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Abstract
The user behavior characteristics of mobile social network services are of guiding significance to the evaluation of user

experience, and test cases and test scenarios should be designed according to user behavior characteristics. Current studies

have heavily addressed the action sequence and the frequency distribution of user behavior. However, there is little

research on the amount of user action triggered by the communication angle and the fluctuation of the user’s action

communication performance under different scenarios. This paper analyzes the distribution of data concerning different

user actions and tests the waiting time and success rate of different user actions in different scenes. The results suggest that

the complex scenarios can consist of some typical user behaviors.
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1 Introduction

With the development of 4G/5G communication technol-

ogy, a large number of Social Network Services (SNSs)

have emerged. Mobile operators and equipment providers

pay more attention to the Quality of User Experience

(QoE) of such services, and improve the user experience

through more intelligent scheduling strategies [1]. Some

scheduling strategies adopt Deep Packet Inspection (DPI)

technology to identify the specific services to which

packets belong, and then use different scheduling strategies

according to different services. This reflects that the com-

munications industry has recognized that different services

impact the user experience in different ways.

Therefore, based on the service recognition and efficient

traffic analysis method [2–5], an internet service provider

can employ many new techniques to improve the user

experience and save energy. For example, more complex

scheduling strategies are employed to select better access

networks [6, 7], and some resource allocation schemes are

developed to save energy [8–12] and to more effectively

route traffic [13] in complex networks. Some approaches

are designed to deal with security problems [14] and

measure network performance [15]. To the capacity of a

wireless channel in a mobile network, the effective

capacity concept is proposed [16] and is employed to

measure the probability of a QoS outage [17–19]. Many

emerging technologies are employed in SDN networks

[20, 21], optical networks [22, 23], sensor networks

[24, 25], and networks migration [26]. To evaluate these

new techniques, we need to build a large number of test

scenarios. However, the traditional evaluation system

mainly measures the service quality of a large-scale busi-

ness using indistinguishable general indicators. However,

many test systems are still based on the data flow model

[27, 28], and cannot effectively trigger intelligent

scheduling strategies; therefore, it is impossible to evaluate

the effectiveness of these intelligent scheduling strategies.

Many communication enterprises have to use the manual

dial-up method to verify a new scheduling strategy, but this

method is unable to simulate large-scale scenarios.

A possible approach is to replay the real data packets

that are captured from networks in a simulation system
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[15]. These packets might be generated by user actions,

such as logins, sending messages, comments, and so on. A

complex test scenario should consist of these actions

according to user behavior. Therefore, the new problems

are how the user behavior affects the QoE, and how to

reconstruct user behavior using the captured data packets.

The remainder of paper is divided into five sections. We

first introduce the related works about user behavior dis-

tribution analysis. Next, we give an approach to build the

test scenarios based on the user behavior central distribu-

tion. Thirdly, we explore the SNS user behaviors to

demonstrate the user behavior distribution such as the

operation frequency, the size of the posted message, and

the total number of operations. Then, we test how the user

behavior affects the end user experience indicators. We

conclude in the fifth section.

2 Related works

There are different user actions for different mobile SNSs.

It is difficult to analyze the behavioral characteristics of

such a large number of user actions and design test cases

when building communication scenarios. However, in

recent years, several mainstream services have formed a

large proportion in the communication market, and thus the

research focus can be narrowed.

As shown in Fig. 1, in the four mainstream mobile

business markets, a few brands have occupied large market

shares [29]. This trend of branding greatly reduces the

business scope for user experience evaluations. In addition,

the phenomenon of crowd gathering in similar businesses

also brings opportunities for user behavior analysis.

Through studying the communication records between

operators’ terminal nodes, Y.Jin found that users have a

strong degree of aggregation [30]. As shown in Fig. 2, the

PEARSON correlation can be used to describe the corre-

lation among users, and the correlation is scaled between

[- 10, 10]. It is obvious that besides the low degree of user

aggregation of real-time services such as FTP large file

transfers and VoIP, SNSs show a very high degree of user

aggregation. This phenomenon implies that users’ behav-

ioral habits are likely to influence each other in the same

type of user groups. This aggregation phenomenon will

result in the centralized distribution of user behavior, thus

forming some typical user behavior. Typical behaviors will

have a greater impact on the characteristics of the scenario

than other atypical behaviors, and this will make it possible

to build complex scenarios using a few typical user

behaviors.

Through the analysis of the user behavior characteristics

of the main SNSs, some researchers found concentrated

distributions of the common actions, action frequency and

information length of users.

Facebook is a popular social platform across the world,

and thus, it provides a wealth of data on user behaviors.

F. Schneider studied the behavioral characteristics of

Facebook users [31]. As shown in Fig. 3, there are only

five frequent user actions. In addition, the action sequence

also has certain rules to follow, as shown in Fig. 4.

Some studies suggest that the traffic model of a tradi-

tional communication network can be used as a reference

to analyze the communication behaviors of computer
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network users [32]. This model will provide support for

simulating the network communication scenarios with

respect to user behaviors and testing the combined influ-

ence of user behaviors and scheduling strategies on user

experience. In the model, the network user behaviors can

be described by the Poisson distribution of parameter k:

Pu i; tð Þ ¼ ktð Þi

i!
e�kt ð1Þ

where i is the number of services during t. The amount and

length of the data flow of each service follow the geometric

distributions of Ef and El, respectively:

Pf nð Þ ¼ 1

Ef
1� 1

Ef

� �n�1

ð2Þ

Pl nð Þ ¼ 1

El
1� 1

El

� �k�1

ð3Þ

where n and k are the number and length of the data flows,

respectively. The network traffic nij Tð Þ can thus be

obtained based on the number of users Tð Þ, the number of

data flows fi Tð Þ and the length of data flow nij Tð Þ during

0; Tð Þ:

N Tð Þ ¼
Xu Tð Þ

i¼1

Xfi Tð Þ

j¼1

nij Tð Þ: ð4Þ

Then, the network traffic during t; t þ sð Þ can be written

as follows:

Nt sð Þ ¼ N t þ sð Þ � N tð Þ: ð5Þ

In this traffic model, the parameter k depends on the user
density and usage habits of the users in the scene, Ef

depends on the operation sequences and action frequencies

of the users, and El is determined by the distribution of user

actions. Due to the additivity of the Poisson flow, if there is

a centralized distribution of the user behaviors, a few

typical action sequences can be used to simulate the entire

communication scenario and form impact scenarios that are

similar to the real scenarios. In addition, since user habits

are somewhat fixed, typical user behaviors have a higher

degree of reusability. The model in Fig. 5 can be adopted

to collect real user communication data, and form a simple

script describing the user behaviors to build a complex

communication scenario. Through setting the ratio among

the typical users, we build the scenario and illustrate the

process in Fig. 6. Then, we can evaluate the QoE in this

simulation scenario.

The key point of using the above model to evaluate user

experience is whether the user action frequency and the

amount of data that is triggered by the action obey a cen-

tralized distribution, and whether the user behavior impacts

the QoE indicators.

3 User behavior analysis of an SNS

Using the above model, it is possible to reconstruct a real

scene with a small number of typical user behaviors if the

data length and frequency of user behaviors obey a central

distribution. Related studies have found centralized distri-

butions of user behaviors in SNSs. In this paper, we ana-

lyze the online times and operation frequencies of SNS

users. To observe the impacts of user behaviors on QoE,

we also test the appreciable indicators of the end users in

different scenarios with different user densities and

behaviors.

3.1 Central distribution of the online frequency

To analyze the distribution of the online frequency for an

SNS, we survey 35 college students on their use counts per

day. As shown in Fig. 7, the results show that this special

user group has similar usage habits.

Figure 8 shows the distribution of users’ usage times for

Weibo on campus. This implies a centralized distribution

of usage habits in this special communication scenario.
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3.2 Central distribution of user data

We collect the Weibo information of 60,000 users. We

compute the average number of posts that these users

published per day. The number of tweets per person per

day was calculated. As shown in Fig. 9, for most users,

they make less than 10 daily posts, and the distribution has

a long tail.

In addition, the length of the post is also restricted by the

usage habits. In this paper, the length of the 2622 Weibo

posts without links is analyzed in Fig. 10, where the ver-

tical coordinate is the number of blog posts and the hori-

zontal coordinate is the length of the posts.

As shown in Fig. 10, the lengths of most posts are

between 10 and 50 bytes. The oscillation in Fig. 10 is

caused by the double-byte representation of Chinese

characters in the computer. When Fig. 11 retains only the

double-byte data, the oscillation disappears. This result

shows a centralized, heavy-tailed distribution.

4 Impact of the scenario on QoE indicators

We survey the degree to which the communication sce-

nario affects the user experience. In this paper, the appre-

ciable indicators of the SNS are evaluated in an urban area.

The cellular network access is provided by the same

communication operators. Therefore, the infrastructure

conditions of the tests are similar, and the performance

fluctuations should be caused by the behavioral features of

the different user groups, including the user density,

operation frequency, and other operation habits.

Fig. 10 Distribution of post length

Fig. 11 distribution of post lengths (only even bytes)
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To quickly test and analyze various user perception

indicators, we define the user perception indicators of

SNSs, such as QQ, MSN and Weibo. The algorithm for

calculating these indicators is shown in Fig. 12. Firstly, the

key attributes are extracted from the network packets.

Then, the key messages are identified according to the

combination of key attributes. Finally, important attributes

such as the time stamps and serial numbers of key mes-

sages are used to calculate user perception indicators (e.g.,

post delay, login success rate, etc.).

By using the above algorithm, the user perception

indicator is measured in real scenes, and the significant

variances in user groups among scenarios are helpful for

observing the impacts of user behavior on the QoE

indicators.

Figures 13–16 show the delay test results of QQ mes-

sages that are sent in different scenarios. The test results

show that the distribution ranges of the delays are

approximately the same. However, the number of delays

with a significant deviation from the main distribution

range is obviously different. In particular, Fig. 16 shows

that the delay difference between the different time periods

in the same place is also obvious. The test results indicate

that user behavior is key factor of communication scenar-

ios, which has a certain impact on the QoE indicators.

In the same area, the communication capacities of the

communication operators are more similar. In different

scenarios, the group behaviors of users are different, and

the usage habits are thus different. Therefore, the degree to

which the user behavior affects QoE indicators can be

observed. In this paper, we chose to test the delay of

posting Weibo comments through a cellular network under

different scenarios in a large research and development

base. The scenarios include an office area, experiment area,

restaurant, lounge, and so on. Except that the restaurant is

significantly more densely populated than other areas, all

other areas have similar user densities. In addition, the

communication operators are known to identify data

packets and adopt special scheduling strategies for SNSs.

The test results in Fig. 17 also indicate that in the case of

the same user density and a similar communication

capacity, user behavior causes delayed fluctuations.

Because a delay jitter bigger than 0.1 s is appreciable, the

delay fluctuation in Fig. 17 is obvious for users.

Fig. 15 QQ message delays in the International Finance Centre

(indoors)

Fig. 14 QQ message delays in an exhibition center
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5 Conclusions

In this paper, we mainly analyze the distribution of user

behavior for an SNS, and the degree of impact of user

behavior on QoE indicators. The investigation results show

the centralized distribution of user behavior. The test

results in real scenarios imply that the user behavior

actually affects the user experience. Therefore, we propose

that a QoE test scenario can be built using the typical user

behaviors. The relationship between user behavior and the

network load should be further studied to guide the test

case design.
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