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Abstract
Wireless sensor network (WSN) is a cost-effective networking solution for information updating in the coverage radius or

in the sensing region. To record a real-time event, a large number of sensor nodes (SNs) need to be arranged systematically,

such that information collection is possible for a longer span of time. But, the hurdle faced by WSN is the limited resources

of SNs. Hence, there is a high demand to design and implement an energy-efficient scheme to prolong the performance

parameters of WSN. Clustering-based routing is the most suitable approach to support for load balancing, fault tolerance,

and reliable communication to prolong performance parameters of WSN. These performance parameters are achieved at

the cost of reduced lifetime of cluster head (CH). To overcome such limitations in clustering based hierarchical approach,

efficient CH selection algorithm, and optimized routing algorithm are essential to design efficient solution for larger scale

networks. In this paper, fuzzy extended grey wolf optimization algorithm based threshold-sensitive energy-efficient

clustering protocol is proposed to prolong the stability period of the network. Analysis and simulation results show that the

proposed algorithm significantly outperforms competitive clustering algorithms in the context of energy consumption,

stability period and system lifetime.
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1 Introduction

Wireless sensor network (WSN), which combines the

technology of sensors, embedded computing, and wireless

communications, is the most important element in the

Internet of Things (IoT). The growing popularity of IoT

systems such as the smart grid, Body Area Networks

(BANs), and the Intelligent Transportation System (ITS) is

driving WSN systems to the limit in terms of abilities and

performance. WSNs were initially designed for low power,

low data rate, and latency-tolerant applications [1]. How-

ever, this paradigm is changing because of the nature of the

new applications. Examples of IoT applications include

Body Area Networks (BANs), disaster discovery, object

movement detection, battlefield surveillance, Intelligent

Transportation Systems (ITSs) and security systems. WSNs

are popular because of the wide range of IoT applications

they can be used in. In effect, WSNs are being imple-

mented in almost all IoT applications due to their effec-

tiveness in transmitting many monitoring many events.

WSNs are built from small SNs that can monitor and

collect data, process it, and communicate it wirelessly to a

sink node or a Base Station (BS).

In the literature, there are numerous studies that exam-

ined different areas of WSN technologies and their appli-

cations [2–5]. SNs are battery-powered and usually

deployed in environments that have the least human

supervision (like forests, battlefields, etc.). As such,

replacing or recharging SNs batteries is not practical. In

order to avoid any disruption in the services of the WSN

due to battery drainage, two approaches are followed. From

one side, SNs are deployed in abundance (WSNs can be

constituted by thousands of SNs) in order to guarantee

redundancy in the data reported by SNs. That is, if certain

SNs deplete their batteries, other nodes are already
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covering for them and serious disruption in services is

mitigated. On the other side, any communication protocol

or algorithm to be ported on the SN platform should not

pose any processing burden. The early phases of design,

development, and deployment of WSNs focused on con-

serving the power resources of the SNs [6–8].

Due to scarce resources in WSN, direct communication

of SN with BS or multi-hop communication of SNs

towards BS is not practical as energy consumption is high

which results in the early expiry of nodes. Direct com-

munication or single-tier communication is not feasible for

large scale networks as WSN cannot support long-haul

communication. Direct communication has its disadvan-

tages such as high energy consumption, duplication of data

(SNs that were close to each other, sending data with very

small variation), and farthest nodes dying quickly. To

overcome these problems, two-tier communication through

a hierarchical approach is used where nodes are grouped

into clusters. The leader node also called cluster head (CH)

is responsible for aggregating the data and then forwarding

it to the BS. Hierarchical network structure often makes a

two-level hierarchy, in which the CHs are placed at the

upper level, and the lower level is for member nodes. The

lower level nodes periodically send data to their respective

CH. The CH then aggregates that data and forwards it to

BS. The CH node spends more energy than member nodes,

like all the time CH node is sending data over long dis-

tances. Moreover, after certain rounds, the selected CH

may be unable to perform or perish due to high energy

consumption. In order to ensure load balancing among

SNs, the role of CH is changed periodically to balance

energy consumption [6]. Communication within a cluster

(intra-cluster) is usually single-hop and between clusters

(inter-cluster) may be single-hop or multi-hop.

The prime objectives of cluster-based routing protocols

are saving the dissipated energy, ensuring the network

connectivity, and prolonging the lifetime of WSNs. These

objectives can be achieved by finding the optimal head

nodes in WSNs. This is a difficult problem and can be

considered as a Nondeterministic Polynomial (NP) opti-

mization problem. In order to solve and find optimal

solutions for this problem, researchers have developed

some robust cluster-based routing protocols based on

evolutionary algorithms.

Optimization algorithms used for the CH selection in

recent past are genetic algorithm (GA) [9–12], differential

evolution (DE) [13, 14], artificial bee colony (ABC)

algorithm [15], harmony search algorithm (HSA) [16, 17],

spider monkey optimization (SMO) [18], moth flame

optimization (MFO) [19] and others. These optimization

algorithms are competitive but they suffer from certain

weaknesses like slow convergence and premature conver-

gence. Grey wolf optimization (GWO) is a recently

developed nature-inspired global optimization method [20]

that mimics the social behavior and hunting mechanism of

Grey wolves. The algorithm though is very competitive and

has been applied to various fields of research, but this

algorithm suffers from the problem of local optima stag-

nation and poor exploration. This is because a new solution

is generated by evaluating the mean of the three best

solutions from the entire population and the other members

don’t participate in the evolution process. Hence, extended

grey wolf optimization (EGWO) has been proposed to

overcome the limitation of the GWO. In present work,

EGWO has been exploited along with FIS to the best of its

potential for solving the above load balancing problem in

the clustering algorithm.

The rest of this paper is organized as follows: In Sect. 2,

the relevant works are presented. In Sect. 3, the extended

grey wolf optimization algorithm is outlined. Sections 4

and 5 focused on the radio energy dissipation model and

network model respectively in detail. In Sect. 6, the pro-

posed methodology and strategy are described. The per-

formance analysis of our work is depicted in Sect. 7.

Finally, in Sect. 8 the conclusions of our work are

presented.

2 Related work

As pointed out earlier, the nodes are tiny and energy-

constrained. In this context, it is desirable to form a group

of devices and these groups of devices communicate

among themselves through a group leader that ensures the

minimum communication overhead and energy-efficient

execution using clustering. In literature, various attempts

have been made to improve the energy efficiency through

different clustering techniques by addressing the problems

of efficient cluster formation, even distribution of load, CH

selection and reselection, and cluster reformation; few of

them are discussed here.

Heinzelman et al. [6] presented LEACH which is one of

the first energy-efficient routing protocols and is still used

as a state-of-the-art protocol in WSN. The basic idea of

LEACH is to select CH among a number of nodes by

rotation so that energy dissipation from communication can

be spread to all nodes in a network. LEACH has some

disadvantages such as probabilistic approach using the

random number for CH selection, which might result in

suboptimal CH node thus resulting in high energy con-
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sumption. Furthermore, the dynamic clustering overhead

and non-uniform distribution of CH will consume more

energy and lead to poor network performance. A number of

variants to LEACH are stated based on heterogeneity

[21–26], distance-based thresholds [24], multi-hopping

[26, 27], deterministic CH selection [28] and reactive

protocol [8, 29–31].

Manjeshwar and Agrawal [8] proposed an event-driven

clustering approach called TEEN. In this approach, the

sensed data is forwarded to the BS only if some event

occurs, which is based on two thresholds, that is, soft and

hard. Later, this approach has been enhanced and proposed

as an adaptive TEEN (APTEEN) [31]. APTEEN combines

the event-driven approach of TEEN and periodic approach

of LEACH to address the problems occurring in TEEN.

APTEEN is good for periodic applications, but the com-

plexity of the approach increases due to the inclusion of

extra threshold function and count time.

Smaragdakis et al. [21] introduced Stable Elections

Protocol (SEP) to enhance the stability and lifetime of

heterogeneous WSN (HWSN). Two-level energy nodes are

introduced in this protocol namely, normal and advanced

nodes. The advanced node has more chance to get selected

as CH than normal node. In the study, an increasing the

percentage of advanced nodes and hence the probability of

CH selection improves performance in the form of network

lifetime, which also improves the throughput of the net-

work. Enhanced SEP (E-SEP) [22] has introduced the

three-level communication hierarchy. E-SEP distributes

SNs into three categories: normal, intermediate, and

advanced nodes, where advance nodes have higher energy

followed by intermediate and normal nodes respectively.

By using an extra level of heterogeneity as compared to

SEP [21], up to some extent energy dissipation is reduced.

Kumar et al. [25] suggested EEHC protocol in that

nodes in the network are categorized into three levels

according to their initial energy. Mittal and Singh pre-

sented a reactive clustering protocol named DRESEP

which is optimal for event-driven applications like forest

fire detection [29]. Mittal et al. [30] also proposed a pro-

tocol called SEECP in which CHs are nominated in

deterministic fashion based on the remaining energy of

nodes to balance the load effectively among sensors.

Researchers have combined the clustering scheme with

the biologically inspired routing scheme to achieve a

longer lifetime [32]. Evolutionary algorithms (EAs) are

used to handle the cluster-based problem to minimize

energy consumption and prolong the lifetime of network

with heterogeneity. Evolutionary based clustered routing

protocol (ERP) [9], energy-aware ERP (EAERP) [10],

stable-aware ERP (SAERP) [11] and stable threshold-

sensitive energy-efficient routing protocols (STERP) using

DE [13], HSA [17] and SMO [18] are some of the recently

developed EA based clustering algorithms. EAERP rede-

signed some significant features of EAs, which can assure a

longer stable period and extend the lifetime with efficient

energy dissipation. ERP overcame the shortcomings of

hierarchical cluster-based routing (HCR) algorithm [33] by

uniting the clustering aspects of cohesion and separation

error. SAERP combined the main idea of SEP and EAs

with an aim to increase the network stability period. In

STERP, an energy-aware heuristics is integrated into

cluster-based protocols as a parameter for CH selection so

that a better stability period of the network is achieved.

Each of these routing schemes (DESTERP, HSSTERP,

SMSTERP, and GASTERP) demonstrated their advantages

in prolonging the lifetime of HWSNs [13, 16, 18, 34].

Gupta et al. [35] introduced a centralized approach for

CH election using fuzzy logic by considering fuzzy vari-

ables: residual energy, node degree, and node centrality.

LEACH-FL [36] utilizes fuzzy logics based on three met-

rics: residual energy level, density and distance from the

sink for CH election. CHEF [37] utilizes two fuzzy

descriptors: residual energy and local distance for CH

election. Sert et al. [38] proposed MOFCA protocol in

which CHs are selected using a fuzzy logic approach. The

main objective of MOFCA is to overcome the hotspot

problem, which arises due to multi-hop communication.

MOFCA is used for both stationary and mobile

environments.

Tomar et al. [39] presented a clustering algorithm with a

fuzzy inference system (FIS). The aim is to provide an

alternative solution to probabilistic CH selection. In this

approach, fuzzy-logic along with ACO is used for CH

selection and to determine an optimal path between node

and BS. Tamandani et al. [40] introduced a clustering

protocol named SEP based on fuzzy logic (SEPFL). To

enhance the CH selection process in SEP, three variables

namely distance of SNs from BS, residual energy and

density of nodes are used with fuzzy logic control.

Obaidy and Ayesh [41] proposed an intelligent GA-PSO

based hybrid protocol to increase the lifetime of mobile

WSNs. In this protocol, GA is used to form optimum

clusters that reduce the energy consumption of the network

by minimizing the distance between nodes and BS. PSO is

used to provide distance management which makes the

WSN self-organized. Simulation results showed that this

approach minimizes the distance effectively in mobile

WSNs.
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Mittal et al. [42] presented a stable threshold-sensitive

energy-efficient cluster-based routing protocol called

FESTERP suitable for event-driven applications such as

forest fire detection. The protocol considers the remaining

energy, node centrality and the distance to BS to elect

appropriate CHs. CHs are selected using a simple FIS as a

fitness function for EFPA. An energy-based heuristics is

applied to have longer stability period for WSNs.

Armin et al. [43] presented a fuzzy multi cluster-based

routing with a constant threshold (FMCR-CT) algorithm

for WSN. FMCR-CT avoids clustering in each round by

trusting the selected CHs from the previous rounds. Ran-

dom selection of CHs in some clustering algorithms

reduces the likelihood of considering the best node as the

CH. The algorithm chooses the node with the best fuzzy

parameters as the CH, and reduces the number of sent

control messages and collision.

Radhika and Rangarajan [44] proposed a clustering

algorithm that minimizes the loss of energy of nodes by

lowering the overhead on message transmission and to

simplify the construction and update processes of clusters

thus increasing the network lifetime. The primary idea of

the algorithm is to form suitable clusters and re-cluster

them based on the update cycle calculated using the FIS.

This method significantly reduces data transmission by

identifying similar sensed data readings using machine

learning. Possibility of failure of CH nodes is likewise

considered for performance improvement.

Thangaramya et al. [45] proposed a protocol called

neuro-fuzzy based cluster formation protocol (FBCFP).

The protocol performs learning of the network by consid-

ering four important components namely current energy

level of the CH, distance of the CH from the sink node,

change in area between the nodes present in the cluster and

the CH due to mobility and the degree of the CH. For this

purpose, the network is trained with convolutional neural

network with fuzzy rules for weight adjustment. Fuzzy

reasoning approach is used for powerful cluster formation

and to perform cluster based routing.

3 Extended grey wolf optimization

GWO [20] algorithm is inspired by the social behavior and

hunting mechanism of the grey wolves. These animals live

in groups and in each group, the population is divided into

four levels. Topmost position in a group is occupied by the

alpha wolf followed by beta, then delta wolves and the

lowest level is occupied by omega wolves. The main

phases of group hunting of grey wolf are as follows:

• Encircling

• Hunting

• Attacking the prey

The above-discussed hunting mechanism and the social

hierarchy of grey wolves can be modelled mathematically

in the GWO algorithm with the help of the following

equations [20].

D~ ¼ C~ � Xp�!
tð Þ � X~ tð Þ

�

�

�

�

�

�
ð1Þ

X~ t þ 1ð Þ ¼ Xp
�!

tð Þ � A~ � D~ ð2Þ

A~¼ 2a~ � r1!� a~ ð3Þ

C~ ¼ 2 � r2! ð4Þ

Da ¼ C1
�! � Xa

�!� X~
�

�

�

�

�

�
ð5Þ

Db ¼ C2
�! � Xb

�!� X~
�

�

�

�

�

�
ð6Þ

Dd ¼ C3
�! � Xd

�!� X~
�

�

�

�

�

�
ð7Þ

X1
�! ¼ Xa

�!� A1
�! � D~a

� �

ð8Þ

X2
�! ¼ Xb

�!� A2
�! � D~b

� �

ð9Þ

X3
�! ¼ Xd

�!� A3
�! � D~d

� �

ð10Þ

X t þ 1ð Þ ¼ ð X1
�!þ X2

�!þ X3
�!Þ=3 ð11Þ

where t denotes the current iteration, A~ and C~ are coeffi-

cient vectors, Xp
�!

tð Þ is vector which denotes the position of
prey and X~(t) is vector which denotes the position of grey

wolf. In this element of a~ are linearly decreased from 2 to 0

over the course of iteration, r1
! and r2

! are random vectors

in the range of [0 1].

Though GWO has been used to solve various opti-

mization problems (like flow shop scheduling problem

[46], economic load dispatch problem [47], hyper-spectral

band selection [48] and many more) but it still has some

limitations. Here because of the local optima stagnation

problem, the algorithm doesn’t guaranty a global solution.

Thus to improve the performance, the EGWO algorithm

has been implemented and used to solve the load balancing

problem of WSN. The new algorithm employs two modi-

fications in the original GWO algorithm. Firstly, for the

value of A~
�

�

�

�

�

�
[ 1, different positions to the best members

have been applied for switching to different areas of search

space. This is done to enhance exploration and get rid of

the local optima stagnation problem. Secondly, in order to

bring diversity among the search agents during the initial

iterations, the opposition based learning approach has been

used to find the global minima.
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3.1 Modification 1

Why the condition of |A|[1? The first modification added

is the condition of Aj j[ 1, this means that when the

wolves are getting closer to the prey, the range of A~ is

reduced and this reduction is followed by linearly reducing

the value of a~ in the range of 2–0. This means that the value

of A~ actually shifts between [�2a; 2a] and is same as given

by Eq. (3). Here if we keep the value of A~ between [- 1,

1], the step size will be small and then updated position of

agents will be around the prey’s and is given in Fig. 1. This

eventually means that A~ makes the wolves move in the

direction of their prey and hence helping in exploitation.

Now correspondingly, if the value of A~ is greater than 1 or

less than - 1, the next position of the search agents will be

very far from the prey’s (best) position. Thus for present

case, the values of A~ will be very far away from each other

and hence help in exploration of the search space.

In basic GWO algorithm, all the search agents move

with respect to the alpha, beta and delta wolves. This

movement is with respect to the omega wolves and has

been clearly shown in Fig. 2. Here omega wolves are

always following the best particles with in the search space

making the algorithm fall in some local optimal solution.

So from here we can conclude that the value of A~ controls

the total amount of exploration and exploitation required

for optimal functioning of the algorithm. So in order to

enhance the exploration capability of the search agents in

GWO algorithm, new improvements have been added in

the basic algorithms and major change is based on the

value of the A~.

How new condition is imposed in EGWO? The major

problem which is required to be dealt with for any opti-

mization algorithm is the local optima stagnation. For

present case we are using a new criteria based on A~
�

�

�

�

�

�
[ 1,

to find the positions of alpha, beta and delta wolves. Here

the population is divided into three groups and corre-

spondingly a score which is the best value for the current

group is assigned a new position namely a2. Similarly for

the second and third group, b2 and d2 are the best solu-

tions. The rest of the wolves or members of the population

update their positions with respect to Eqs. (5)–(11) with in

the search space. In the exploitation phase A~
�

�

�

�

�

�
\1

� �

,

alpha, beta, and delta agents are the top three fittest

members from the population and remaining wolves follow

them to exploit the prey using equations from 5 to 11.

Fig. 1 Behaviour of wolves

[40]
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Why division of the population into three groups? It can

be seen from Fig. 2 that the basic GWO algorithm uses the

three best members of the whole population to update the

positions of other members of the group. By following this

procedure, the best members within the group makes the

algorithm to perform intensive exploitation with in the

search space and hence leading to the problem of local

optima stagnation as given by Fig. 3. In this figure circle

denotes the whole search space, xbest shows the position of

best particle and x1; x2; . . .; xn shows the position of

remaining search particles with respect to the best. From

Fig. 3(a) it is clear that the search agents update their

position according to the best particle i.e. they are moving

in some particular direction while other areas remain

Fig. 2 Updating Positions of omega (x) wolf [20]

Fig. 3 a Movement of random

solutions toward the best;

b movement of random

solutions toward the best and

away from the global optima
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unexplored. Hence, it leads to exploitation. From Fig. 3(b),

it can be inferred that search agents always follow the best

particle even if it gets stuck at some local solution and is

far away from the global solution. Under this scenario, the

algorithm fails to reach global optima and leads to pre-

mature convergence.

Now in order to address this problem, the algorithm

should generate diversified solutions. Hence in order to

promote diversification, the population is divided into three

as stated earlier and each best member namely a2, b2 and

d2 of the group is selected. The rest of the wolves are then

updated according to the newly generated values of alpha,

beta and delta using Eq. (11). Thus helping the algorithm

in exploring the search space using new search regions and

it is expected that the new algorithm will provide much

better result when compared with the existing GWO

algorithm.

3.1.1 Using different random numbers

Using multiple random numbers can also be considered as

another modification to the basic algorithm. From Eqs. (8–

10), it can be inferred that the vector A~1 provides a random

weight between the current and the best (a) position and

correspondingly A~2 and A~3 are used to find random

weights between current, beta and delta positions respec-

tively. The random number generated in this case is cal-

culated with the help of Eq. (3). So here three random

numbers are generated using different values of alpha and

beta and delta wolves and hence overall randomness is

increased in the algorithm. This new property helps the

algorithm in improving the diversification or simply the

exploration properties of the algorithm with in the search

space.

3.2 Modification 2

In order to enhance the exploration of the algorithm, search

agents need to explore more search areas in the initial

generations to find the global solution and then later con-

verge to exploit the global solution. This has been done

using the opposition based learning (OBL) technique in the

initial iterations. The concept of OBL was introduced by

Tizhoosh [49]. The main idea behind this theory is the use

of a random solution and its oppositely generated number

in order to find a global solution. The concept of opposite

generated number is defined as:

Let Xi be a solution in space with dp-dimension given as

Xi ¼ xi;1; xi;2; xi;3; . . .; xi;dp
� 	

. The opposite point

X0
i ¼ x0i:1; x

0
i:2; . . .; x

0
i;dp

n o� �

to this approximated solution

can be calculated by relation

x0i:1 ¼ xmax;j þ xmin;j

� �

� xi ð12Þ

Why opposition based learning technique? Positions of

grey wolves in the search space is extremely important in

grey wolf optimization. It affects the final solution and

convergence speed. In this article, the initial set of the

population is generated using random initialization. This

population consists of ‘n’ solutions, where each solution

consists of dp-dimension. Random solutions can be gen-

erated by the following equation:

xi;j ¼ xmin;j þ rand ð0; 1Þ ðxmax;j � xmin;jÞ ð13Þ

where xmax;j and xmin;j are the upper and lower bound of the

problem, j denotes the dimensionality of vector (j = 1, 2, 3,

…, dp), i is the number of solution (i = 1, 2, 3,…, n). Here,

dp is the dimensions of the problem under consideration.

The random selection of the solution has a chance of

revisiting some search areas again and again. Hence, it

reduces the diversity among the solutions. Thus, to enhance

the diversity in the randomly generated population, the

concept of OBL has been used. Using this method, some

dimensions of the solution can become opposite to the

estimated solution. Therefore, the new combination of the

population will have diverse solutions [50]. Thus, the idea

of OBL will help in enhancing the exploration of the

GWO.

How OBL is applied? OBL is a very important property

which help any algorithm to diversify the solutions. For

present case, the population is divided into two equal

halves. The first half of the population employs the basic

initialization step as used by original GWO whereas for the

second half of the population, partial opposition is fol-

lowed. By partial opposition we mean that some of the

solutions of the search space are replaced randomly by

their opposite numbers. Here the division of population is

done without sorting to take advantage of randomness

which enhances the diversity and results in better explo-

ration ability of GWO. This more exploration in the initial

iterations helps in moving toward the global solution which

will be further exploited by other wolves. The pseudo-code

for the proposed algorithm is given in Algorithm 1. Note

that the procedure of OBL is followed only for first half of

the iterations.
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4 Radio energy dissipation model

The energy consumption of WSNs is generally composed

of many parts, such as monitoring, data storing, and data

transmitting. However, the energy used for data transmis-

sion takes up a large proportion of the total energy con-

sumption. The network energy is consumed on both sides

of the communication (sender and receiver) according to a

wireless energy consumption model as shown in Fig. 4.

The model consists of two parts reflecting transmission and

reception as shown in Eqs. 14 and 15 respectively. SN

needs to consume energy ETX to run the transmitter circuit

and Eamp to activate the transmitter amplifier, whereas a

receiver consumes ERX power for running the receiver

circuit. Energy consumption in wireless communication

also depends on message length (l). Thus, the transmission

cost for an l-bit message having transmitter–receiver dis-

tance d, is calculated as:

Fig. 4 Radio energy dissipation

model [30]
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ETX ¼ lEelec þ lefriis ampd
2; if d\d0

lEelec þ letwo ray ampd
4; if d� d0




ð14Þ

where d0 is crossover distance and is given by:

d0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

efriis amp=etwo ray amp

q

The term Eelec represents the per-bit energy consumed

for transmission. The parameters efriis amp and etwo ray amp

denote energy consumed by transmitting node to run radio

amplifier in free space and two ray ground propagation

models, respectively.

The reception cost for the l-bit data message is given by:

ERX ¼ lEelec ð15Þ

where Eelec is the per-bit energy consumption for the

reception.

5 Network model

A three-level node energy heterogeneity is used in the pro-

posed network model. The network model consists of N

randomly deployed sensor nodes on aM 9 M sensing layout.

BS is at the center of the network field. Communication links

between each other are assumed to be symmetric [22]. Nodes

namely normal, advanced, and super with increasing order of

energy level as presented in [22]. Hence, in the proposed

protocol, we have a three-level energy value of heterogeneity

asE0,EAdv, andESuper for the energy of normal, advanced, and

super nodes, respectively. Nodes with percentage population

factor as a for advanced nodes with total N nodes, which is

equipped with an energy factor greater than m times than

normal node. Super nodes are equipped with energy incre-

menting factor as m0, with percentage population factor a0
with respect to total N nodes. Individual node details in the

form of the equation are presented as follows.

Initial energy for normal nodes is E0 with population

count as Nð1� a� a0Þ. Subsequently, advanced and super

node populations are na and na0, respectively. The energy

available with advanced and super node is EAdv, and ESuper,

respectively. Energy calculations for respective nodes are

as follows:

ENormal ¼ NE0ð1� a� a0Þ:
EAdv ¼ NE0 1þ mð Þa

ESuper ¼ NE0 1þ m0ð Þa0

Above equations present energy available with all three

types of nodes, i.e. normal, advanced and super nodes

respectively. Total initial energy proposed in the network

model is calculated as ETotal:

ETotal ¼ ENormal þ EAdv þ ESuper ¼ NE0 1þ maþ m0a0ð Þ
ð16Þ

Hence, from (16), we hereby conclude that if we add

heterogeneity level up to level-2, available energy

increased by a factor 1þ mað Þ, and if it is increased to

level 3, then energy increased by a factor 1þ maþ m0a0ð Þ.

6 Proposed protocol

In hierarchical routing protocols, sensor nodes perform

different tasks such as sensing, processing, transmitting,

and receiving. Some of these sensor nodes called CHs or

parent nodes, are responsible for collecting and processing

data and then forwarding it to sink. The task of other nodes

called member nodes sense the sensor field and transmit the

sensing data to the head nodes. Hierarchical based routing

is a two-layer architecture, where head nodes selection is

performed in the first layer and the second layer is

responsible for routing.

In this work, in order to deal with uncertainties during

CH selection, FIS has been adopted along with EGWO to

provide the chance value for each node. The process of the

proposed protocol named Fuzzy GWO based

stable threshold-sensitive energy-efficient cluster-based

routing protocol (FGWSTERP), is divided into rounds

consisting of set-up and steady-state phase as shown in

Fig. 5.

The selection of CHs, in the set-up phase, is performed

by BS using FIS based EGWO from the alive SNs having

residual energy more than a threshold energy level as

shown in Fig. 6. EGWO handles a population of several

individual solutions and an answer is shown by each

individual. A complete solution is represented in such a

way that each individual solution indicates the complete

assignment of all SNs. It determines where the CHs and

their members are located in WSN. The phase begins by

generating the initial population. Let Xi ¼
Xi1;Xi2; . . .;XiNð Þ denote the ith population vector of a

WSN with dp ¼ N sensors, where Xi jð Þ 2 0; 1f g. Alive

SNs and CH nodes are represented by 0 and 1 respectively.

The grey wolf search agents are used as vectors to

represent an answer to the low-energy clustering problem.

Every solution might depict a number of arbitrarily chosen

CH nodes. The low-energy clustering problem is trans-

formed into finding out a CH node-set in the prospect

solution space using the EGWO. In this way, a potential

solution will be shown as a string. Therefore, binary

encoding is used on every individual. Every single SN

within the system contains Binary factors denoting whether

the corresponding SN is selected as the CH node or not. For

instance, assuming a solution is X = (0, 0, 1, 0, 0, 0, 1, 0, 0,
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0). There are 10 sensors in the region and Nos. 3 and 7

nodes are selected as CH nodes. Such encoding is adequate

and powerful since it contains the whole searching region.

The initial population of grey wolves is given by

Xi jð Þ ¼ 1; if rand� pandE nodej
� �

�Eavg rð Þ
� �

0; otherwise




ð17Þ

where p is the desired percentage of CHs, and rand is a

uniform random number. Eavg rð Þ is the average energy of

the whole network in current round r, and E nodej
� �

is the

current energy of sensor j [34].

The fitness value of each individual is evaluated to

quantify the effectiveness of that individual in the routing

optimization problem using FIS (in the next section). The

individual vectors are evolved over time to improve the

quality of the individual vectors. The population goes

through various operators (see Eqs. 1–13) to create an

evolved population.

Finally, the fittest vector is used to seed the next phase

where the non-CH nodes are associated with their CHs to

form clusters. This process is repeated iteratively until the

termination condition occurs.

6.1 CH selection using FIS

In a centralized CH selection method, the energy con-

sumption of WSN is huge since the sink node needs to

transmit the information of selected CHs to all the nodes in

each round. Moreover, the lifetime of the whole network

depends on the energy consumption related to the distance

and residual energy of each node. It is hard to describe the

Yes No

Collect data 
from CMs

Every CM sends 
sensed data if 

threshold is met

Collect sensed data 
from distant CHs if 
distance to BS >R

Collect data from 
CHs 

End 
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All nodes 
are dead? 
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each Node 
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Wait Information 
about CHs 

Set-up Phase 

Send 
Information

Receive 
Information

Receive 
Info.
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Fig. 5 Operation of proposed

FGWSTERP protocol
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exact mathematical model of the relationship between the

network lifetime and the node’s parameters. The FIS does

not need an exact mathematical model of the system as

well, and it can make decisions even if there is insufficient

data. Thus, the FIS is strongly recommended for WSN due

to its low computational complexity and its easy applica-

tion in a distributed way with low cost compared to other

methods. Therefore, we develop FIS to select the CHs.

Initially, BS announces a small communication to wake

up and to demand the identifications, locations and energy

level and type of the node (advanced or normal) of every

sensor in the sensor arrangement. Each node computes the

chance value using FIS. Depending on the responded data

from sensors, BS utilizes EGWO to elect CHs based on the

chance value of each node. The node that has chance larger

than chance values from the others is selected as a CH. The

whole process for CH selection is demonstrated in Fig. 6.

Also, BS allocates the associated sensors of every CH on

the basis of minimum Euclidean distance. When CHs are

elected and their associate members are assigned, the BS

Fig. 6 CH election algorithm

using EGWO with FIS
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launches a small communication to notify the sensor net-

work about CH and associated members. Time Division

Multiple Access (TDMA) schedules are formed by CH for

accompanying member nodes in the cluster. Member nodes

communicate with CH in the allotted time slots and remain

in sleeping mode during unallocated time slots.

As shown in Fig. 7, residual energy (RE), node cen-

trality (NC), and distance to BS (D) are three input vari-

ables for the FIS and the CH selection probability of a node

is the only output parameter, named chance. The possi-

bility of a node to be nominated as a CH is more for higher

values of chance.

The universal of a discourse of the variables RE, NC, D,

and fit are [0…1], [0…1], [0…1], and [0…1], respectively.

Based on the application scenario considered, the FIS input

set of values include RE, NC and D. The linguistic vari-

ables of the input values are considered as very low, low,

medium, high and very high for RE, close, rather close,

reachable, rather distant and distant for NC, and close,

nearby, average, far and farthest for distance to BS as

shown in Fig. 8(a–c). Applying these characteristics to

fuzzy logic the resulting proposed FIS includes the fol-

lowing set of input fuzzy variables:

Residual energy RE 2 very low; low; medium;f
high;very highg;

Node centralityNC 2 close; rather close; reachable; rather distant; distantf g;
Distance to BSD 2 close; nearby; average; far; farthestf g;

ð18Þ

and the probability of a CH candidate selection chance is

the resulting output, shown in Fig. 8(d).

chance 2 very low; low; rather low; medium low;f
medium; medium high; rather high; high; very highg:

ð19Þ

A complete set of the fundamental rules (for each input

the total number of rules are 5 9 5 9 5 = 125) has been

extracted and defined so as to train the proposed FIS

(Table 1). The following set of rules represent all the

possible combinations of the input linguistic variables.

A node that holds higher residual energy, closer node

centrality and nearer to BS has a higher probability of CH

Fuzzifier 
Inference 

Engine Defuzzifier

Fuzzy Rule Base

Fuzzy Inference Systems

From each node For each node

ChanceResidual Energy 
Node Centrality 
Distance to BS 

Fig. 7 FIS-based probabilistic model for CH selection

(b)  MF of input variable node centrality

(c) MF of input variable distance to BS

(d)  MF of output variable chance.
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selection. An optimistic illustration of this is rule 101 in

Table 1, while the contradictory one is rule 25.

Steady-state phase The steady-state or transmission

phase represents the actual communication of environ-

mental reports from the network field. The proposed pro-

tocol adopts a unique data transmission phase in order to

achieve the goal of energy efficiency, reliability, and

minimum delay transmission. For intra-cluster communi-

cation, the protocol adopts event-based reactive short-range

single-hop transmissions, while multi-hopping is imple-

mented for inter-cluster communications.

Intra-cluster data transmission phase During this data

transmission phase, the energy of active nodes will be

modified according to the dissipated energy required for

sensing, packets transmission, receiving, and aggregation.

Energy is dissipated in sensing and to transmit the message

packets from non-CH to their associated CHs when

threshold conditions are satisfied and, hence, the energy of

the CMs will be modified. For CH nodes, energy is

Table 1 Fuzzy inference rules
S. No. Residual energy Node centrality Distance to BS Chance

1 Very low Close Close Medium high

2 Very low Close Nearby Medium high

3 Very low Close Average Medium

4 Very low Close Far Medium low

5 Very low Close Farthest Rather low

6 Very low Rather close Close Medium

7 Very low Rather close Nearby Medium

8 Very low Rather close Average Medium

9 Very low Rather close Far Medium low

10 Very low Rather close Farthest Medium low

11 Very low Reachable Close Medium low

– – – – –

20 Very low Rather distant Farthest Low

21 Very low Distant Close Low

22 Very low Distant Nearby Low

23 Very low Distant Average Low

24 Very low Distant Far Low

25 Very low Distant Farthest Very low

26 Low Close Close Rather high

– – – – –

50 Low Distant Farthest Low

51 Medium Close Close High

52 Medium Close Nearby High

53 Medium Close Average Rather high

– – – – –

74 Medium Distant Far Rather low

75 Medium Distant Farthest Rather low

76 High Close Close High

– – – – –

101 Very high Close Close Very high

102 Very high Close Nearby High

103 Very high Close Average Rather high

– – – – –

123 Very high Distant Average Medium low

124 Very high Distant Far Rather low

125 Very high Distant Farthest Rather low
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modified while performing packets receiving and aggre-

gation. Thus, in this phase, the energy of the CM and CH

nodes can be formally modified according to the following:

E nodej
� �

¼
E nodej
� �

� Esensing � ETXnodej ;CHk
; ifsensedvalue� Threshold

E nodej
� �

� Esensing; ifsensedvalue\Threshold

(

ð20Þ
E CHkð Þ ¼ E CHkð Þ � ERX þ EDAð Þ ð21Þ

where E nodej
� �

and E CHkð Þ denote current energy of

sensor j and CH k respectively, ETXnodea ;nodeb
is energy

expenditure for transmitting data from nodea to nodeb, ERX

is energy dissipated for the reception of data and EDA is the

energy dissipation in data aggregation.

Inter-cluster data transmission phase During this phase,

the energy of CHs in the network will be consumed

according to the dissipated energy required for packets

transmission to BS. Energy is also dissipated for relay CHs

to receive the message packets from distant CHs and data

aggregation, and transmission to BS. Thus, in this phase,

the energy of the CH nodes can be formally modified

according to the following:

E CHkð Þ ¼ E CHkð Þ � ETXCHk ;CHR
; ifdCHk ;BS �R

E CHkð Þ � ðERX þ EDA þ ETXCHk ;BS
Þ; ifdCHk ;BS\R




ð22Þ

where CHR is the relay CH that lie within the radius R

centered on BS.

7 Simulation results

MATLAB is used for designing the network scenario

which executes the Fuzzy based EGWO algorithm to form

clusters and selecting CHs in order to reduce energy con-

servation of SNs. The simulation results of FGWSTERP

protocol have been analyzed with respect to the perfor-

mance metrics such as energy efficiency, total network

residual energy and network lifetime against the competi-

tive protocols such as LEACH, SEP, HCR, ERP, DRESEP,

SEECP, HSSTERP DESTERP, and FESTERP. The net-

work characteristics used for the protocol simulations are

summarized in Table 2.

Simulation results are produced by deploying 100 nodes

randomly within a 100 m 9 100 m area and BS is located

at (50, 50). In homogeneous setup, the network consists of

nodes having initial energy E0. For heterogeneous setup,

advanced and super nodes are set to 20% and 10% of the

total nodes and have initial energy 2 times and 3 times

greater than normal nodes (having initial energy E0)

respectively. The parameters setting for simulated proto-

cols are given in Table 3.

The simulation results of competitive protocols for

homogeneous setup with initial energy E0 ¼ 1 J are shown

in Fig. 9. It shows the relation between alive nodes and

number of rounds, from which it is obvious that

FGWSTERP enhances the entire network lifetime to some

extent. The main reason for this result is that FGWSTERP

Table 2 Parameters used in MATLAB simulation

Parameter Value

Number of nodes, N 100

Network size 100 m 9 100 m

BS Location (50, 50)

Initial energy of normal node, E0 0.25 J, 0.5 J, 1 J

CH selection probability 0.05

Radio electronics energy, ETx ¼ ERx 50 nJ/bit

Data-aggregation energy, EDA 5 nJ/bit

Radio amplifier energy, efriis amp 100 pj/bit/m2

Radio amplifier energy, etwo ray amp 0.0013 pJ/bit/m4

Temperature range on the field 0–200 �F
Hard threshold 50 �F
Soft threshold 2 �F

Table 3 Parameters setting for

simulated protocols
Algorithm Parameter settings

HCR n = 20; dp = 100; T = 100; Pm = 0.03; Pc = 0.6

ERP n = 20; dp = 100; T = 100; Pm = 0.03; Pc = 0.6

SAERP n = 20; dp = 100; T = 100; Pm = 0.03; Pc = 0.6

DESTERP n = 20; dp = 100; T = 100; CR = 0.5

HSSTERP HMS = 20; dp = 100; NI = 100; HMCR = 0.7; PAR = 0.1

FESTERP n = 20; dp = 100; T = 100; pds = Dynamic and linearly decreasing

FGWSTERP n = 20; dp = 100; T = 100

Here, n is number of population, dp id dimension of population, T is number of iteration, Pm is mutation

probability, Pc is crossover probability, CR is crossover constant, HMS is harmony memory size, NI is

number of improvisations, HMCR is the harmony memory consideration rate, PAR is a pitch adjustment

rate, pds is dynamic switching probability
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considers the remaining energy of nodes for CH selection.

In FGWSTERP, the node with the highest residual energy

and shortest distance to BS has the best chance to become

the CH. Therefore the nodes transmission radius decreases

as its distance to BS decreases, which leads to creating

smaller cluster sizes with shorter sensors chain length than

those farther away from the BS. Hence, the energy con-

sumed due to intra-cluster data processing and long dis-

tances to respective CHs will be reduced. In addition, the

dual-hop routing in inter-cluster is adopted in an optimum

manner on the basis of distance of CH to BS as a factor.

These measures reduce and balance the energy consump-

tion of the whole network in comparison to HSSTERP and

DESTERP. From the point of view of the individual, it

further minimizes the communication cost for inter-cluster

data transmission.

The average energy remaining in the network per round

for homogeneous setup is shown in Fig. 10. Energy anal-

ysis determines that FGWSTERP consumes less energy at

each round in comparison to competitive protocols. The

reason for this phenomenon is that the uniform distribution

of the clusters is ensured in FGWSTERP, which is con-

ducive to balancing the energy depletion of the entire

network. Furthermore, FGWSTERP consumes less energy

than other algorithms at each round. This is because the

dual-hop routing is used for data transmission that avoids

CH to send data to BS at longer distances.

The simulations are performed to check the performance

of the proposed protocol with a varying initial energy of

nodes. Tables 4, 5 and 6 present the round history of dead

nodes for homogeneous setup for E0 ¼ 0:25 J, 0.5 J and

1 J respectively. For the total network lifetime (i.e., the

time until last node dead (LND)) and the stability period

[i.e., the time until first node dead (FND)], the proposed

protocol proves very favorable against all other protocols.

The behavior of FGWSTERP for heterogeneous setup is

shown in Figs. 11 and 12, and the statistics are given in

Tables 7, 8 and 9.

Table 10 presents the number of rounds taken for FND,

HND, and LND together with stability and instability

periods of competitive algorithms for E0 ¼ 1 J. There is an

improvement of 158.32%, 181.76%, 1327.3%, 18.71% and
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Table 4 Round history of dead nodes for homogeneous setup for E0 ¼ 0:25 J

% Dead nodes LEACH HCR ERP SAERP DRESEP SEECP HSSTERP DESTERP FESTERP FGWSTERP

1 (FND) 460.2 440.9 509.8 609.3 781.4 1266.1 1111.3 1369.8 1371.4 1385.8

10 487.6 497.4 589 610.9 1131.2 1281.3 1136.4 1392.5 1394.8 1409.1

20 505.1 515.2 607.6 611.6 1231.5 1288.1 1145.4 1402.7 1402.5 1416.9

30 514.5 536.4 628.1 612 1281.7 1294.9 1154.5 1408.6 1411.7 1426.2

40 522.0 560.8 640.6 612.8 1341.7 1302.3 1159.2 1415.4 1418.2 1432.5

50 (HND) 569 597.4 647.9 613.1 1391.4 1306.5 1173.6 1417.4 1419.6 1434.1

60 589.7 608.4 657.6 613.5 1420.3 1308.7 1181.6 1418.8 1427.5 1441.9

70 589.6 618.1 673.9 613.7 1441.2 1308.8 1190.1 1425.5 1429.6 1444.1

80 606.6 624.4 700.7 614.3 1491.3 1309.7 1216.9 1426.8 1433.2 1447.8

90 629.9 635.1 731.5 614.6 1541.1 1309.7 1220 1429.3 1439.2 1453.9

100 (LND) 744.6 847.7 783.3 616.4 1601.2 1315.7 1405.4 1431.8 1443.9 1458.2

Best values are given in bold

Table 5 Round history of dead nodes for homogeneous setup for E0 ¼ 0:5 J

% Dead nodes LEACH HCR ERP SAERP DRESEP SEECP HSSTERP DESTERP FESTERP FGWSTERP

1 (FND) 970.6 872.4 1038.1 1218.2 1562.8 2543.5 2400.1 2794.7 2833.6 2862.8

10 1007.4 1009.6 1158.5 1222.4 2262.4 2564.2 2420.8 2820.7 2882.3 2911.5

20 1039.2 1062.6 1198.7 1224.1 2463.9 2571.7 2440.4 2832.3 2892.9 2921.3

30 1060.5 1115.2 1237.6 1225.6 2562.4 2578.8 2452.8 2839.2 2897.3 2926.7

40 1073.9 1165.9 1267.9 1228.1 2682.6 2587.8 2457.6 2846.2 2905.5 2934.3

50 (HND) 1169.6 1228.6 1292.9 1229.4 2782 2592.3 2460.3 2848.9 2908 2937.2

60 1206.9 1265.9 1319.8 1230.6 2841.9 2594.8 2470.1 2850.5 2915.1 2944.5

70 1265.6 1306.2 1360.1 1231.2 2882.4 2595.5 2485.1 2857.8 2917.6 2947.1

80 1316.5 1353.6 1410.0 1232.8 2982.9 2596.0 2487.3 2860 2918.6 2948.3

90 1369.2 1411.9 1477.3 1234.3 3082.5 2597.6 2503.7 2863.4 2923 2952.8

100 (LND) 1672.8 1741.3 1609.8 1243.6 3202.3 2604.4 2553.3 2866.3 2927.5 2957.3

Best values are given in bold

Table 6 Round history of dead nodes for homogeneous setup for E0 ¼ 1 J

% Dead nodes LEACH HCR ERP SAERP DRESEP SEECP HSSTERP DESTERP FESTERP FGWSTERP

1 (FND) 1805.2 1726 2113.3 2437.9 4101.6 5109.5 5635.9 5699.6 5739.8 5804.3

10 2022.8 2048.6 2276.3 2443.8 4504.2 5131.4 5655.2 5712.7 5778 5861.7

20 2069.3 2189.6 2364.4 2445.6 4769.9 5134.5 5666.5 5718.5 5791.6 5863.2

30 2141 2315.3 2438 2447.1 4881.4 5135.6 5672.7 5722.4 5804.3 5867.5

40 2169.4 2420.2 2509.5 2448.5 4983.5 5141.8 5675.8 5723.1 5806.4 5874.4

50 (HND) 2215.2 2524.6 2580 2449.6 5126.7 5143.3 5680.3 5726 5809.6 5876.8

60 2280.1 2629.9 2648.9 2450.7 5294.2 5144.5 5682.4 5726.6 5812.9 5878.1

70 2346.3 2752.2 2744.8 2451.4 5395.4 5146.9 5687.8 5729.3 5813.3 5885.4

80 2394.8 2916.8 2837.3 2452 5621.1 5149.1 5689.6 5732.8 5817.8 5886.8

90 2485.6 3107.1 2983.3 2453.3 5770.7 5151.5 5693.1 5736.2 5820.6 5889.4

100 (LND) 2763.5 3574.3 3305.9 2455.2 6402.2 5154.8 5715.2 5737.9 5834.3 5893.2

Best values are given in bold
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Table 7 Round history of dead nodes for heterogeneous setup for E0 ¼ 0:25 J

% Dead nodes SEP-E HCR ERP SAERP DRESEP SEECP HSSTERP DESTERP FESTERP FGWSTERP

1 (FND) 570.5 380.3 510.7 748.2 1214.8 1795 1823.7 1847.4 1971.7 1990.9

10 580.5 490.3 573.2 793.1 1336.1 1798.9 1831.9 1857.9 1974.8 1994.3

20 616.2 558 608.6 794.7 1402.4 1801.1 1834.2 1860 1978 1997.4

30 641.3 615.7 647.5 795.5 1450.5 1801.8 1836.6 1861.2 1978.6 1998.1

40 655.1 702.4 670.4 796.2 1502 1802.4 1837.7 1862.7 1980.4 1999.5

50 (HND) 678.4 758.1 693.8 796.9 1538.2 1803 1839 1862.9 1980.6 2000.8

60 700.7 812.3 777.2 797.3 1597.2 1804.4 1844.6 1862.9 1983.5 2003.2

70 816.1 1010.9 1123.6 797.7 1983.3 1805.1 1846.2 1864.3 1984.1 2003.9

80 1071.1 1201.9 1280 798.5 2443 1805.5 1847.8 1864.7 1984.4 2004.2

90 1154.5 1549.4 1573.3 799.4 2645.4 1805.5 1849.5 1865.2 1985.7 2005.3

100 (LND) 1471.3 1845 2110.5 802.6 3635.2 1805.7 1851.5 1867.3 1986.3 2006.5

Best values are given in bold
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1.16% in stability period for FGWSTECP as against

LEACH, HCR, ERP, DRESEP and FESTERP respectively.

Also, the instability period reduces to 2.54%, 47.92%,

23.27% and 57.61% in comparison with LEACH, HCR,

ERP, and DRESEP respectively for homogeneous setup.

Similarly, for heterogeneous setup, there is significant

progress in stability period for FGWSTERP as compared to

competitive protocols.

To evaluate the effect of node density in each approach,

the number of nodes is varied from 100 to 500 with initial

energy 1 J. The same parameters as that in 100 nodes scene

are used to create the simulation model, and the results are

demonstrated as given in Tables 11 and 12 for homoge-

neous and heterogeneous setups respectively. In dense

networks, more CHs help to maximize the network life-

time. The performance of FGWSTERP is much better than

other approaches for varying node density. By increasing

the node density, the resulting network has a better lifetime

as the dual-hop communication in inter-cluster is utilized in

an optimum manner. The performance of FGWSTERP

denotes that the reliability, the stability, and the scalability

of the proposed algorithm is especially excellent and is

suitable to large scale WSNs.

Though improvements are made in several performance

metrics, there are certain limitations in using this algo-

rithm. FGWSTERP belongs to the reactive routing algo-

rithm so that this protocol is most appropriate when an

event or threshold-based monitoring by the sensor network

is needed. Another limitation of FGWSTERP is that delay

in generating the data transmission process from a node to

BS is a bit higher in comparison to competitive algorithms.

This is because data fusion is implemented at each CH in

the path toward BS.

Table 8 Round history of dead nodes for heterogeneous setup for E0 ¼ 0:5 J

% Dead nodes SEP-E HCR ERP SAERP DRESEP SEECP HSSTERP DESTERP FESTERP FGWSTERP

1 (FND) 1153.4 771.9 1029.7 1601.8 2442.2 3601.6 3657.7 3703.6 3954.5 3993.8

10 1173.3 991.9 1154.7 1623.2 2684.8 3609.3 3674.1 3724.6 3960.8 3999.3

20 1244.9 1127.4 1225.4 1626.2 2817.5 3613.6 3678.7 3728.9 3967.1 4006.5

30 1294.9 1242.7 1303.3 1627.6 2913.7 3615.0 3683.5 3731.2 3968.4 4007.9

40 1322.5 1416.0 1349.1 1629.4 3016.6 3616.3 3685.6 3734.2 3972.0 4010.7

50 (HND) 1369.3 1527.4 1395.9 1630.6 3089.0 3617.5 3688.3 3734.6 3972.3 4011.6

60 1413.9 1635.9 1562.8 1631.1 3206.9 3620.3 3699.5 3734.7 3978.3 4017.4

70 1644.6 2033.1 2255.4 1631.9 3979.2 3621.7 3702.6 3737.5 3979.4 4019.1

80 2154.7 2415.0 2568.3 1633.3 4898.6 3622.4 3705.9 3738.2 3980.1 4020.3

90 2321.4 3110.1 3154.9 1634.8 5303.4 3622.6 3709.2 3739.2 3982.7 4022.9

100 (LND) 2955.0 3701.3 4229.2 1641.1 7282.9 3623.0 3713.3 3743.5 3983.9 4024.3

Best values are given in bold

Table 9 Round history of dead nodes for heterogeneous setup for E0 ¼ 1 J

% Dead nodes SEP-E HCR ERP SAERP DRESEP SEECP HSSTERP DESTERP FESTERP FGWSTERP

1 (FND) 2269.5 1509.9 2034.5 2887.6 4846.6 7168.6 7284.6 7380.7 7875.4 8058.2

10 2309.4 1950 2284.5 3135.5 5331.7 7184.1 7317.5 7422.6 7887.9 8079.4

20 2452.5 2220.9 2425.9 3141.9 5597.1 7192.7 7326.7 7431.3 7900.6 8095.8

30 2552.6 2451.6 2581.7 3145.4 5789.5 7195.5 7336.2 7435.9 7903.2 8104.5

40 2607.8 2798.2 2673.2 3147.9 5995.4 7198.1 7340.5 7441.9 7910.3 8109.1

50 (HND) 2701.3 3021 2766.8 3150.6 6140.1 7200.4 7345.9 7442.6 7911 8113.3

60 2790.5 3238 3100.6 3152.8 6376 7206 7368.2 7442.9 7922.9 8118.4

70 3251.9 4032.4 4485.9 3154.3 7920.6 7208.9 7374.4 7448.4 7925.2 8121.9

80 4272.1 4796.2 5111.7 3157.7 9759.3 7210.3 7381.1 7449.8 7926.5 8127.2

90 4605.5 6186.4 6284.8 3161.8 10,568.9 7210.6 7387.6 7451.9 7931.7 8135.4

100 (LND) 5872.8 7368.7 8433.5 3174.3 14,528 7211.4 7395.8 7460.5 7934.1 8166.6

Best values are given in bold
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8 Conclusion

The major design issues in the research of clustering pro-

tocols for WSNs are energy management, stability period

and network lifetime optimization. This work focuses on

energy conservation in each SN by using EGWO based CH

selection energy optimization clustering algorithm. The CH

is selected using Fuzzy based EGWO based on sensor

parameters such as residual energy, node centrality and

distance to BS. To increase the lifetime of the WSN, a

threshold-based data transmission algorithm is employed in

inter-cluster communication. Also, dual-hop communica-

tion is utilized to improve the load balancing and to min-

imize the energy consumption of the distant CHs. The

performance metrics such as network lifetime, residual

energy and total energy consumption are evaluated and

Table 10 Comparison of the network lifetime of simulated protocols for E0 ¼ 1 J

Setup No. Protocol FND HND LND Stability period Instability period

Homogeneous Setup LEACH 1805.2 2215.2 2763.5 1805.2 958.3

HCR 1726 2524.6 3574.3 1726 1848.3

ERP 2113.3 2580 3305.9 2113.3 1192.6

SAERP 2437.9 2449.6 2455.2 2437.9 17.3

DRESEP 4101.6 5126.7 6402.2 4101.6 2300.6

SEECP 5109.5 5143.3 5154.8 5109.5 45.3

HSSTERP 5635.9 5680.3 5715.2 5635.9 79.3

DESTERP 5699.6 5726 5737.9 5699.6 38.3

FESTERP 5739.8 5809.6 5834.3 5739.8 94.5

FGWSTERP 5804.3 5876.8 5893.2 5804.3 88.9

Heterogeneous Setup SEP-E 2269.2 2701.2 5872.8 2269.2 3603.6

HCR 1783.9 2823 8671.7 1783.9 6887.8

ERP 2102.5 2788 8306.5 2102.5 6204

SAERP 2887.6 3150.6 3174.3 2887.6 286.7

DRESEP 4846.2 6140.2 14,528.1 4846.2 9681.9

SEECP 7168.6 7200.4 7211.4 7168.6 42.8

HSSTERP 7284.6 7345.9 7395.8 7284.6 111.2

DESTERP 7380.7 7442.6 7460.5 7380.7 79.8

FESTERP 7875.4 7911 7934.1 7875.4 58.7

FGWSTERP 8058.2 8113.3 8166.6 8058.2 108.4

Best values are given in bold

Table 11 Effect of node density on the performance of FGWSTERP

for homogeneous setup

Protocol 100 200 300 400 500

LEACH 2763.5 3039.8 3316.2 3592.5 3848.1

HCR 3574.3 4003.2 4217.7 4432.1 4682.3

ERP 3305.9 3570.4 3713.2 3824.6 4015.8

SAERP 2455.2 2528.9 2604.7 2669.8 2736.6

DRESEP 6402.2 7490.6 8014.9 8976.7 10,143.7

SEECP 5154.8 5280.0 5385.6 5514.9 5625.2

HSSTERP 5715.2 5943.8 6062.7 6208.2 6332.4

DESTERP 5737.9 5967.4 6086.8 6232.8 6357.5

FESTERP 5834.3 6131.8 6334.2 6568.6 6785.3

FGWSTERP 5893.2 6187.3 6405.7 6632.8 6848.1

Table 12 Effect of node density on the performance of FGWSTERP

for heterogeneous setup

Protocol 100 200 300 400 500

SEP-E 5872.8 6342.6 6460.1 6695.0 6460.1

HCR 8671.7 9712.3 10,232.6 10,752.9 11,359.9

ERP 8306.5 8971.0 9329.9 9609.8 10,090.2

SAERP 3174.3 3269.5 3367.6 3451.8 3607.1

DRESEP 14,528.1 16,997.9 18,187.7 20,370.3 23,018.4

SEECP 7211.4 7788.3 7944.1 8134.7 8297.4

HSSTERP 7395.8 7691.6 7845.5 8033.8 8194.4

DESTERP 7460.5 7758.9 7914.1 8104.0 8266.1

FESTERP 7934.1 8338.7 8613.9 8932.6 9227.4

FGWSTERP 8166.6 8553.8 8838.3 9147.8 9441.2
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compared with competitive clustering methodology. The

simulation outcome shows that FGWSTERP gives

improved performance in terms of the total energy

expenditure and network lifetime of WSN.

The proposed algorithm opens a quantum of opportu-

nities for research aspirants. Further research can be carried

out to make the network framework adaptive that auto-

matically optimizes the number of clusters, lower and

upper bound for a specified number of senor nodes and

terrain area. Further work can be done to improvise the

selection and reselection process of CH in order to increase

efficiency and to prolong the network lifetime. It would

also be interesting to see the impact of newly proposed

evolutionary algorithms in the proposed technique. The

above-said algorithms can be used to monitor forest fires

based on temperature and communicate the real-time data

for optimum management of forest fires and various other

applications.
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