed using Algorithm 1 and

Algorithm 2 and then Q-table is updated using Eq. 2. The

Nash Q-learning for multiagent system is explained in

Sect. 4.1. The updating of Q-table is an iterative process to

achieve the global optimality of rewards.
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5.2 Computational complexity

Computational complexity is defined as the number of

resources and computation time required to execute an

algorithm. The computational complexity of Algorithm 1

and Algorithm 2 is based on the number of the deployed

sensor nodes N. The number of sensor nodes are the prime

metric for coverage and connectivity maintenance. The

computational complexity of Algorithm 1 is O(N3) and

Algorithm 2 is O(N2) where N is the number of deployed

sensor nodes. Section 6.6 presents the convergence time of

Algorithm 1, Algorithm 2 and Algorithm 3 with respect to

the number of sensor nodes.

6 Performance evaluation

In this section, the performance of the CCM-RL is evalu-

ated through extensive simulations performed on

OMNeT?? and Python. The simulations are performed to

ensure the accuracy and reliability of CCM-RL protocol.

The performance of CCM-RL is evaluated using seven

parameters for both small and large size WSN respectively,

such as: coverage rate, number of cover set formation,

average number of active sensor nodes for coverage,

average number of active sensor nodes for connectivity

maintenance, number of iterations to achieve global opti-

mality, percentage of wrong decisions, and convergence

time. The proposed protocol is compared with Coverage

Contribution Area (CCA) [5], Partial Coverage with

Learning Automata (PCLA) [12] and Probabilistic Cover-

age Protocol (PCP) [37]. The three parameters used to

compare the performance of CCM-RL with CCA, PCLA,

and PCP respectively, such as: average number of active

sensor nodes, coverage rate, and average power con-

sumption in each cover set. The Figs. 16, 17, and 18 show

that CCM-RL performs better as compared to CCA, PCLA,

and PCP. Table 2 presents the list of parameters and their

values used for simulation.

6.1 Random deployment of sensor nodes
and implementation of CCM-RL

A set of 100 sensor nodes having sensor IDs S1, S2,…,

S100 is randomly deployed inside 2500 m2 sensing region.

These sensor nodes have uniform sensing range Rs = 15 m.

The coverage area of each sensor node is considered as a

circle. Figure 6 presents the deployment of these sensor

nodes. Figure 7 shows the resultant active number of sen-

sor nodes in one scheduling round after the implementation

of Algorithm 1, Algorithm 2, and Algorithm 3. It shows

that out of 100 only 25 sensor nodes are active. These

nodes provide coverage rate up to a threshold level and also

ensure network connectivity. The activation of only 25% of

nodes in one scheduling round reduces the energy con-

sumption rate. Moreover, Fig. 7 shows that after the exe-

cution of algorithms the sensing range of S17, S20, S21,

S24, S36, S37, S38, S44, S47, S49, S61, S73, S77, S78,

S81, S87, S90 and S96 is customized to mitigate the cov-

erage redundancy among sensor nodes. The customization

in sensing power also reduces energy consumption for

processing and communicating the data bits. The sensing

range of S10, S41, S64, S67, S69, S76 and S97 remains

same.

6.2 Analysis of number of cover sets, average
number of active sensor nodes,
and coverage rate for small and large scale
WSN

The sets of 50, 100, 150 and 200 sensor nodes are ran-

domly deployed in the small sensing region of area

100*100 m2. Figure 8 shows the results respectively,

Wireless Networks (2020) 26:4411–4429 4423

123



which are number of cover sets formation, average number

of active sensor nodes in one scheduling round, and cov-

erage rate for small scale sensing region. These results are

evaluated for 10 m, 20 m, and 25 m sensing range.

Similarly, Fig. 9 shows the results for large scale WSN.

The sets of 250, 500, 1000, and 1500 sensor nodes are

randomly deployed in large sensing area 1000*1000 m2.

The results are evaluated for three different sensing ranges,

which are 25 m, 30 m, and 35 m. Figures 8(a), 9(a), 8(c),

and 9(c) show that there is an increase in cover sets for-

mation and coverage rate with the increase in the sensing

range. Figures 8(b) and 9(b) show that the average number

of active sensor nodes reduces with the increase in the

sensing range for a fixed number of sensor nodes. This

analysis helps in estimating the number of sensor nodes

with homogenous sensing range require to cover a sensing

region up to a threshold level.

6.3 Average number of active senor nodes
for network connectivity

It is not necessary that the average number of active sensor

nodes that provide threshold coverage rate must have

connectivity among themselves. Algorithm 2 has been

proposed to analyze and maintain the connectivity among

the sensor nodes. Figure 10 represents the results that show

the average number of active sensor nodes require to pre-

serve network connectivity for different number of sensor

nodes. The total number of active sensor nodes increases

for connectivity maintenance as compared to coverage

maintenance. For a fixed sensing area 1000*1000 m2 the

average number of active sensor nodes decreases with the

increase in their sensing range.

6.4 Analysis of number of iterations for small
and large scale WSN

This section explains about the number of iterations that

have been occurred to achieve the global reward for given

number of fixed sensor nodes. Figures 11 and 12 show the

Table 2 List of parameters
Name of the parameter Values

For small network size For large network size

Number of sensor nodes (N) 50, 100, 150, and 200 250, 500, 1000, and 1500

Sensing area (As) 100*100 m2 1000*1000 m2

Sensing range (Rs) 10 m, 20 m, and 25 m 25 m, 30 m, and 35 m

Communication range (Rc) 20 m, 40 m, and 50 m 50 m, 60 m, and 70 m

Threshold value (s) 0.65

Total energy (E) 100 J

Power consumed by active sensor nodes 57 mA

Power consumed by sleep sensor nodes 0.40 lA

Learning rate (a) 0.1

Discount factor (c) 0.7

Maximum time limit for each scheduling round 20 min

Fig. 6 Deployment of 100 sensor nodes inside 2500 m2 sensing

region

Fig. 7 Active number of sensor nodes after the implementation of

Algorithm 1, 2, and 3

4424 Wireless Networks (2020) 26:4411–4429

123



Fig. 8 Analysis of parameters a number of cover sets, b average number of active sensor nodes, and c coverage rate for fixed number of sensor

nodes and small sensing area 100*100 m2

Fig. 9 Analysis of parameters a number of cover sets, b average number of active sensor nodes, and c coverage rate for fixed number of sensor

nodes and large sensing area 1000*1000 m2

Fig. 10 Average number of active sensor nodes for network connec-

tivity versus number of sensor nodes Fig. 11 Number of iterations occurred for fixed number of sensor

nodes deployed inside small sensing area 100*100 m2
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number of iterations that has taken place for small and

large scale WSN. The parametric values of small and large

scale WSN are same as considered in Sect. 6.2. The

graphical results in Figs. 11 and 12 represent that for a

fixed number of sensor nodes the number of iterations

decreases with the increase in their sensing range.

6.5 Percentage of wrong decision versus number
of senor nodes

Reinforcement learning is an iterative process of learning

to achieve global rewards. In each learning step the agent

generates the output as a reward. The reward can be either

a positive reward or negative reward. Only those rewards

are considered which help in achieving the global opti-

mality and remaining rewards are considered as wrong

decisions. This section represents the percentage of wrong

decisions occur with respect to the total number of sensor

nodes. Figure 13 shows that for a fixed large sensing area

1000*1000 m2 the percentage of wrong decisions decrea-

ses with the increase in the number of sensor nodes and

their sensing range. The results are evaluated for 25 m,

30 m, and 35 m sensing range.

6.6 Convergence time versus number of sensor
nodes

Convergence time is the time required by Algorithm 1, 2

and 3 to achieve global optimality. Figure 14 shows the

convergence time with respect to the total number of

deployed sensor nodes. This time includes the time con-

sumed for activity scheduling of sensor nodes, coverage

rate computation, and connectivity maintenance. It shows

that for a fixed sensing area 1000*1000 m2 the conver-

gence time is directly proportional to the number of sensor

nodes. The convergence time increases with the increase in

the number of sensor nodes.

6.7 Effect of learning rate (a) on convergence
time

The learning rate reflects the efficiency of an agent to learn

the optimum policy that helps in achieving the global

optimality. The value of learning rate lies between 0 and 1

(0\ a � 1). The larger value of a minimizes the learning

ability of an agent. The results generated with large value

of a are not correct. In this paper, the learning rate a = 0.1

is considered. Figure 15 shows the effect of learning rate

on convergence time (in seconds). This represents that the

convergence time decreases with the increase in the value

of learning rate. Therefore, the smaller value of a helps in

achieving better learning outcomes.

Fig. 12 Number of iterations occurred for number of sensor nodes

deployed inside large sensing area 1000*1000 m2

Fig. 13 Percentage of wrong decision versus number of sensor nodes

for large sensing area 1000*1000 m2
Fig. 14 Convergence time versus number of sensor nodes for large

sensing area 1000*1000 m2

4426 Wireless Networks (2020) 26:4411–4429

123



6.8 Comparison of CCM-RL with CCA, PCLA,
and PCP

The proposed CCM-RL protocol is a node activity

scheduling protocol. The main objective of this protocol is

to enable the deployed sensor nodes learn their best action

that can provide maximum coverage rate and maintain

network connectivity. Node activity scheduling activates a

subset of sensor nodes, instead of the entire set in each

scheduling round. CCM-RL has proposed three algorithms

to fulfill this objective. However, the accuracy of the

algorithm can only be proven after its comparison with

already existed protocols. Therefore, the performance of

CCM-RL is compared to CCA, PCLA and PCP on the

basis of three parameters respectively, which are average

number of active sensor nodes, coverage rate, and average

power consumption in each cover set (in Watts). Figure 16

shows that CCM-RL enables a lesser number of sensor

nodes to be active in one scheduling round as compare to

CCA, PCLA, and PCP. The lesser number of active sensor

nodes in each scheduling round increases the number of

cover sets and network lifetime.

Figure 17 compares the performance of CCM-RL in

terms of coverage rate. It shows that with lesser number of

active sensor nodes CCM-RL provides maximum coverage

rate. Moreover, CCM-RL has reduced the coverage

redundancy to mitigate the problem of redundant packet

generation. Figure 18 shows that CCM-RL consumes less

power for processing and communicating the data bits. The

less power consumption enhances the network lifetime.

Hence, WSN can function for larger duration as compared

to CCA, PCLA and PCP. These comparisons show that

CCM-RL is efficient in terms of maximizing the coverage

rate and minimizing the power consumption.

7 Conclusion

Coverage and connectivity are two fundamental issues of

wireless sensor network. These issues become more critical

for randomly deployed sensor nodes. Random deployment

is a biased deployment strategy of sensor nodes, which

Fig. 15 Effect of learning rate (a) on convergence time

Fig. 16 Average number of active sensor nodes versus number of

sensor nodes

Fig. 17 Coverage rate versus average number of active sensor nodes

Fig. 18 Average power consumed by active sensor nodes in each

cover set
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imposes many challenges such as uneven deployment,

coverage redundancy, partial coverage, and unwanted

resource consumption. To resolve these issues, this paper

has proposed a Reinforcement Learning based Coverage

and Connectivity Maintenance (CCM-RL) protocol. This

protocol autonomously and intelligently chooses the best

activity for a sensor node that can maximize the overall

coverage rate and maintain network connectivity. The

sensor nodes learn their best action using Nash Q-learning.

This protocol also provides a mechanism to reduce the

coverage redundancy among sensor nodes by customizing

their sensing range. CCM-RL’s performance assessments

demonstrate its accuracy and reliability with respect to the

average number of active sensor nodes, number of cover

sets, coverage rate, and energy consumption.

Nash Q-learning is the learning algorithm for multia-

gent. It enables the agents of a multiagent system to learn

their best action in a particular state. There are many other

learning algorithms for multiagent systems in machine

learning such as Distributed-Q learning, Minimax-Q

learning, Friend-or-foe Q learning, Correlated-Q learning

and Optimal adaptive learning (OAL). The future scope of

this paper is to implement these algorithms for teaching the

agents and compare the performance in terms of conver-

gence time, rewards, and global optimality.
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