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Abstract
Process optimization based on high-fidelity computer simulations or real experimentation is commonly expensive.

Therefore, surrogate models are frequently used to reduce the computational or experimental cost. However, surrogate

models need to achieve a maximum accuracy with a limited number of sampled points. Sequential sampling is a procedure

in which sequentially surrogates are fitted and each surrogate defines the points that need to be sampled and used to fit the

next model. For optimization purposes, points are sampled on regions of high potential for the optimal solutions. In this

work, we first compared the effect of using different initial sets of points (experimental designs) in a sequential surrogate-

based multiobjective optimization method. The optimization method is tested on five benchmark problems and the

performance is quantified based on the total number of function evaluations and the quality of the final Pareto Front. Then

an industrial applications on titanium welding is presented to show the use of the method. The case study is based on real

experimental data.

Keywords Sequential design optimization � Surrogate models � Multiobjective optimization � Design of experiments �
Manufacturing

1 Introduction

For manufacturing businesses to be successful in the global

market, they must strive to deliver high quality products at

the lowest possible cost. One approach to select the pro-

cessing conditions to achieve these goals is to run experi-

ments on the manufacturing floor. Such experimentation is

usually costly and requires considerable amount of time

and effort, which may not be feasible during production

[1]. Alternatively, companies use advance computer sim-

ulations to represent their processes. Such computer sim-

ulations along side with optimization methods are used to

identify the values of the processing conditions (variables)

that optimize the relevant performance measures

(objectives).

Joining simulation and optimization in a single frame-

work for defining the best possible process parameters is an

actual need in current engineering practice [2–6]. However,

a major difficulty of optimizing engineering problems

based on simulations is that each function evaluation

requires a complete simulation run which is computation-

ally expensive [7]. For many real world problems, a single

simulation evaluation can take minutes to even days.

Therefore, optimization methodologies for simulation

outputs are typically based on surrogate models (or meta-

models) which are mathematical models that try to mimic

the behavior of the simulation model based on a limited

number of observations [2, 8–10]. They help reduce the
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computational effort required to evaluate the performance

measures at different processing conditions, as they are

faster to evaluate than the simulation model [11, 12].

Surrogate models are also convenient for cases when it is

only possible to use experimental data and a single process

evaluation is expensive and time consuming, like the

application presented here. Therefore, by utilizing surro-

gate models it is possible to use an optimization technique

that requires the evaluation of the process at a high number

of processing conditions. The most commonly used sur-

rogate models are Response Surface, Kriging, Radial Basis

Function (RBF), and Artificial Neural Networks. Reviews

of surrogate models used in optimization via simulation

can be found in [2, 8, 9, 13, 14].

Surrogate models are constructed based on a limited

number of ’smart’ chosen data points. These points are typi-

cally chosen in one of twoways: (a) one stage or (b) sequential

(adaptive) sampling. The one stage sampling approach selects

a set of data points and a global surrogate model is fitted [15].

This method tries to locate the sampled points over the entire

inputs space in one step. In contrast, sequential or adaptive

sampling is an iterative procedure in which sequentially sur-

rogates are fitted and each surrogate defines the points that are

sampled for the nextmodel. The accuracyof themodel usually

depends on the technique used to distribute the points [15].

Design of experiment techniques are commonly used to form

the one-stage sample or the initial data set for the sequential

sampling. Some of these techniques are Factorial and Central

Composite designs, Latin Hypercube designs (LHD),

Orthogonal arrays, Sobol sequences, among others [15].

On the other hand, there are several adaptive sampling

approaches, [16] reviewed different methods such as

entropy approach, maximin distance, Mean Squared Error

(MSE) and cross validation. On the entropy method new

sets of points are selected in such a way that the amount of

information obtained with the new sampled set is maxi-

mized. On the maximin distance approach, the point that

maximizes the minimum distance between any existent

point is selected. In the MSE approach, the point with

largest prediction error is selected. For cross validation, the

idea is to leave out one or several points each time and fit a

surrogate model based on the rest of the sampled points.

Then the prediction error is estimated and the point with

largest prediction error is selected. It is important to notice

that techniques such as the entropy method or the MSE

require the estimation of the prediction error at any given

point, therefore metamodeling techniques such as Kriging

models need to be used [17]. The authors also compared

the sequential approaches with a one-stage approach. They

found that there is no guarantee that sequential sampling

will do better than the one stage approach, because it

depends on the sampling and metamodeling technique

used. However, sequential sampling requires less computer

evaluations than the one-stage since they stop when the

surrogate models are accurate enough. Recently, [18]

compared the performance of different sampling and

metamodeling techniques for process optimization. They

found that none of the compared metamodeling techniques

was best in all the quality criteria used. Hu et al. [19]

compared different surrogate models using expected

improvements to select one or several points sequentially.

On the expected improvement approach, the solu-

tion(s) that maximize the expected improvement is (are)

selected. The improvement function is based on the dif-

ference between the best-known objective value and the

expected objective value at a given (unobserved) point.

Sequential sampling methods are used for two main

purposes: accurately fit a global metamodel or metamodel

based optimization. On the first case, samples are chosen at

places were the models show poor fitting quality, and in the

second case more points are assigned towards the region

where the potential optimum could be [20]. The second

type of methods are convenient for optimization purposes,

where the goal is to find the optimum and not necessarily to

map the complete surface. The underlying idea is that the

approximated surrogate model should be more accurate at

the region were the optimal solution is, while it can be less

accurate far from the optimal [21].

Real manufacturing problems usually involve different

performance measures (PMs) that exhibit conflicting

behavior [22, 23]. For example, the processing conditions

that provide the best quality product may not correspond to

the lowest production cost. When multiple conflicting

performance measures are involved, optimizing a single

objective can result in solutions that perform poorly for

other objectives. Thus, it is not the best approach to obtain

a single solution but rather the set of solutions corre-

sponding to the best compromises, known as Pareto solu-

tions (see Definition 1), from which the decision maker can

select the best one on a particular moment of the process.

Definition 1 A feasible solution x1 of the optimization

problem minimize ðf1ðxÞ; f2ðxÞ; . . .; fmðxÞÞ is said to domi-

nate x2 if: fjðx1Þ� fjðx2Þ for, j ¼ 1; . . .;m and fjðx1Þ\fjðx2Þ
for some j 2 f1; . . .;mg. The non-dominated solutions are

known as Pareto solutions. The input values of the Pareto

solutions are known as Pareto Set ðPsetÞ and the corre-

sponding output values form the Pareto Front ðPfrontÞ.

Guodong et al. [24] and Kitayama et al. [25] proposed

sequential surrogate-based multiobjective optimization

methods based on RBFs. Guodong et al. [24] used multi-

objective Genetic Algorithm (GA) to approximate the

Pareto Front. Iteratively a trust region was established

around the predicted Pareto Front, and new points were

sampled on the trust region in such a way that a LHD is
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kept. On the other hand, [25] selected new solutions in

three ways (1) Pareto optimal solutions from the response

surface, (b) points in unexplored regions, and (3) the

solution that minimizes a Pareto-fitness function. Yun

et al. [26] proposed support vector regression (SVR) to

represent the PMs and GA to solve the multiobjective

optimization problem. Iteratively, new points were selected

based on the sensitivity information of the SVR.

Most of the works found on the literature that focuses on

comparing different sampling and/or metamodeling tech-

niques used LHDs as initial samples. In this work, we

preset the effect of the initial sample of data points (ex-

perimental design) on a sequential surrogate based opti-

mization method with multiple objectives. The method is

based on multiple linear regression models and uses the

idea of minimum interpolation surface to select new points.

In the minimum interpolation surface approach, a surrogate

model is fitted based on a sample of data points, and the

minimum of the response surface is identified and used as

additional point to fit the next model. In our case, we do not

have a unique solution but the set of best compromises

between several surfaces. The optimization method is tes-

ted on five multiobjective benchmark problems and the

performance is quantified based on the quality of the final

Pareto Front and the total number of samples needed on the

optimization. In addition, the performance of the sequential

approach is compared with a non-sequential approach.

Then an industrial applications is presented to illustrate the

use of method. The case study is on titanium welding and it

is based on real experiments.

The article is organized as follows: in Sect. 2, the

sequential multiobjective optimization method is descri-

bed. Section 3 presents the comparison of the performance

of the method using different initial sets of points on sev-

eral benchmark test problems. In Sect. 4, the optimization

method is illustrated with an industrial case studies, and in

Sect. 5 conclusions and future work are presented.

2 Sequential surrogate-based
multiobjective optimization method

The sequential surrogate-based multiobjective optimization

method used here is based on the method introduced by [27].

The method is schematically shown on Fig. 1 and it starts by

performing an experimental design to collect a set of initial

data points. At each design point, an experimental or simu-

lation run is performed. Based on the initial set of data points,

the set of best compromises between all performance mea-

sures is found using Definition 1, and it is called incumbent

Pareto Front. Then, the current set of points is used to fit a

metamodel for each performance measure. Subsequently,

the metamodels are used to estimate the value of the

performance measures for a large set of input combinations

and the best compromises between all performancemeasures

are identified. Such Pareto Front is called here predicted

Pareto Front. The corresponding controllable variables set-

tings are the predicted Pareto Set ð ~PsetÞ. Then, the predicted
Pareto Set is evaluated using the physical process or simu-

lation code. However, if the number of solutions on the

Pareto Set is larger than the remaining number of runs

allowed ðNleftÞ, or it is larger than the maximum number of

runs allowed per iteration ðNmaxÞ, a subset of

minfNleft;Nmaxg solutions is selected based on a Maximin

distance criterion using the predicted Pareto Front. Now,

with the new information available the incumbent Pareto

Front (based on simulated/experimented data) is updated.

Note that all available data points (Pareto efficient or not) are

used in this step. Lastly, a series of stopping criteria are

evaluated and if at least one is met, the method stops and the

incumbent Pareto solutions are reported. Otherwise, the new

evaluated points are added to the existing set of data points

and a new iteration begins. Iteratively, the surrogate models

are updated using the newly available data and new Pareto

Sets are approximated. At each iteration, the updatedmodels

are able to obtain good approximations of the output

responses near the Pareto Front.

Villarreal-Marroquin et al. [27] showed that the sequen-

tial optimization method is able to approximate a set of

Pareto solutionswithout having to evaluate a large number of

simulations. In Villarreal-Marroquin et al. [28] the method

was used to solve two injection molding case studies. Two

initial data setswere used and the resultswere comparedwith

a similar approach based on Gaussian process metamodels.

The alternative method uses an expected improvement

approach to iteratively search for new points. The results

showed that both methods perform comparably. In Mon-

talvo-Urquizo et al. [6] it was used to optimize a milling

process using a small number of expensive simulations.

The key idea that makes sequential surrogate models

efficient is that they become more accurate in the region of

interest as the search progresses, rather than being equally

accurate over the entire design space.

The following section presents a comprehensive com-

parison of the effect of the initial data set on the perfor-

mance of the optimization method.

3 Effect of using different initial sets
of points

In this section, the performance of the sequential multi-

objective optimization approach presented before is com-

pared using different initial sets of data points (design of

experiments). The comparison was carried out using five

Wireless Networks (2020) 26:5727–5750 5729

123



benchmark multiobjective optimization test problems and

fourth different initial design of experiments and a random

set of the same size.

3.1 Multiobjective test problems

The multiobjective optimization test problems used here

are shown in Table 1. Multi-Objective Problem (MOP) 1, 2

and 3 have 2 controllable variables and 2 PMs. MOP4 has

3 control variable and 3 PMs, while MOP5 has 4 control

variables and 4 PMs. The second column of Table 1 shows

the objective functions, all to be minimized; the last col-

umn indicates the inputs ranges. None of the problems has

additional constraints other than the bounds on the inputs.

f1 in MOP1 is the global optimization test function Rast-

rigin and f2 is the negative of the Six-hump Camel Back

function. MOP2–MOP5 are test problems that can be found

on the multiobjective literature [29]. The objective func-

tions of MOP3 were originally developed by [30], for

single objective optimization and were adapted later to

multiobjective optimization (see [29] for further details).

MOP4 and MOP5 are the test problem known as DTLZ2

(Deb, Thiele, Laumanns, Zitzler).

3.2 Initial data sets

The fourth experimental designs and the random set used

as the initial set of data points for the optimization method

Start

Run initial experiment

Found incumbent Pareto Front

Form a surrogate model per PM

Evaluate surrogate models at a uni-
form grid of input combinations

Found predicted Pareto Set and Front

|P̃set| ≤ Nleft

or
|P̃set| ≤ Nmax

Evaluate physical processor or
simulation code at predicted
Pareto Solutions (or selected)

Selected a subset of
min{Nleft, Nmax} points

Update incumbent Pareto Front

Is a Stopping
Criteria met?

Add newly points
to the design matrix

Stop

yes

no

no yes

Fig. 1 Sequential multiobjective optimization method
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are as follows: (1) an Inscribed Central Composite (CCI)

Design which is a scaled down Central Composite Design

(CCD) with each factor level divided by a. Here an a ¼
ð2kÞ1=4 (k, number of input variables) was used. The top

plot of Fig. 2 is a CCI for k ¼ 2; (2) a Maximin Latin

Hypercube Design (LHD) with the same number of points

than a CCD with the same number of variables. The LHDs

were generated using the Matlab built-in function

lhsdesign with 1000 iterations. The middle-left plot of

Fig. 2 shows 6 LHDs for k ¼ 2 and n ¼ 9 points; (3) a

D-Optimal Design (D-Opt) which was generated using the

Matlab built-in function cordexch with 10 tries. The

initial designs are 3k Full Factorial Designs; the initial

models are the metamodels to be constructed on the first

iteration of the optimization method; and the number of

runs to be selected was set as the same number of the CCD.

Table 1 Multiobjective optimization test problems

Problem Objective functions Inputs bounds

MOP1 f1ðxÞ ¼ 20þ x21 þ x22 � 10ðcosð2px1Þ þ cosð2px2ÞÞ xi 2 ½�1; 1�

f2ðxÞ ¼ ð4� 2:1x21 þ
x4
1

3
x21 þ x1x2 þ 4ð�1þ x22Þx22 i ¼ 1; 2

MOP2
f1ðxÞ ¼ 1� e

�
P2

i¼1

�
xi� 1ffiffi

2
p
�2 xi 2 ½�2; 2�

f2ðxÞ ¼ 1� e
�
P2

i¼1

�
xiþ 1ffiffi

2
p
�2 i ¼ 1; 2

MOP3 (WSNL) f1ðxÞ ¼ g1ðxÞ � 1
34

P3
i¼1

P3
j¼1

P3
k¼1

P3
l¼1 O1ðai; bj; ck; dlÞ x1 2 ½�5; 10�

f2ðxÞ ¼ g2ðxÞ � 1
34

P3
i¼1

P3
j¼1

P3
k¼1

P3
l¼1 O2ðai; bj; ck; dlÞ x2 2 ½0; 10�

where

g1ðxÞ ¼
�
x2 � 5:1x2

1

4p2 þ 5:1x1
p � 6

�2 þ 10
�
1� 1

8p

�
cosðx1Þ þ 10

g2ðxÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð10:5� x1Þðx1 þ 5:5Þðx2 þ 0:5Þ

p
� 1

30

�
x2 � 5:1x2

1

4p2 � 6
�2 �

�
cosðx1Þ

�
1� 1

8p

�
þ1

3

�

and

O1ðai; bj; ck; dlÞ ¼ 2ð2aiÞ2 þ 4:5ð2bjÞ1:5 þ 2bj þ 14aick þ 2
ffiffiffiffiffiffiffiffi
bjdl

p

O2ðai; bj; ck; dlÞ ¼ 1:2ð2bjÞð2aiÞ1:3 þ 4:5ð2bjÞ3 þ 2ð2bjÞ0:6 þ 3:5ð4aickÞ1:7 þ ð4bjdlÞ0:7

where a1 ¼ b1 ¼ c1 ¼ d1 ¼ 0:25

a2 ¼ b2 ¼ c2 ¼ d2 ¼ 0:50

a3 ¼ b3 ¼ c3 ¼ d3 ¼ 0:75

MOP4 (DTLZ2) f1ðxÞ ¼ ð1þ gÞ cosðaÞ cosðbÞ xi 2 ½0; 1�

f2ðxÞ ¼ ð1þ gÞ cosðaÞ sinðbÞ i ¼ 1; 2; 3

f3ðxÞ ¼ ð1þ gÞ sinðaÞ

where g ¼ ðx3 � 0:5Þ2; a ¼ px1
2
; b ¼ px2

2

MOP5 (DTLZ2) f1ðxÞ ¼ ð1þ gÞ cosðaÞ cosðbÞ cosðcÞ xi 2 ½0; 1�

f2ðxÞ ¼ ð1þ gÞ cosðaÞ cosðbÞ sinðcÞ i ¼ 1; . . .; 4

f3ðxÞ ¼ ð1þ gÞ cosðaÞ sinðbÞ

f4ðxÞ ¼ ð1þ gÞ sinðaÞ

where g ¼ ðx4 � 0:5Þ2; a ¼ px1
2
; b ¼ px2

2
; c ¼ px3

2
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The middle-right plot of Fig. 2 is an example of a D-Op-

timal design for k ¼ 2 and n ¼ 9. As the initial designs are

3k, the resulted D-Optimal designs are Full or Fractional

Factorial Designs with 3 levels; (4) a Uniform Random

(Rand) set with the same number of points as the CCD, the

low-left plot of Fig. 2 shows 6 examples of random sets for

k ¼ 2 and n ¼ 9 points; and (5) a Sobol Sequence (Sobol-

Seq) with the same number of points as the CCD. The

Sobol sequences were generated using the Matlab built-in

function sobolset on k-dimensions, no points were

skipped from the sequence and the function scramble

was used to apply a random linear scramble combined with

a random digit shift. The low-right plot of Fig. 2 shows 6

examples of Sobol sequences for k ¼ 2 and n ¼ 9. Dif-

ferent examples are represented by a different color on

each subplot of Fig. 2. In all cases the controllable vari-

ables were scaled between ½�1; 1�.

3.3 Comparison of results

The sequential multiobjective optimization method was

solved 25 (5 problems � 5 initial samples) times. However,

since several of the initial designs have a stochastic com-

ponent, 3k repeats were made for the cases where a LHD,

D-Opt (except for k ¼ 2), Rand and Sobol sequence are

used. The following parameters were considered on the

optimization method: (1) the maximum number of runs per

iteration, Nmax ¼ 3m (m, number of PMs); (2) the total

number of simulation (experiments) allowed, Ntotal ¼ 15k.

The fitted metamodels for each performance measure were

Generalized Linear Regression models (GLM) with one

degree of freedom. This is, N � 1 coefficient were esti-

mated, where N is the number of data points used to fit the

model. The stopping criteria used were: (1) stop if Ntotal is

reached; (2) stop if R2 (coefficient of determination) of all

models is larger than 1� e, an e ¼ 0:05 was considered;

(3) stop if no new Pareto solutions are found.

3.3.1 Final Pareto Sets and Fronts

The final Pareto Sets and Fronts found using the opti-

mization method are shown graphically on ‘‘Appendix A’’.

The true Pareto Set and Front for all the test problems is

also shown. Figures 7, 8, 9, 10, 11, 12, 13 and 14 show

the results for MOP1–MOP4. The plots are as follows:

subplot (a) shows in light gray the input’s or output’s

feasible regions, the dark gray regions represent the ’true’

Pareto Set or Front respectively. We used ’ ’ in true to

indicate that the Pareto Set and Front is based on a fine grid

of evaluations (1002 for MOP1–MOP3, 503 for MOP4 and

304 for MOP5). Subplots (b) to (f) show the approximated

Pareto Sets or Fronts using the 5 initial samples with

different repeats shown in distinct colors(light blue, blue,

purple, orange, yellow, and green). (b) is for CCI, (c) LHD,

(d) D-Optima, (e) Random set and (f) Sobol sequence.

Subplots (b) to (f) also show the true Pareto Set or Front in

dark gray. Since MOP5 has 4 controllable variables and 4

objectives, it is not easy to visualize the final Pareto Sets

and Fronts. The true Pareto Set of MOP4 is the plane at

x3 ¼ 0:5 and for MOP5 the hyperplane at x4 ¼ 0:5, the

corresponding Pareto Fronts are concave regions as shown

on Fig. 14(a).

From the plots on Figs. 7, 8, 9, 10, 11, 12, 13 and 14 it

can not easily be seen which initial sample of data points is

more effective for the sequential multiobjective optimiza-

tion method. Nevertheless, we can see that in most cases

(except when started with a random set) the method was

able to identify solutions close to the true Pareto Front with

a very limited number of function evaluations (� 15k).

From these figures, it can also be noticed that the chosen

initial data set makes a difference on the final Pareto Set,

however the final Pareto Fronts are not very different. Our

original goal was to identify, if possible, overall which

initial sample design will work better on the optimization

method. However from these figures it is difficult to choose

an overall winner. Next we evaluate the performance of

each case quantitatively.

3.3.2 Performance of multiobjective optimization method

When comparing the performance of multiobjective opti-

mization methods three aspects are usually considered

[31]:

1. Convergence, how close is the approximated Pareto

Front from the true Pareto Front.

2. Spredness, how spread or distributed are the solutions

on the approximated Pareto Front.

3. Number of solutions, how many solutions are on the

Pareto Front.

4. Total number of runs, since the total number of

simulation (experimental) runs is important for expen-

sive experiments, we considered it as a fourth

indicator.

3.3.2.1 Convergence A natural way to compare two

approximated Pareto Fronts is to see if one dominates the

other, in which case the one that dominates is better.

However, more often neither competing Pareto Fronts

dominate the other. As an example, consider Fig. 3 which

shows two approximated Pareto Fronts obtained hypo-

thetically by Method A (red solid circles) and B (black

open squares). From Fig. 3 it can be seen that solution 1B

dominates 1A. However, solutions 2A, 2B, 3A, 3B, 4A and

5732 Wireless Networks (2020) 26:5727–5750
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4B cannot be compared. In this example, neither Pareto

Front completely dominates the other.

Several methods have been proposed to compare

approximated Pareto Fronts [32]. One popular measure-

ment is the hypervolume indicator. Consider, first, a single

approximation to a Pareto Front that consists of the 4 red

solid circles in Fig. 3; assume that the black solid squared

at the northeast corner of the graph is the vector with the

worst solution of each individual performance measure

(anti-utopia solution). Then, the solutions in the shaded red

region are all dominated by approximate Pareto Front A.

This area is known as the hypervolume indicator of the

approximated Pareto Front. When comparing two approx-

imated Pareto Fronts, the one that dominates the larger

region of points relative to a reference point is considered

better by the hypervolume indicator. Here, the hypervol-

ume indicator is used to quantify the convergence of the

approximated Pareto Fronts.

The hypervolume of each Pareto Front was approxi-

mated using a function inspired by the Matlab function

hypervolume(PF, U, R, N). Where PF is the

approximated Pareto Front, U is the utopia solution, R is the

reference point, and N is a large number which indicates

how many random samples are drawn in the hypercube

x
1

-1 -0.5 0 0.5 1

x 2

-1

-0.5

0

0.5

1

x
1

-1 -0.5 0 0.5 1

x 2

-1

-0.5

0

0.5

1

x
1

-1 -0.5 0 0.5 1

x 2

-1

-0.5

0

0.5

1

x
1

-1 -0.5 0 0.5 1

x 2

-1

-0.5

0

0.5

1

x
1

-1 -0.5 0 0.5 1

x 2

-1

-0.5

0

0.5

1

(a) CCI

(b) LHD (c) D-Opt

(d) Rand (e) Sobol

Fig. 2 Examples of initial

DOEs for k ¼ 2 and n ¼ 9.

a CCI (o), b LHD (?), c D-Opt

(x), d Rand (�), e Sobol-Seq (�).
Different colors (light blue,

blue, purple, orange, yellow,

olive) represent different

examples of a particular DOE

(Color figure online)
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defined by U and R. Here N was selected as 1002 for

MOP1–MOP3, 503 for MOP4 and 304 for MOP5. The

utopia point is the vector of the independent minimal of

each objective function. The jth component of the refer-

ence vector for problem l, l ¼ 1; . . .; 5, j ¼ 1; . . .;m is

defined as follows:

Rl
j ¼ max Pfront

l
j

n o
þ 0:5 � range f lj

� �
ð1Þ

This is, the reference pointR is themaximal of the ’true’ Pareto

Front plus half the range of the objective function values.

Since the algorithm used to approximate the hypervol-

ume (HV) depends on the N generated random points, it

was ran 10 independent times. In all cases, the standard

deviation of the hypervolumes was less than 0.0068. It is

important to notice that all objectives were scaled between

[0, 1], so the maximum value of the hypervoulume is 1.

The relative hypervolume (RHV) is calculated as

follows:

RHVo
l ¼

HV of problemlusing designo

true HV of probleml
ð2Þ

o ¼ 1; . . .; 5.

Table 2 shows the mean RHV and standard deviation (in

parenthesis) of each approximated Pareto Front. Each raw

represents an optimization problem and each column dif-

ferent initial sampling sets. The instances without standard

deviation are the cases where no repeats were performed as

the initial DOE are always the same.

These results give an idea how close, in terms of the

hypervolume, the approximated Pareto Front is from the

true one. For example, a hypervolume of 0.778 means that

the hypervolume of the approximated Pareto Front covers

77.8% of the true hypervolume. Relative hypervolumes

slightly lager than one means that the hypervolume of the

approximated Pareto Front was a litter larger than the ’true’

one. This is possible since the ’true’ Pareto Front is a good

discrete approximation of the true Pareto Front, but not

necessary the global optimal.

As suggested by Demsar [33] and Garcia and Herrera

[34] when comparing different methods over different data

sets the Friedman’s test can be conducted to statistically

compare the results. With a Friedman test it is possible to

detect differences considering all methods; and if the test

rejects the null hypothesis (a difference does not exist), a

post-hoc test can be used to identify the pairwise com-

parisons that do differ. The Friedman’s test is a non para-

metric test equivalent to the Analysis of Variance

(ANOVA) use to analyze unreplicated complete block

designs. Here the groups/factors are the different methods

(CCI, LHD, etc.) and the problems (MOP1, MOP2, ...,

MOP5) are represented as blocks. The response is the

average hypervoulme for each combination. The p-value of

the Friedman’s test for the data on Table 2 is 0.0043. Since

Objective 1 (minimize)

O
b

je
ct

iv
e 

2 
(m

in
im

iz
e)

1A

1B

2A

2B

3A
3B

4A

4B

U

AU

Fig. 3 Illustration of two competing Pareto Fronts [A (red solid

circles), B (black open squares)]. The shaded area is the hypervolume

indicator of Pareto Front A with respect to the reference point (filled

square). The star point is the utopia solution and the filled square

represents the anti-utopia point (Color figure online)

Table 2 Mean relative

hypervolume and standard

deviation (in parenthesis):

comparative results for each

problem and initial sample

Problem Initial sample design One-stage

CCI LHD D-Opt Rand Sobol-Seq

MOP1 1.003 0.761 (0.087) 1.001 0.497 (0.273) 0.738 (0.080) 1.001

MOP2 0.778 0.642 (0.098) 0.803 0.343 (0.268) 0.587 (0.108) 0.766

MOP3 0.900 0.822 (0.128) 0.672 0.640 (0.186) 0.704 (0.112) 0.789

MOP4 0.726 0.646 (0.023) 0.705 (0.013) 0.626 (0.035) 0.676 (0.014) 0.613

MOP5 0.598 0.595 (0.021) 0.577 (0.020) 0.563 (0.025) 0.585 (0.016) 0.536

Table 3 p-values for pairwise relative hypervolume comparison tests:

none adjusted (above diagonal) and adjusted using Bergmann–Hom-

mel’s procedure (below diagonal)

Initial
CCI LHD D-Opt Rand Sobolsample

CCI
N
on

e
ad

ju
s

LHD
I-Opt
Rand

– 0.110 0.162 0.000 0.028
0.438 – 0.841 0.028 0.549
0.438 1.000 – 0.016 0.424
0.001 0.167 0.098 – 0.016

Sobol 0.167 1.000 1.000 0.438 –
Adjusted
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p-value is less than 0.05, we reject the null hypothesis that

there is not a difference between the average ranks of the

methods and conclude that a difference does exist. There-

fore, a post-hoc test is performed to identify which methods

do differ. As suggested by Garcia and Herrera [34], the

Bergmann–Hommel’s procedure was used to adjust the p-

values for the simultaneous pairwise comparisons.

Table 3 shows the none adjusted p-values (above diag-

onal) for the pairwise comparisons of ranked relative

hypervolumes test and the adjusted p-values (below diag-

onal) using the Bergmann–Hommel’s procedure for the

simultaneous comparisons. With a significance level

a ¼ 0:05, the hypothesis that the method performs the

same when a CCI or a random set is used is rejected,

therefore we conclude that a difference does exist. If a

significance level of a ¼ 0:1 is used it will be concluded

that there is a significant different between the D-Opt and

the Rand set too. For the remaining pairwise comparisons,

the hypothesis that there is not a difference between the

performance of the method using the different sample sets

can not be rejected. We further investigated the difference

between CCI and Rand and performed a Wilcoxon signed

rank test with the alternative hypothesis: the difference is

greater than 0. The obtained p-value ¼ 0.0312, therefore

we reject the null hypothesis that there is not a difference

between the average ranks of the methods and conclude

that the difference is greater than 0, i.e. the optimization

method performs better with a CCI design than a random

set.

Detailed information on Friedman test, Wilcoxon test

and Bergmann–Hommel procedure for adjusting p-values

on simultaneous multiple comparison tests can be found in

[33, 34].

It is important to notice that the hypervolume indicator

is impacted by the number of solutions on the Pareto Front,

its distribution and the reference point [35]. Therefore, the

hypervolume of two approximated Pareto Fronts with dif-

ferent number of solutions and different distribution could

be biased. Thus, a second quality indicator, spreadnes, is

used to further compare the results.

3.3.2.2 Spread (diversity) Another criteria used to com-

pare Pareto Fronts is how spread out or distributed are the

solutions on the approximated Pareto Front with respect to

all objectives. Here, the distance metric criteria proposed

by Deb et al. [36] was used. The metric is shown in Eq. 3,

ds is the Euclidean distance between consecutive points of

the approximated Pareto Front (P) and �d is the average of

these distances. dej is the Euclidean distance between the

extreme solution of the true Pareto Font and the extreme

solution of the approximated Pareto Front corresponding to

the jth objective function (j ¼ 1; . . .;m). The extreme

solutions are the solutions with the smallest value per

objective.

D ¼
Pm

j¼1 d
e
j þ

PjPj
i¼1 jds � �dj

Pm
j¼1 d

e
j þ jPj �d

ð3Þ

For problems with 2 objectives, |P| on Eq. 3 is replaced by

ðjPj � 1Þ, as there are only ðjPj � 1Þ consecutive solutions.
For the cases with more than 2 objectives, ds is calculated

as the average distance to the 2ðm� 1Þ nearest neighbors.
Small values of D indicate a more widely and uniformly

spread set of solutions on the Pareto Front. Table 4 shows

the mean and standard deviation (in parenthesis) of the

distance metric calculations. To calculate the distances the

data was normalize between 0 and 1.

As before, a Friedman rank test was performed to

compare the results on Table 4. However, in this case the

p-value is 0.1804. Therefore, their is not evidence to reject

the null hypothesis that there is not a difference between

the average ranks of the methods base on the spread metric.

So, we concluded that the spreadnes of the solutions on the

approximated Pareto Fronts is not statistically different if

different initial data sets are used.

Next, the number of solutions on the approximated

Pareto Fronts and the total number of function evaluations

(simulation runs or physical experiments) are compared.

3.3.2.3 Number of approximated Pareto solutions and total
number of function evaluations Lastly, the number of

approximated Pareto solutions and the total number of

function evaluations (NFE) are compared. Tables 5 and 6

show the results. A large number of Pareto solutions and a

low number of function evaluations is preferred. It is

important to notice that a maximum number of evaluations

Table 4 Mean spread metric (D)
and standard deviation (in

parenthesis): comparative

results for each problem and

initial sample

Problem Initial sample design One-stage

CCI LHD D-Opt Rand Sobol-Seq

MOP1 1.000 0.682 (0.367) 1.000 0.845 (0.159) 0.671 (0.305) 1.000

MOP2 0.595 0.505 (0.150) 0.547 0.827 (0.252) 0.698 (0.218) 0.558

MOP3 0.505 0.534 (0.183) 0.602 0.653 (0.113) 0.551 (0.159) 0.514

MOP4 0.208 0.263 (0.042) 0.190 (0.039) 0.275 (0.045) 0.237 (0.033) 0.570

MOP5 0.301 0.220 (0.044) 0.222 (0.031) 0.282 (0.044) 0.260 (0.041) 0.818
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is set on the optimization method, however it could stop

before using all the runs. This is one of the advantage of

using sequential design optimization methods versus one-

stage methods. The number of function evaluations on the

one-stage column corresponds to Ntotal.

Using the results on Tables 5 and 6, 2 Friedman rank

tests were performed. For the first test, comparison of total

number of Pareto solutions, a p-value of 0.9417 was

obtained. This result strongly suggest that despite the initial

sample set used the total number of solutions on the

approximated Pareto Front is not statistically different. On

the second test, comparison of total number of function

evaluations, a p-value of 0.3438 was obtained. As before,

we do not have evidence to reject the null hypothesis that

the number of function evaluation is the same using the

different initial sets.

In summary, based on the 4 quality indicator used here,

it seems like the initial sample of data points does not have

a large effect on the quality of the approximated Pareto

Front. However, since convergence and total number of

function evaluations are the most important indicators, for

further applications we recommend the use of CCI designs

with the optimization method. Overall the method per-

formed better, in terms of hypervolume, using a CCI than a

Rand Set. Individually (per problem), when a CCI was

used the mean hypervolume of the approximated Pareto

Fronts of MOP1, 3, 4 and 5 were the largest, and for MOP2

it was the second largest.

Next, the sequential optimization method is compared

with a one-stage approach.

3.3.3 Comparison of sequential versus one-stage
multiobjective optimization method

To further compare the performance of the sequential mul-

tiobjective optimization method a comparison versus a one-

stage approach is presented here. For the one stage approach

the optimization algorithm was ran only one iteration. The

number of points of the initial design is the maximum

number of simulations allowed on the sequential approach

minus 10 to 20% of the points, which were left for valida-

tions. The initial designswere Full FactorialDesignswith the

following levels: 5 (with 5 validation points) for MOP1–

MOP3, 3� 3� 4 (with 9 validation points) for MOP4, and

2� 3� 3� 3 (with 6 validation points) for MOP5. The

surrogate models used here are complete 2nd order GLM.

After the Pareto Fronts were approximated, some points

(validation points) were selected based on the Maxmin dis-

tance criteria described before. The selected points were

evaluated and used to update the incumbent Pareto Front.

The mean relative hypervolume, spread metric, number

of solutions on the approximated Pareto Front and total

number of function evaluations are shown on the last col-

umn of Tables 2, 4, 5 and 6 respectively. As can be

noticed, the sequential design optimization performs

slightly better than the one stage on all criteria. The

sequential method required less function evaluations that

the one-stage since it stops when the surrogate models are

accurate enough. On the worst cases of each problem it

used 40–50% less evaluations. Although, the one-stage

approach computed more function evaluation it did not

found more Pareto solutions than the sequential approach.

Finally, the multiobjetive optimization method is illus-

trated using an industrial case study.

Table 5 Mean number of

solutions on final Pareto Front

and standard deviation (in

parenthesis): comparative

results for each problem and

initial sample

Problem Initial sample design One-stage

CCI LHD D-Opt Rand Sobol-Seq

MOP1 5 1.83 (0.75) 5.00 2.50 (1.97) 1.67 (0.82) 5

MOP2 6 4.83 (1.47) 7.00 5.17 (1.72) 4.67 (1.21) 6

MOP3 4 6.00 (1.67) 6.00 4.17 (0.98) 5.17 (0.98) 7

MOP4 16 19.22 (0.97) 17.11 (0.60) 18.67 (1.32) 18.78 (1.86) 23

MOP5 35 29.00 (1.81) 26.33 (1.37) 30.33 (3.52) 30.92 (2.61) 22

Table 6 Mean number of

function evaluations and

standard deviation (in

parenthesis): comparative

results for each problem and

initial sample

Problem Initial sample design One-stage

CCI LHD D-Opt Rand Sobol-Seq

MOP1 17 17.00 (4.05) 15 16.17 (4.22) 14.67 (4.23) 30

MOP2 15 19.67 (2.42) 21 17.00 (3.10) 19.00 (3.10) 30

MOP3 15 15.00 (0.00) 15 15.00 (0.00) 14.17 (2.04) 30

MOP4 24 24.00 (0.00) 24 (0) 24.00 (0.00) 24.00 (0.00) 45

MOP5 37 37.00 (0.00) 37 (0) 37.00 (0.00) 37.00 (0.00) 60
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4 Industrial case studies

This section presents the application of the sequential

multiobjective optimization method shown on Sect. 2

using an industrial application. The case study is on

welding of ferrous alloys and it is based on costly physical

experimentation.

Parameters 
set up

FixuringJoint design

Welding of 
coupons

Tensile 
tes�ng

Charvpy V 
notch tes�ng

Tensile and 
Charpy V notch 

specimen 
manufacture 

(from coupons)

a b

cd

e

gf

Fig. 4 Welding and mechanical

testing flow diagram
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4.1 Optimization on titanium welding

The objective of this application is to identify the values of

the process controllable variables of a gas tungsten arc

welding (GTAW) of Titanium Ti6Al4V, which is fre-

quently used in the aerospace industry. For the welding of

this titanium alloys it is necessary that the mechanical

properties like tensile strength, ductility (% elongation) and

impact toughness are balanced in order to produce a joint

capable to withstand the design loads and the crack growth.

For this case study only physical experimental data, which

is limited due to the high cost of the test, was used.

4.1.1 Problem description

Figure 4 is a flow diagram of the welding and mechanical

testing processes. The process starts by designing and

preparing the test coupons. After the coupons are ready and

the process parameter set, the pieces are welded. After

welded, one day is waited for steady state to be reached

before the mechanical tests are performed. For testing, as

can be seen on Fig. 4(e), different specimens are obtained

from each welded piece flowing mechanical testing stan-

dards. Two mechanical test were performed here: (1) a

tensile test and (2) an impact test. During the tensile test,

tensile strain, tensile strength, yield strength and percent-

age elongation were measured. On the other hand, the

impact test provides the amount of energy absorbed by a

material during fracture. This is a measurement of the

material’s notch toughness. A larger energy indicates a

stronger weld that will withstand the growth of a crack.

Further information related to process parameters and

welding sequence can be found in [37, 38].

The objective of this application is to identify the values of

the process controllable variables of the GTAW process of

Ti6Al4V plates that provide the best compromises between

two performance measures. In the literature, different works

that relate the controllable variables and performance mea-

sures of titanium welding have been presented. Junaid

et al. [39] and Nandagopa and Kailasanathan [40], for exam-

ple, found that theprocess variables that haveamayor effect on

welding strength are welding velocity, feed rate and energy

power. Several others have applied different optimization

techniques to improve the welding process. Thepsonthi and

Özel [41] usedRSMandPSOmethods for optimizing amicro-

end milling process, [42] used genetic algorithms and particle

swarm optimization to identified the bestwelding robot’s path.

However, here we optimized the process considering multiple

conflicting objectives simultaneously.

4.1.2 Optimization results

This optimization case study has 2 performance measures:

maximize percentage elongation in 25mm and maximize

energy absorbed at fracture (J); and 3 process controllable

variables: voltage (V), amperage (A) and welding speed

(mm min�1). The range of the controllable variables are

[9.5, 10], [121, 141], and [91.6, 108.4] respectively.

Table 7 Initial experiment:

welding case study
Run order Control variables Performance measures

Voltage (V) Amperage (A) Speed (mm min�1) Elongation (%) Energy (J)

1 9.60 125.0 105.00 9.13 6

2 9.75 131.0 100.00 7.09 4

3 9.75 131.0 91.59 7.01 6

4 9.90 125.0 95.00 11.22 10

5 10.00 131.0 100.00 4.92 8

6 9.75 131.0 108.41 11.73 6

7 9.75 131.0 100.00 10.24 6

8 9.50 131.0 100.00 11.06 9

9 9.60 137.0 95.00 8.31 7

10 9.75 120.9 100.00 10.00 10

11 9.75 131.0 100.00 12.32 3

13 9.60 137.0 105.00 3.90 6

14 9.90 137.0 95.00 1.89 4

15 9.90 137.0 105.00 11.38 8

16 9.75 131.0 100.00 11.00 8

17 9.75 131.0 100.00 11.20 8

18 9.90 125.0 105.00 11.00 8

19 9.60 125.0 95.00 11.10 8

20 9.75 131.0 100.00 11.40 8

5738 Wireless Networks (2020) 26:5727–5750

123



The following parameters were considered for the

sequential multiobjective optimization algorithm:

Nmax ¼ 3� 2, Ntotal ¼ 15� 3 and the lower bound for R2

was set at 95% ðe ¼ 0:05Þ.

The optimization procedure is as follows:

1. Run initial experimental designThefirst step of themethod

is to design and ran an experiment to get initial information:

as suggested before a Central Composite Design is used.

The initial data set used here is the results of the experiment

performedbyCruz et al. [37]which is aCCIwitha ¼ 1:68

(when scaled between �1 and 1). The values of the

controllable variables and corresponding performance

measures are shown on Table 7. The experiment has 15

independent runswith5 extra replicas at the center.The test

coupons used here are schematically shown on Fig. 4(a),

they are rectangular Ti6Al4V plates 5 mm thick, 60 mm

width and 250 mm long. The joint has a bevel angel of 30	

for a groove angle of 60	. Here the pieces were cut and

joined using a Fronius GO-FER III machine. In order to

prevent bendingoropeningof thewelded joint, thewelding

was carried out on both extremes of the joint. Since oxygen

could contaminate the welding pool, causing embrittle-

ment when it solidifies, argon supplied by the gun nozzle

and backing jigwas used during thewelding cycle [38]. As

mentioned before, the process performance measures are

percentage elongation and the amount of energy absorbed

during fracture. Tomeasure the percentage of elongation a

tensile test was performed. Here a electromechanical

100 kN Instron 4482 was used. The stress rate and the

testing speed used were around 5MPa s�1 and

10mm min�1 respectively. For the tensile test, two

specimens were fabricated following the ASTM E8/E8M

standard. The specimens were obtained for each welded

coupon following the procedures of the AWS D17.1

specification. The left zoom-in draw on Fig. 4(e) sketches

the specimens. The outer dimensions of the test specimen

are102� 15 mmand42� 5 mmonthe interiorsection.A

gauge length of 25 mm was used to calculate the

elongation of the material. Percentage elongation is

calculated by dividing the length of the gage section after

fracture by its original gauge length multiplied by 100.

Higher elongation means higher ductility. To measure the

amount of energy absorb during fracture, a Charpy impact

test was performed. For the impact test, 3 specimens were

fabricated from each coupon and the average energy was

reported. The test specimens are schematically shown on

the right zoom-in draw of Fig. 4(e), they are 5 mm thick,

55 mm long, and 10 mm width, with a notch of 45	 angel
and a 0.25 mm radio. The specimens were machined until

their thickness reach 3.3 mm, then chemically etched to

reveal heat affected zone. An automated tungsten carbide

broach coated by TiN was used to machine the V notch

until the final dimensions were reached. A go/no-go gauge

wasused toverify thenotchquality.After quality assurance

was compiled the specimens were tested on a

400J SATECTM Charpy machine.

2. Found incumbent Pareto Front After all data has been

collected, the incumbent Pareto Front is identified.

Figure 5 shows the values of the PMs graphically. The

solution marked as ’center’ is the average of the 6

replication of the center points (solutions 2, 7, 11, 16, 17,

and 20). The incumbent Pareto solutions are Solutions 4,

6, and 15, which are circled on Figure 5.

3. Form a surrogate model per performance measure Next,

a surrogate model is fitted for each PM using all available
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experimental data. The fittedmodels are GLMwith n� 1

degree of freedom (n, current number of evaluated data

points). The coefficient of determination R2 of the

surrogate models are 0.9020 and 0.6085 respectively.

4. Evaluate surrogate models at a uniform grid of input

combinations The surrogate models were evaluated at a

uniform grid of 7� 50� 50 input combinations.

Figure 6 shows the evaluation of the models.

5. Found approximated Pareto Set and Front Now, the

Pareto Front of the predicted solutions is found. The

predicted Pareto Front has 34 solutions. However, since

the maximum number of simulation allowed per iteration

is 6, 6 solutions were selected using a max–min distance

criteria with 1000 iterations. The circled solutions on

Fig. 6 are the selected predicted Pareto solutions.

6. Evaluate selected predicted Pareto solutions Table 8

shows the input and output values of the 6 new runs

(step 5). The experiments were carried out as the initial

experiment (step 1). From each welded coupon 3

specimens were cut to perform the impact test and 2 for

the tensile test, the average is reported.

7. Update incumbent Pareto Front Now the incumbent

Pareto Front is updated comparing the initial 15

independent runs and the new additional 6 runs. The

new Pareto solutions are 4, 6, 15, and 22.

8. Evaluate Stopping Criteria Next the stopping criteria

are evaluated. The criteria used are: (1) stop if Ntotal is

reached; (2) stop if R2 of all models is larger than

1� 0:05; (3) stop if no new Pareto solutions are found.

None of the stopping criteria were met, therefore the

optimization algorithm will suggest to iterate again.

However, since the cost of the test is expensive we

were not able to do more experimentation.

9. Report final incumbent solutions The final Pareto solu-

tions are shown on Table 9. From this table it can be

noticed that in other to obtained a more ductile weld

(higher elongation), the process needs tobe set at a voltage

of 9.75 V, Amperage of 131 A and weld speed of

108:41mm min�1. To obtained a larger Energy (tougher

piece), the process should be set at a voltage of 9.90 V,

Amperage 125 A and weld speed of 97:45mm min�1.

Solutions 4 and 15 represent a compromise between

maximum elongation and maximum energy.

5 Conclusions

In summary, a sequential surrogate based multiobjective

optimization method was used to solve five multiobjective

optimization test problems using five different initial

sample sets. The goal was to examine which initial set al-

lows the optimization method to better approximate the

Pareto Front of problems with different degrees of diffi-

culty on the individual objective functions as well as on the

form of the Pareto Set and Front.

In general, the method was able to identify solutions on or

very close to the true Pareto Front in a modest number of

evaluations, which is critical for the cases of interest where a

single simulation or experimental run can be costly and time

consuming. A paired wise comparison of 4 quality criteria of

the approximated Pareto Fronts showed that there is not a

statistical significant different when different initial data sets

are used, except for one case (convergence). Therefore,

regardless of the initial design used the methodwill do a good

job approximating the Pareto Front. The fact that the method

Table 8 Iteration 1: evaluation

of selected predicted Pareto

solutions

Run order Control variables Performance measures

Voltage (V) Amperage (A) Speed (mm min�1) Elongation (%) Energy (J)

21 9.90 125.00 95.61 11 10

22 9.90 125.00 97.45 11 11

23 9.90 125.00 99.08 11 10

24 9.80 135.53 105.00 8 8

25 9.85 136.02 105.00 8 8

26 9.85 136.76 105.00 8 7

Table 9 Final Pareto solutions
Run order Control variables Performance measures

Voltage (V) Amperage (A) Speed (mm min�1) Elongation (%) Energy (J)

4 9.90 125.00 95.00 11.22 10

6 9.75 131.00 108.41 11.73 6

15 9.90 137.00 105.00 11.38 8

22 9.90 125.00 97.45 11.00 11

Bold values represent the best solution for each individual performance measure
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finds similar Pareto Fronts independent of the initial sample of

points could be due to the fact that the method iteratively

searches for solutions close to the true Pareto Front.

These results show that, as the works reported in

sequential single optimization, the initial set of points does

not have a high impact on the final solutions of the the

multiobjective sequential optimization method used here.

However, it is important to extend the analysis to other

sequential multiobjective optimization methods.

In addition, to illustrate the method, a case study on

titanium welding was used and a Pareto Front was

approximated with only 26 experimental runs.
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Appendix A

See the Figs. 7, 8, 9, 10, 11, 12, 13 and 14.
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