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Abstract
A recent approach to tackle the ever increasing complexity of simulation system is model-driven engineering (MDE).

However, it is mostly used to produce simulation tools, and seldom can perform formal analysis. Consequently, this raises

issues like poor qualities of product, and falls short of non-functional requirements such as extensibility, maintainability,

and reuse. In general, many of the success of MDE projects depend on the descriptive power of modeling languages and

how conceptual models are implemented. Hence, this paper presents contributions in two main aspects: customizing

domain specific language by metamodeling and enhancing model continuity by formalizing model transformations. A

military application is used as a motivating example to illustrate the whole process by transforming the conceptual models

into other more precise formalisms until they reach final executable models.

Keywords MDE � Metamodeling � Model transformation � Model continuity

1 Introduction

Traditional military simulation models are usually repre-

sented by UML which has not precise and unambiguous

semantics defined using a mixture of OCL (Object Con-

straint Language) and informal text, or the semantics of

simulation models are left to model interpreters or simula-

tors which are defined by general-purpose programming

languages, which is clearly unacceptable for formal analysis

[1]. Meanwhile, although the syntax of current domain

specific modeling languages (DSML) are formally described

with a lot of general metamodeling tools like UML Profile

[2], EMF [3], and GME [4] etc., the semantics are left

toward other less than desirable means [5]. All of these

accompanying with the lack of formal model transforma-

tions contribute to difficult formal analysis at a model level.

Hence, it is a real challenge to describe simulation models

formally, and to improve the model continuity that exist

between different models in different development stages at

different levels of abstraction [6], so as to reuse existing

model assets and simulation services to a great degree.

This paper proposes a set of formal theories of model

transformations for engineering model continuity, trans-

forming models represented by various modeling languages

into other formalisms that have precise definitions of seman-

tics until they reach final executable simulation models [7]. A

motivating example named group fire control channel system

(GFCCS) is used through this paper, commencing with its

customization of DSML and transforming its conceptual

models represented in this DSML to final executable simula-

tionmodels.After that, amilitary simulation system in support

of engineering modeling and composable simulating is cap-

able of integrating those executable simulation models and

reusing them for multiple simulation applications.

2 Background

Inconsistent terminology in the model-driven engineering

(MDE) context [8] means it is necessary to define basic

meanings of important frequently used terms to provide a
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common understanding. Many of these terms are used

alternatively in specific contexts, but providing their defi-

nitions and/or subtle distinctions is helpful to understand

the methodologies, techniques, and tools used in model-

driven development. For different modeling goals, there

exist three typical issues, i.e. model composability, model

heterogeneity, and model continuity.

Firstly, model composability [9, 10] concentrates on the

syntactical matching and semantic relations between dif-

ferent simulation models. Unlike the other two issues, it is

usually discussed in a MDE context and emphasizes the

integration of multiple simulation models to form an

effective and meaningful simulation application [11, 12].

Secondly, model heterogeneity comes from the joint use

of several DSMLs dedicated to particular domains or

applications. In many cases, it refers to the syntactical

incompatibility between different used DSMLs during the

language customization process and has four sources in

general [13, 14]. Firstly, the different technical or application

domains involved in a simulation system under design

require differentmodel specifications,modeling formalisms,

or simulation protocols. Secondly, the different levels of

abstraction need suitable modeling techniques. Thirdly, a

simulation system is always studied from different points of

view, and lastly different stages of a development cycle may

use different languages for different activities.

Thirdly, model continuity refers to the generation of an

approximate morphism relation between different phases

of a development process [15]. In general, model conti-

nuity is obtained if the initial and intermediate models are

effectively consumed in the later steps of a development

process and the modeling relation is preserved. In a sense,

model continuity is similar to the consistency between the

source and target models, involving the syntactical cor-

rectness of target model, the completeness of source model

consumed in model transformation, and the semantic

relations preserved in target model [16].

3 Model transformations

Model transformation is a process that takes a source

model in a specific form as an input and outputs another

form of the target model according to a set of predefined

rules. This process does not build new models from

scratch, but reuse existing information when conducting a

model transformation. A formal model transformation

requires that the models involved in the transformation are

represented clearly by well-defined modeling languages

that have accurate syntax and unambiguous semantics.

Furthermore, it requires that the transformation rules are

written by a well-defined transformation language to

ensure the transformation is conducted under a well-

defined transformation template [17]. To ensure model

continuity, the target model should preserve as much as

possible the initial model information and modeling rela-

tions that are embedded in the source model [18].

3.1 The basic model transformation mode

Figure 1 shows the basic mode of model transformation. In

this mode, each node at a certain layer conforms to or is an

instanceof thenodeat a higher layer.Themiddle column is the

transformation mechanism that inputs the left source nodes

and outputs the right target nodes. For example, the transfor-

mation engine is an instance of the transformation template

which is further an instance of the transformation language,

which means the transformation template is written by the

transformation language and prescribes the internal mecha-

nism of the transformation engine. This engine inputs the

source model which is an instance of the source metamodel

and outputs the target model which is an instance of the target

metamodel, andbothmetamodels are respectively taken as the

inputs and outputs of the transformation template [19, 20].

According to the concrete form of target model, model

transformation has two typical categories: model to model

(M2M) and model to text (M2T). In practice, M2T transfor-

mation is also called code generation when the text is in the

form of source code. In general, a model-driven development

process contains a sequence of M2M transformations and a

final code generation. In addition, model transformation is

endogenouswhen the sourcemetamodel is similar to the target

metamodel, and exogenous when they are different [21].

3.2 MDA based model transformations

MDA (model-driven architecture) introduces three model

development roles, and two transform mechanism types

[22]. Using these MDA models, i.e. conceptual indepen-

dent (CIM), platform independent (PIM), and platform

specific models (PSM), developers can be classified into

source 
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Fig. 1 The basic model transformation mode
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comparable roles, i.e. conceptual and simulation modelers,

and simulation programmers, respectively, where later

stages only can commence when developers for the former

stages reach a consensus on an artifact. For example, once

the problem owner and the conceptual modeler agree on a

conceptual model, the simulation modeler can transform it

into a formal model. In addition, M2M and M2T model

transformation mechanisms are used as a bridge to reduce

the gap between these roles. We adopt the formal MDA

process as depicted in Definition 1 [15].

Definition 1 AMDA process is defined as

mda ¼ n;MML;ML;MO; SL; pl;MTP; STP;MT ; SM; TOf g

• n ¼ 3ðCIM;PIM;PSMÞ,
• MML ¼ ll0; ll1; ll2f g is an ordered set of metamodeling

languages,

• ML ¼ l0ðmmCIMÞ; l1ðmmPIMÞ; l2ðmmPSMÞf g such that

confromToðmmCIM; ll0Þ;
confromToðmmPIM; ll1Þ;
confromToðmmPSM ; ll2Þ;
This means metamodels must conform to their

corresponding metamodeling languages.

• MO ¼ CIM;PIM;PSMf g such that CIM is the initial

model, PSM is the final model, and

instanceOf ðCIMÞ ¼ mmCIM ;

instanceOf ðPIMÞ ¼ mmPIM;

instanceOf ðPSMÞ ¼ mmPSM ;

This means models must conform to their corre-

sponding metamodels.

• SL is a set of model transformation languages,

• pl is a programming language with simulation

capabilities,

• MTP ¼ pCIM ; pPIM; pPSMf g such that

pCIM ¼ l0ðmmCIMÞ; l1ðmmPIMÞ; r0f g;
pPIM ¼ l1ðmmPIMÞ; l2ðmmPSMÞ; r1f g;
pPSM ¼ l2ðmmPSMÞ; pl; r2f g;
This represents model transformation patterns that a

source language to a target language through some

rules.

• STP is a set of other supplementary formal model

transformation patterns,

•

MT ¼ f
transformToðCIM; pCIMÞ ¼ PIM;

transformToðPIM; pPIMÞ ¼ PSM;

transformToðCIM; pPSMÞ ¼ SM

g;
This means model transformations that a source

model to a target model using some patterns.

• SM is the final executable simulation model,

• TO is a set of tools to ease the activities.

Above definition is suitable for general model devel-

opment base on the MDA principles. Given this definition,

we can conclude a process for the GFCCS development as

Definition 2, which will be illustrated by later sections. In

the GFCCS process, we take the GFCCS DSML as the

conceptual modeling language to describe CIM, P-DEVS

[23] as the modeling formalism to define PIM, and JAVA

as the programming language to build PSM. Hence, the

GFCCS process involves the following types of meta-

models and model transformations.

• The CIM metamodel is GFCCS metamodel.

• The PIM metamodel is P-DEVS metamodel.

• The PSM metamodel is JAVA metamodel.

• The CIM–PIM transformation is GFCCS to P-DEVS

transformation.

• The PIM-PSM transformation is P-DEVS to JAVA

transformation.

• The PSM-SM transformation is JAVA to java code

transformation.

Definition 2 A GFCCS simulation modeling process is

defined as gfccs ¼ n;MML;ML;MO; SL; pl;MTP;f
STP;MT ; SM;TOginstance
• n ¼ 3ðCIM;PIM;PSMÞ,
• MML ¼ Ecore;Ecore;Ecoref g is an ordered set of

metamodeling languages,

• ML ¼ l0ðmmGFCCSÞ; l1ðmmDEVSÞ; l2ðmmJAVAÞf g such

that

confromToðmmGFCCS;EcoreÞ;
confromToðmmDEVS;EcoreÞ;
confromToðmmJAVA;EcoreÞ;

• MO ¼ CIM;PIM;PSMf g; and
instanceOf ðCIMÞ ¼ mmGFCCS;

instanceOf ðPIMÞ ¼ mmDEVS;

instanceOf ðPSMÞ ¼ mmJAVA;

• SL ¼ fATL;Acceleog is a set of model transformation

languages,

• pl ¼ JAVA is the final programming language

• MTP ¼ pCIM ; pPIM; pPSMf g such that

pCIM ¼ l0ðmmGFCCSÞ; l1ðmmDEVSÞ; gfccs2devs:atlf g;
pPIM ¼ l1ðmmDEVSÞ; l2ðmmJAVAÞ; devs2java:atlf g;
pPSM ¼ l2ðmmJAVAÞ; JAVA; java2code:mtlf g;

• STP ¼ ; dictates there exists no other supplementary

formal model transformation patterns,

•

MT ¼ f
transformToðCIM; pCIMÞ ¼ PIM;

transformToðPIM; pPIMÞ ¼ PSM;

transformToðCIM; pPSMÞ ¼ SM

g;
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• SM is the final executable simulation model,

• TO ¼ fATL;Acceleo;EMF;GMF;Eclipse IDEg.

3.3 Criteria for evaluating model continuity

Model transformation is an automated process of modify-

ing and creating one or several target models from one or

several source models. The aim of model transformation is

to save effort and reduce information loss as much as

possible by automating model building and modification

where possible [24, 25]. The key to designing a successful

model transformation is a set of formal transformation

rules to improve model continuity. Although there is no

general guidance to define a good model transformation,

we can evaluate model continuity according to the fol-

lowing criteria.

1. Correctness A model transformation is syntactically

correct if the target model conforms to the target

metamodel specification [26], and semantically correct

if the target model contains information as much as

possible from the source model [27].

2. Completeness A model transformation is complete if

the target model has a corresponding element for each

element in the source model.

3. Uniqueness A model transformation is unique if there

are no two identical elements in the generated target

model [28].

4. Determinism A model transformation is determinate if

it produces a uniquely defined target model output for

each specific source model input [29].

4 Customizing a DSML based
on metamodeling

4.1 Metamodeling based on EMF

Metamodeling is an important mean to design DSMLs

[30, 31], especially for EMF usually has close relationships

with a set of OMG standards, like UML, MOF, XMI, and

MDA, etc. Firstly, UML is widely used to capture various

concerns of a certain system by an object-oriented method,

emphasizing multi-view to describe the structure, behavior,

function, and deployment, etc. While, EMF as a way of

defining metamodels is only concerned with one aspect of a

system, i.e. class structure. Secondly, EMF/Ecore focuses

on the tool sets not the metadata warehouse management,

thus avoiding some of the complex issues such as data

structure, package relationships, and associations compared

to MOF. Thirdly, XMI is a widely accepted serializing

standard which is not only used as the format for serializing

EMF models, but also suitable for serializing the meta-

model, i.e. Ecore itself. This method is very different with

the UML profiling mechanism because it defines meta-

models from scratch without considering the UML rules

[32]. Hence, it has the potential for the most direct and

succinct expression of domain concepts. Furthermore, it

has a collection of supporting tools (e.g. GEF and GMF)

thanks to the Eclipse open source architecture. Recently,

some researches also have identified the need of domain

specific metamodeling to avoid the general metamodeling

facilities like UML and EMF [33].

Using EMF, we take the GFCCS as a motivating

example to illustrate how to design and develop a DSML

for this domain. This language is able to directly use the

domain concepts and relationships to build a model. For

this purpose, it is necessary for a language engineer to have

a good background of GFCCS. Many of today’s GFCCS

often combine multiple subsystems. A group of air defense,

for example, combines the command and control center,

sensor, weapon, and a variety of countermeasures.

Figure 2 shows the metamodel of GFCCS. This meta-

model consists of a basic diagram node named

GroupFireControlSystem and two mutually related nodes

named Node and Connection respectively. The Node

derives a set of domain concepts such as Group, Group-

Node, Weapon, Target, and Channel, which are connected

by specific relationships. For example, two groups can

share common information by the relation tagged as

COPShare that represents common operation picture

(COP) [34]. A group can have one or multiple members

and zero or multiple weapons which can also be equipped

by a group member. A group member may be disjoint with

or affiliated by itself, and can control zero or multiple fire

control channels. Each channel may be mutually exclusive

with itself. It embraces two dynamic entity lists, i.e.

weaponList and targetList. These two lists are used to

Fig. 2 The GFCCS metamodel

3552 Wireless Networks (2021) 27:3549–3560

123



manage weapons and targets that are alive or may be

already ruined [35, 36].

In fact, except the abstract syntax as described above,

there are other aspects need to be detailed for a well-de-

fined metamodel [37]. Table 1 defines the static semantics

of GFCCS metamodel, written by OCL [38], explaining

how those elements of the abstract syntax model can be

organized as a valid GFCCS metamodel.

4.2 Graphical definitions of GFCCS using GMF

This subsection presents a guidance of the definition,

mapping, and generation of a graphical editor for GFCCS

using GMF. According to the GMF dashboard, one can

define the domain model, domain gen model, tooling

model, graphical model, mapping model, and gmf gen

model step by step, then generate the diagram editor. Due

to the domain model and gen model belong to the field of

abstract syntax definition as already given before, so we

describe the definition of concrete syntax as follows [39].

1. Tooling model As usual, the tooling model definition

provides six ways to define a tool palette of a graphical

editor, including creation tool, standard tool, generic

tool, tool group, palette separator, and image. In

GFCCS, we created a tool for each element of the

domain model except the abstract element Node, and

bundled a representative image for each element.

2. Graphical model It defines the concrete display of

modeling elements that will be used in the graphical

editing environment. In general, GMF provides default

display based on the domain model, but one usually

needs to define the figure gallery, figure descriptor, and

polyline decoration in practice. In GFCCS, we set the

Group and GroupNode as compartments to be able to

contain other elements, for example, Group can contain

GroupNode and Weapon, and GroupNode can contain

Weapon. Additionally, we set the Channel as a scalable

polygon, adding template points (0, 0), (40, 0), (40,

30), (30, 30), (30, 40), (40, 30), (30, 40), (0, 40).

3. Mapping model When the domain model, tooling

model, and graphical model are ready, it is necessary to

map them into a whole. Usually, we need to select the

corresponding tooling nodes and diagram nodes for

each node mapping, and provide the correct

Table 1 GFCCS domain specific constraints using OCL

OCL static semantics Descriptions

context Group

inv: hasNotDisjointGroupNodes

self.node-[forAll(n1,n2|n1.disjointWith-
[select(dis|dis.name=n2.name)-[isEmpty() and n2.disjointWith-
[select(dis|dis.name=n1.name-[isEmpty())

A group can never own two disjoint members

context GroupNode

inv: hasNotDisjointChannels

self.fireControl-[forAll(c1,c2|c1.mutualExclusive-
[select(dis.name=c2.name)-[isEmpty() and c2.mutualExclusive-
[select(dis|dis.name=c1.name)-[isEmpty())

A group node can never own two mutual exclusive fire control channels

context GroupNode

inv: notDisjointWithItself

self.disjointWith-[select(dis|dis.name=self.name)-[isEmpty()

No group node can be disjoint with itself

context GroupNode

inv: notDisjointWithItsDownLevelNode

self.affliated-[forAll(n|self.disjointWith-
[select(dis|dis.name=n.name)-[isEmpty())

No group node can be disjoint with its senior node

context GroupNode

inv: notDisjointChannelsOfDownLevelNodeToItself

self.affliated-[forAll(n|self.fireControl-[forAll(c1|n.fireControl-
[forAll(c2|c1.mutualExclusive-[select(dis|dis.name=c2.name)-
[isEmpty())))

Two mutual fire control channels may never be assigned to the same

group node and no junior node is allowed to possess a fire control

channel that is mutual exclusive to the fire control channel assigned to

one of its senior nodes

context Channel

inv: channelHasContents

not weapon.oclIsUndefined() implies target-[notEmpty() and not

target.oclIsUndefined() implies weapon-[notEmpty

No fire control channel owns solely a weapon or a target
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compartment figure for each compartment node. In the

properties of Channel node, for example, we select the

Node Channel (Channel Figure) for the diagram node,

and the Creation Tool Channel for the tooling node.

4. GMF gen model If the mapping model is defined

correctly, it can generate correct gmf gen model

without much modifications. In many cases, it is

possible to modify some parameters, such as the fixed

background, the list layout, and the suffix of a diagram

project.

4.3 The GFCCS DSME

Figure 3 shows a simple example of building an engage-

ment scenario using the GFCCS DSML. On the tool pal-

ette, this domain specific modeling environment (DSME)

contains a set of buttons decorated with professional

denotations, including the basic language elements such as

GroupFireControlSystem, Group, GroupNode, Channel,

Weapon, and Target as well as various relationships. Using

this environment, it is possible for domain experts to use

these language elements intuitionally and friendly. For

example, one can draw an arrow from Channel List 1 to

Enemy Fighter 1 BLUE only by ChannelTargetList, dis-

abling the use of other relationship buttons.

In the editor, we create a scenario of many to many

combat between two opposite sides RED and BLUE. The

RED side consists of two defense groups, i.e. Defense

System RED and Remote Surveillance System RED, which

refers to the local defense system (e.g. air defense base)

and the remote surveillance system (e.g. satellite). The

local system is composed of a warship platform, a ground-

to-air missile base, and a helicopter platform, which are

armed with two surface-to-air missiles, a ground-to-air

missile, and a homing torpedo, respectively. The BLUE

side consists of three coming threats which are denoted by

Enemy Fighter 1 BLUE, Enemy Fighter 1 BLUE, and

Enemy Submarine BLUE. In addition, there exist two lists

of fire control channel which are denoted by Channel List 1

and Channel List 2, respectively. The former list is man-

aged by the warship platform and has a weapon-target pair,

i.e. Surface2AirMissile1-Enemy Fighter 1 BLUE. The

latter list is managed by the helicopter platform and has

two weapon-target pairs.

5 GFCCS implementations

5.1 The rules of GFCCS to P-DEVS to JAVA
transformations

The matching rules of GFCCS to P-DEVS transformation

is defined by using the GFCCS metamodel and P-DEVS

metamodel, as detailed in Table 2. The basic diagram node

GourpFireControlSystem matches with the DEVSModel

element. The compartmental nodes like Group and

GroupNode match with coupled components named

Fig. 3 The GFCCS DSME
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DEVSCoupledComp. The connections that connect the

modeling elements of the same layer are transformed into

internal transitions named DEVSOutToIn_ICConnection,

while those across different layers are transformed into

external transitions and output functions with a set of ports.

The matching rules of P-DEVS to JAVA transformation

is defined by using the P-DEVS metamodel and JAVA

metamodel, as detailed in Table 3. The basic element

DEVSModel matches with a JAVA package named

JAVAPackage which includes javaClasses, javaConstruc-

tors, and javaExpressions. Both the coupled component

DEVSCoupledComp and the atomic component DEVSA-

tomicComp match with JAVA classes which inlude

JAVAVariables, javaConstructors, and javaExpressions.

DEVSInputPort, DEVSOutputPort, and StateVariable are

all transformed into JAVAVariables. The connections like

DEVSOutToIn_ICConnection, DEVSInToIn_EICConnec-

tion, DEVSOutToOut_EOCConnection as well as Expres-

sion are transformed into JAVAExpressions. The

remaining functions like DeltaIntFunction, DeltaExtFunc-

tion, LambdaFunction, TimeAdvanceFunction,

DeltaConFunction are all transformed into JAVAMethods.

Such transformation rules are written in ATL, as pro-

posed in Definition 2. ATL, the Atlas Transformation

Language, is a model transformation language specified as

both a metamodel and a textual concrete syntax. In the

MDE field, ATL provides developers with a means to

specify the way to produce a number of target models from

a set of source models. An ATL transformation program is

composed of rules that define how source model elements

are matched and navigated to create and initialize the

elements of the target models. Besides, ATL Integrated

Development Environment (IDE) provides a number of

standard development tools (syntax highlighting, debugger,

etc.) that aim to ease the design of ATL transformations.

The ATL development environment also offers a number

of additional facilities dedicated to models and metamodels

handling. These features include a simple textual notation

dedicated to the specification of metamodels, but also a

number of standard bridges between common textual

syntaxes and their corresponding model representations.

5.2 Automatic code generation

Based on ATL, the transformations of GFCCS to P-DEVS

to JAVA instances contains two projects named

GFCCS2P-DEVS and P-DEVS2JAVA, each of which

includes three packages, i.e. Metamodels, Models, and

TransoformationEngine. In the edit area includes three

instances for the GFCCS, P-DEVS, and JAVA metamodel

Table 2 The matching rules of

GFCCS to P-DEVS

transformation

GFCCS metamodel P-DEVS metamodel

GroupFireControlSystem DEVSModel

Group DEVSCoupledComp

GroupNode DEVSCoupledComp

Channel DEVSAtomicComp

Weapon DEVSAtomicComp

Target DEVSAtomicComp

COPShare DEVSOutToIn_ICConnection

disjointWith DEVSOutToIn_ICConnection

affliated DEVSOutToIn_ICConnection

fireControl DEVSOutToOut_ICConnection

? Source.out: DEVSOutputPort

? Target.in: DEVSOutputPort

?SourceParents.EOCPorts: DEVSOutputPort

mutualExclusive DEVSOutToIn_ICConnection

taretList DEVSOutToIn_ICConnection

assigned DEVSOutToOut_ICConnection

? Source.out: DEVSOutputPort

? Target.in: DEVSOutputPort

?SourceParents.EOCPorts: DEVSOutputPort

weaponList DEVSInToIn_ICConnection

? Source.out: DEVSInputPort

? Target.in: DEVSInputPort

?SourceParents.EICPorts: DEVSInputPort
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respectively, and two ATL files for the GFCCS to P-DEVS

and to JAVA transformations.

For the M2T transformation, it contains a source model

and the generated code framework. Take the node

Defense_System_RED as an example, the transformation

model design should incorporate all the source model

required information to satisfy completeness. The target

code framework is automatically generated, but the con-

crete logic details must be manually implemented. In

practice, not every concrete detail should be considered

when designing M2T transformation models, because they

may heavily burden the design phase.

Following the M2T transformation principles, the gen-

eral source model is some instance models that must con-

form to a certain metamodel, and the target model can be

text, e.g. java, C??, python, etc. Transformation model

design is vital to implement the M2T transformation. This

paper performed M2T transformation using Acceleo, a

template based code generator incorporating a code gen-

eration editor with syntax highlighting, completion, real

time error detection, and refactoring. The source model

was a collection of JAVA instance models, represented by

an instance file named JAVAcase.xmi, and the target

model was described in Java programming text.

5.3 Model continuity in GFCCS implementations

The process of GFCCS implementation showed that model

continuity between different development stages is

obtained when applying the formal transformation defini-

tion successfully. As stated earlier, it is possible to provide

model continuity in a development process when trans-

forming the initial and intermediate models, and preserving

the modeling relations during the transformations. To

evaluate model continuity, we already presented the crite-

ria for model transformations before. According to these

criteria, we describe how the model continuity is obtained

for the process of GFCCS implementation when the formal

transformation rules are applied. In fact, except these cri-

teria as listed, there are some other non-functional

requirements such as termination and readability satisfied.

Also note that maintainability, scalability, reusability,

evolvability, efficiency, etc. are partially supported since

these requirements need more experiments for a better

evaluation [40, 41].

Table 3 The matching rules of

P-DEVS to JAVA

transformation

P-DEVS metamodel JAVA metamodel

DEVSModel JAVAPackage

? javaClasses: JAVAClass

?javaConstructors: JAVAConstructor

?javaExpressions: JAVAExpression

DEVSCoupledComp JAVAClass

?JAVAVariable

?javaConstructors: JAVAConstructor

?javaExpressions: JAVAExpression

DEVSAtomicComp JAVAClass

?JAVAVariable

?javaConstructors: JAVAConstructor

?javaExpressions: JAVAExpression

DEVSInputPort JAVAVariable

DEVSOutputPort JAVAVariable

StateVariable JAVAVariable

DEVSOutToIn_ICConnection JAVAExpression

DEVSInToIn_EICConnection JAVAExpression

DEVSOutToOut_EOCConnection JAVAExpression

Expression JAVAExpression

DeltaIntFunction JAVAMethod

DeltaExtFunction JAVAMethod

LambdaFunction JAVAMethod

TimeAdvanceFunction JAVAMethod

DeltaConFunction JAVAMethod
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The process of GFCCS implementation has two kinds of

model transformation, with different expressions and out-

put types. As the source input or target output of model

transformations, the formal definition gives three model

types: independent of computing details, independent of

the computing platform, and specific to a particular com-

puting platform, and two model transformation categories.

In the M2M category, the transformation focuses on the

design of a set of formal rules to ensure model continuity

when transforming CIM to PIM and to PSM. The trans-

formation usually incorporates three steps.

1. All source concepts, relationships, and domain specific

rules are transformed into particular target elements,

connections, and domain specific constraints,

respectively.

2. Compare all target elements, connections, and con-

straints to delete identical expressions.

3. Check the target model conforms to the target

metamodel.

Completeness can be ensured in step (1) since all source

elements are transformed, and a corresponding target ele-

ment can be found for each source element. Step (2) is

helpful and necessary to reduce target element redundancy,

thus uniqueness is guaranteed. Syntactical correctness can

be satisfied in step (3) since the target model will be

expressed in a given formalism, and its semantic correct-

ness will be evaluated in later stages of model transfor-

mation. Determinism is guaranteed implicitly in the model

transformation editor that eases development and execution

of ATL transformations [42].

In the M2T category, the transformation converts a

source model into a text file, i.e. PSM to source code. If the

text is in source code form, then the transformation is also

called code generation, and the transformer is also called a

code generator. The process of a M2T transformation is

similar to that of a M2M transformation. The only differ-

ence is that step (2) in the M2M transformation can be

skipped in a M2T transformation, since uniqueness has

already been checked. Therefore, the three criteria listed

above are achieved according steps (1) and (3). Similarly,

determinism is satisfied because model transformation

editors, such as Acceleo [43], implicitly guarantee a unique

output for each particular input.

5.4 Simulation results and analysis

Once the code is generated and verified correctly, it needs

to be integrated into a powerful simulation platform to

validate the effectiveness and superiority of the proposed

MDE techniques. The WESS (Weapon Effectiveness

Simulation System), an engagement-level effectiveness

simulation platform that has been applied successfully in

many institutes and industries, is chosen. This platform

contains a tool suite including scenario editing, data

preparation, Python-based script decision modeling,

experiment design, 2D/3D displayer, and evaluation anal-

ysis, etc. In general, WESS has two workflows. One is to

design and development simulation models from the pro-

fessional simulation modeler’s perspective, and the other is

to apply WESS to develop a simulation application for

certain requirements. More details about how to use WESS

can be seen in [44, 45].

Consider the GFCCS simulation, we set the total logical

running time to 1500 s for a simulation and run 150 rounds

of Monte Carlo simulations. Figure 4 displays the 2D view.

A benefit of the simulation display is that it assists us in a

visual way to grasp the whole real-time situation of the

battlefield, releasing us from thousands of lines of codes or

texts. From the main window of this figure, we can see the

overall situation of an engagement between two sides. The

red side is a fighter which is equipped with radars and

missiles, and the blue side contains an airfield, a warship,

and also a fighter. At the simulation time 1160 s, the

warship finds the enemy fighter and prepares to launch a

surface to air missile. Below the main window we can see

two charts, each of which contains couples of curves over

time. Once an object is selected in the main window, the

left one shows the corresponding elevation and velocity

curves, while the right one shows curves for the yaw, roll,

and pitch angles.

Table 4 presents the simulation data of a missile pro-

totyped SM2New_1 in terms of its key states such as Start,

Boost, Guide, and Terminal. The surface to air defense

missile, SM2New_1, is prepared at 1172 s, launched and

goes into boost phase by 3 s, then switches to guide phase

at 1183 s, finally to terminal phase at 1201 s. Its velocity

initially rises sharply then reaches a peak at the end of

Fig. 4 The 2D display of GFCCS simulation
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boost phase, afterwards, descends slowly. Unlike the

velocity line, the elevation always rises smoothly, except

approaching the target.

6 Conclusions

In general, a formal transformation requires that the models

are specified in well-defined modeling languages and the

transformation rules are defined with a well-defined

transformation language. To ensure model continuity, the

target model should contain as much as possible from the

source model and the modeling relations should be pre-

served during the transformations. Consider the semantic

gap between the different stages of a simulation modeling

process, this paper defines a formal model transformation

based on MDA and uses the GFCCS implementation as a

motivating example through the overall transformation

process. This process consists of GFCCS to P-DEVS and to

JAVA transformations, accompanying with the initial

DSML design based on EMF and the final source code

generation. Before the transformation process, some crite-

ria, i.e. correctness, completeness, uniqueness, and deter-

minism, are listed to evaluate the model continuity during

the transformation. The transformation results showed that

model continuity is obtained when the transformations are

conducted successfully according to the formal definition.

Currently, there are little guidelines to instruct the explicit

use of conceptual model in later stages of a simulation

model development lifecycle [46–48]. A benefit of this

study is that the formal definition of model transformation

can be viewed as a referenced experience to guide other

practices that have the needs of formal analysis. However,

as a drawback some effort for further experiments and

evaluations are required.
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