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Abstract
Location-based services in wireless sensor networks demand precise information of locations of sensor nodes. Range-based

localization, a problem formulated as a two-dimensional optimization problem, has been addressed in this paper as a

multistage exercise using bio-inspired metaheuristics. A modified version of the shuffled frog leaping algorithm (MSFLA)

has been developed for accurate sensor localization. The results of MSFLA have been compared with those of geometric

trilateration, artificial bee colony and particle swarm optimization algorithms. Dependance of localization accuracies

achieved by these algorithms on the environmental noise has been investigated. Simulation results show that MSFLA

delivers the estimates of the locations over 30% more accurately than the geometric trilateration method does in noisy

environments. However, they involve higher computational expenses. The MSFLA delivers the most accurate localization

results; but, it requires the longest computational time.

Keywords Artificial bee colony algorithm � Particle swarm optimization algorithm � Sensor localization �
Shuffled frog leaping algorithm � Trilateration � Wireless sensor networks

1 Introduction

Wireless sensor networks (WSNs) are ad hoc networks of

massively deployed tiny, inexpensive and autonomous

motes used for cooperative monitoring of their environ-

ments. Each sensor mote (a network node) can acquire

sensory data, process it, and transmit the processed data to

its peers over a wireless broadcast medium. WSNs have

been successful in a broad spectrum of applications

including surveillance, healthcare, environmental moni-

toring, structural health monitoring and home automation

[43]. Since sensor nodes having extreme constraints on

computational, memory and energy resources are deployed

for the monitoring of uncertain and harsh environments,

any WSN operation must be performed in an energy-effi-

cient manner. If not, nodes cease to function due to energy

exhaustion thereby limiting the effectiveness of the WSN

application.

In many WSN applications, nodes are deployed in a

mission field randomly. The WSN topology emerges as the

result of a distributed self-organization exercise. For suc-

cessful self-organization, it is imperative that each node is

aware of the precise coordinates of its location in the

deployment field. The location information is useful in

recognizing and correlating the data collected from sensors.

It is also useful in location-aware data aggregation and

routing protocols [2]. Moreover, the location itself is an

important data queried by the user in several applications

[36].

Localization refers to the post-deployment process of

creating location awareness in as many sensor nodes as

possible. Accurate localization significantly impacts the

quality of detection and tracking applications of WSNs

[29]. A straightforward solution to the localization problem

is to equip each node with a global positioning system

(GPS) hardware. This solution is costly, and results in
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increased bulk and energy expenses. It is also not a feasible

solution if nodes are deployed in thick forests, caves or in

closed indoor spaces from where they cannot access GPS

satellites. In many localization techniques, a few special

location-aware nodes called beacons or anchors are

deployed in order to help the remaining ordinary nodes

(also referred to as dumb, unsettled or unknown nodes) to

create location awareness [8]. Achieving accurate, quick

and energy efficient localization is a challenging task, and

the same has been receiving considerable research

attention.

Beacon-based localization can take place in a central-

ized or a distributed manner. In centralized approaches, a

central node assists all the nodes in the WSN in localizing

themselves. This method preempts the computation of the

coordinates of the location at every sensor node. However,

this method is computationally complex and has limited

scalability. On the other hand, in distributed localization,

each sensor node localizes itself independently using the

information available locally. Distributed localization can

be range-based or range-free. Range-based distributed

localization is performed in two phases. In the first phase,

each node estimates its distances from anchors in its

vicinity. The received signal strength indication (RSSI),

angle of arrival (AOA), time-difference-of-arrival (TDOA)

and mapping techniques are used in distance estimation. In

the second phase, the node estimates the coordinates of its

location using the methods, such as triangulation, trilater-

ation, multilateration or maximum likelihood estimation

[8]. A node accomplishes this by solving a set of simul-

taneous equations, or through optimization algorithms that

seek to minimize a suitably defined localization error.

Generally, the localization of a large number of sensor

nodes is achieved through iterative, multistage process in

which a certain number of nodes get their location

awareness with the help of beacons in the first stage. These

settled nodes serve as beacons for the other unsettled nodes

in the second stage. This process reiterates until either all

nodes are localized, or no more nodes can be [22].

The problem of determining the x and y coordinates of

the location of a sensor node in a flat mission field has been

formalized traditionally as a two-dimensional optimization

problem. The problem has been approached through sev-

eral nature-inspired optimization algorithms. Algorithms

from swarm intelligence (SI) paradigm of computational

intelligence (CI) have been immensely popular because of

their resource efficiency and the quality of solutions they

offer [23]. Many SI-based localization algorithms have

been introduced and compared amongst each other [26].

Two important questions arise here:

1. Is it possible to achieve more accurate localization

using modified versions of the existing SI algorithms?

2. How do SI-based metaheuristic algorithms compare

with the basic geometry-based deterministic localiza-

tion algorithm?

These questions have been addressed in this article. Bea-

con-assisted, distributed, multistage localization using

geometry-based deterministic and SI-based metaheuristic

algorithms is the central theme of this article. Multistage

localization has been performed first using the geometrical

method. Further, a modified version of the shuffled frog

leaping algorithm (SFLA), a metaheuristic inspired by

social foraging of frogs, has been proposed for improved

localization accuracy. The results of these two approaches

have been compared with those of localization approaches

proposed in previous literature, namely the particle swarm

optimization (PSO) [21] and the artificial bee colony

(ABC) algorithms [18]. The primary contributions of this

article are:

1. The geometric trilateration method has been applied

for the estimation of the coordinates of the locations of

sensor nodes in WSNs.

2. A modified SFLA (MSFLA) has been proposed for the

estimation of the coordinates of the locations of sensor

nodes in WSNs.

3. Results of the localization methods based on geometric

trilateration, PSO, ABC and MSFLA algorithms have

been presented for WSNs having multiple node

populations.

4. A comparative performance analysis of the geometry-

based and CI-based approaches has been presented in

terms of the number of localized nodes, localization

accuracy and computing time.

5. An analysis of iterative propagation of localization

error has been presented.

6. Scalability of the localization methods and the accu-

racy-speed tradeoff issue have been discussed.

The remainder of this article has been organized as follows:

A brief survey of the previous research on sensor local-

ization using deterministic and CI-based metaheuristic

algorithms has been presented in Sect. 2. A mathematical

overview of the multistage localization problem has been

presented in Sect. 3. The geometrical trilateration method

for sensor node localization has been discussed in Sect. 4.

Brief introductions to the ABC and PSO algorithms and the

detailed explanation of the proposed MSFLA for local-

ization have been presented in Sect. 5. Details of the

MATLAB-based numerical simulations have been pre-

sented and the results obtained have been compared in

Sect. 6. Finally, concluding remarks have been presented

and the directions for the future extension of this research

have been suggested in Sect. 7.
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2 Related work

Accurate estimation of locations of nodes plays a critical role

in routing protocols, event detection, target tracking andmany

other functionalities of WSNs. Therefore, sensor localization

has received a keen research attention since the early emer-

gence of WSN deployments. Varieties of techniques and

algorithms have been proposed by researchers working in the

field of WSNs. Comprehensive taxonomies, surveys and

comparative evaluations of these techniques have been

appearing in literature periodically [1, 8, 15, 29, 36]. A few

prominent, conventional, range-based and range-free local-

ization algorithms are outlined here followed by some recent

applications of CI algorithms in sensor localization.

Range-based localization involves the estimation of

distances between beacons and dumb nodes. This has been

accomplished through the methods, such as the measure-

ment of received signal strength (RSS), AOA, TOA or

TDOA. The estimates of distances are used to approximate

the locations of sensors using geometric methods. These

techniques are simple and efficient; but, they are very

sensitive to the environmental noise. Range-based local-

ization using RSSI, AOA [32], TOA [44] and TDOA [40]

have been quite successful.

The effective localization algorithm presented in [31]

extends GPS capabilities to non-GPS nodes in a WSN. In

this approach, anchors flood the coordinates of their loca-

tions to all nodes in the WSN; then, each node estimates its

location by triangulation to three anchors. This method is

refined in [39], in which nodes improve their localization

accuracy by measuring their distances from their neigh-

bors. This results in the accumulation of errors. Error

accumulation is tackled in [40] through Kalman filter-

based least squares estimation. The problem of node

localization is posed as a convex optimization based on

semi-definite programming in [11].

Indoor localization is a research topic of special interest.

This has been accomplished using the RSSI technique. This

technique involves the use of the strength of a transmitted

signal to estimate the distance between a transmitting node

and a reeving node. The signal strength can be translated

into the distance using a known radio propagation model.

RADAR, a two-phase RSSI-based localization system used

for indoor localization has been proposed in [4]. This

approach has two phases: Calibration and localization. In

the calibration phase, measurements of RSS at all positions

in an entire building are stored in a database. In the

localization phase, the node’s location is determined as the

best match with the database records. However, the accu-

racy of estimation is poor because the signal strength is

influenced by the noise and the uncertainties of the prop-

agation medium.

The limitation of the RSSI-based approach has been

overcome by a distributed probabilistic approach in [37]. In

this approach, localization has three phases: Calibration

and statical processing of RSS, localization with positive

constraints and localization with negative constraints.

Here, the measured distance is stored with positive and

negative constraints. When the node has not been able to

receive any RSS, then that signal is treated as a negative

constraint. The uncertainties of the locations of the

unknown node have been reduced using this probabilistic

approach.

The centroid method is another beacon-based, range-

free localization approach in which each node estimates its

location using the locations of anchors in its reception

range. The centroid of the anchor locations is taken as the

estimate of the locations of the dumb node [9].

Accuracy of localization has been the major issue

addressed in the previous research. The beacons that lie in

a straight line, are referred as collinear beacons. If a node is

assisted by three collinear beacons, two mirror reflected

points across the line satisfy the distance constraints. This

flip ambiguity results in large localization errors. A prob-

abilistic notion of robust quadrilaterals has been presented

in [30] to avoid large errors due to flip ambiguity. The

unknown sensor nodes estimate the distances from their

neighbors rather than beacons. The WSN is represented as

a graph having approximate edge lengths. Each node

computes the Euclidean position of each vertex. The

localization algorithm presented in [30] estimates the

positions accurately or not at all by refusing the nodes

which have ambiguous positions. The need for beacons has

been eliminated which makes it a low-cost algorithm.

Further, the algorithm uses cluster-based localization to

support the localization of mobile nodes.

Range-free localization techniques obviate the deploy-

ment of special beacon nodes. In the beacon-free local-

ization presented in [38], nodes interact with their

neighbors initially with the assumption of random coordi-

nates. After initialization, a mass spring-based relaxation

method is used to correct and balance the localization

errors. Weighted centroid methods, distance vector (DV)-

Hop and DV-Euclidian are some popular range-free

localization techniques.

Since localization has been posed as a multidimensional

optimization problem, SI-based optimization algorithms

have been extensively used to address it. These algorithms

are based on the collective behavior of populations of

simple agents [25]. PSO [24], bacterial foraging algorithm

[22] and ABC algorithm [26] have been successfully

applied for sensor localization. The localization accuracies

of these algorithms have been in the exact order in which

the algorithms are listed above. However, the computa-

tional complexities of these algorithms for localization of a
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fixed number of WSN nodes have been in the exact

opposite order. The quest for higher accuracy and speed is

driving researchers to develop variants and hybrids of these

algorithms for WSN localization. The research reported in

this article is an effort in this direction.

The SFLA is a recent algorithm developed for discrete

and continuous optimization. A modified SFLA has been

exploited to improve the accuracy of location of a sensor

node using distance vector (DV) method in WSNs [13].

SFLA has shown better performance in comparison with

least square method and the PSO algorithm in several

applications. A quantitative cause-effect graph strategy and

SFLA have been used to deploy new sensor nodes in [14].

A binary SFLA (BSFLA) has been developed with opti-

mization of binary encoded problems in [6]. The BSFLA

has been tested on a unit commitment problem to solve the

operation and planning of a power system. The BSFLA has

resulted in optimum results for this system.

The ABC algorithm is a simple and robust algorithm

which has been applied in several optimization problems

[5]. ABC has been successfully applied in image process-

ing [28], bioinformatics [42] and engineering design [3].

ABC has been extensively hybridized with algorithms from

other paradigms of CI, such as neural networks [16], fuzzy

logic [19] and evolutionary algorithms [45]. Hybridization

contributes to exploiting and exploring better solutions in a

given search space. The ABC algorithm has been applied

in optimal sensor deployment and accurate localization in

[35]. In addition, the ABC algorithm has been used for

optimal sensor deployment in irregular terrain by mod-

elling the deployment challenge as a data clustering

problem [41].

PSO is another simple SI-based algorithm that has been

popular for its quick convergence and high-quality results. It

has been used in minimization of localization error inWSNs

[23]. A localization scheme using PSO and a bounding box

approach has been presented in [27]. In the original bounding

box method, the location is estimated using the intersection

of all rectangular estimation values but in the approach

presented in [27], the location is determined randomlywithin

a rectangular area and then optimized by the PSO algorithm.

The use of PSO has resulted in the enhancement of the

accuracy and reduction of the computational efforts in

comparison with the traditional bounding box approach.

Node localization is addressed using a hybrid algorithm of

PSO and Quasi-Newton algorithm in [10]. Hybridisation

with PSO has resulted in fairly accurate localization and an

improvement in speed.

In summary, CI-based optimization algorithms and their

hybrids have been immensely popular in sensor localiza-

tion. However, there is a constant quest for higher accuracy

and lower computational cost. The MSFLA proposed in

this article is another step forward in the direction of

enhancing localization accuracy.

3 Multistage localization

The mathematical details of the deployment scenario, the

various steps involved in the multistage localization exer-

cise, and the metrics of performance evaluation are pre-

sented in this section.

Deployment Scenario The WSN deployment

consists of U unknown

(dumb) nodes and B beacons.

The unknown nodes do not

have the information about

their locations. They are

named as u1; u2; . . .; uU .

Location-aware beacons are

named as b1; b2; . . .; bB. They
are either deployed at known

locations or they are

equipped with GPS hardware.

The communication range of

each beacon is R meters; an

unknown node farther than R

meters from a beacon cannot

hear the signals from the

particular beacon. The

objective of the localization

exercise is to obtain accurate

estimates of the x and y

coordinates of the locations

ðuix; uiyÞ of the ith node ui,

i = 1, 2, ..., U. To achieve

this, each unknown node ui
needs the information of the

coordinates of at least three

non-collinear beacons,

ðbjx; bjyÞ; j ¼ 1; 2; 3.

Beacons and

unknown nodes

Beacons broadcast

coordinates of their locations

periodically. An unknown

node having three or more

non-collinear beacons in its

range is considered as a

localizable node. If an

unknown node is within the

communication ranges of

more than three non-collinear

beacons, then the nearest

three beacons are selected for

localization.
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Distance estimation A dumb node estimates its

distance d̂j from beacons

using a measure, such as

RSSI, ToA and TDoA. The

distance measurement is not

accurate due to the

environmental noise power.

Therefore, the distances are

estimated in the simulation as

d̂j ¼ dj þ gj, where dj is the

Euclidean distance obtained

using (1) and gj is the

additive noise.

dj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðbix � ujxÞ2 þ ðbiy � ujyÞ2
q

þ gj

ð1Þ

The value of gj is generated

through sampling theGaussian

distribution expressed in (2).

gj,!Nðl; r2Þ ð2Þ

Here, N represents the nor-

mal distribution, l represents

the mean, set to zero in this

study, and r2 is the variance

that represents the environ-

mental uncertainties. The

larger the variance, the more

severe is the environmental

noise. Thus, gj accounts for

the inaccuracy in distance

estimation due to the envi-

ronmental noise.

Location

estimation

The estimated location of a

dumb node ui is ðûix; ûiyÞ,
i = 1, 2, ..., U. A node uses

either the geometric method

or one of the aforementioned

SI algorithms to obtain

ðûix; ûiyÞ. The metaheuristic

methods seek to determine

ðûix; ûiyÞ such that the mean

localization error Ei as

expressed in (3) is minimum.

Ei ¼
1

3

X

3

i¼1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðûjx � bixÞ2 þ ðûjy � biyÞ2
q

� d̂i

�2

ð3Þ

Multistage

iterative

operation

The localization algorithm

progresses in stages s1; s2;

. . .; sT . In the first stage s1, L1
number of unknown nodes

estimate their locationswith the

help of beacons. These nodes

act as pesudo-beacons in the

second stage s2. Thus, the

number of anchors in s2 is

Bþ L1. Due to the increased

number of pseudo-beacons,

more unknown nodes may get

localized in s2. Thus, the

number of beacons in stage s3
rises to Bþ L1 þ L2. This iter-

ative process is terminated in

stage sT whenall nodesare local-

ized, or no more nodes can be.

Localization

algorithms

Performances of geometry-

based localization and three

metaheuristic algorithms,

namely MSFLA, ABC and

PSO are investigated. Each

localizable nodeemploys these

techniques. The coordinates of

beacons and the estimates of

their distances are the inputs to

these methods. The estimates

of the coordinates ðûix; ûiyÞ is
the output.

Performance

evaluation

At the end of the final stage of

localization sT , a total of L

nodes are localized. The sum of

squares of errors in the

estimation, E, expressed in (4),

is a metric of performance.

E ¼ 1

L

X

L

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðujx � ûjxÞ2 þ ðujy � ûjyÞ2
q

ð4Þ

For an ideal localization exer-

cise, E = 0. However, due to

uncertainties in the environ-

ment, the method that results in

the lowest value of E is con-

sidered the most accurate. In

addition, the time T taken for

the entire localization exercise

is taken as a metric perfor-

mance. The lower the value of

T, the faster is the localization.

Wireless Networks (2019) 25:2789–2803 2793

123



The pseudocode for stage-wise localization is depicted in

Algorithm 1.

4 Sensor localization using geometric
trilateration

In the geometric trilateration approach, every dumb node

represents each anchor in its hearing range as a circle. The

location of the anchor is the center of the circle, and the

estimated distance between the dumb node and the anchor

is the radius. A minimum of three anchors located on non-

collinear points are necessary to estimate the locations of

the dumb node. The location is estimated as the point of

intersection of the three circles. The two steps involved in

the estimation are discussed below.

4.1 Step 1: determine the point of intersection
of two circles

This step involves determining the coordinates of the point

of intersection of two circles. The intersection of circles C1

and C2 having radii of r1 and r2 meters, respectively, is

shown in Fig. 1. Let d be the distance between the circles’

centers, P1ðx1; y1Þ and P2ðx2; y2Þ. Let dx and dy be the

distances between the centers along x and y dimensions,

determined as dx ¼ ðx2 � x1Þ and dy ¼ ðy2 � y1Þ. From the

Pythagorean theorem, d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dx
2 þ dy

2
q

. The four cases in

which the circles do not intersect with each other are:

1. If d ¼ ðr1 þ r2Þ, the circles just touch each other;

2. If d[ ðr1 þ r2Þ, the circles are disjoint;

3. If d� jr1 � r2j, a circle is contained fully within the

other; and

4. If d ¼ 0 and r1 ¼ r2, then circles coincide fully.

If none of the above conditions is applicable, then the

circles intersect each other at exactly two points, AðxA; yAÞ
and BðxB; yBÞ. The points A and B are symmetric with

respect to the line joining the centers of the circles. Con-

sider the triangles P0P1A and P0P2A shown in Fig. 1. Let

d ¼ aþ b. The radii r1 and r2, and the line segments a, b

and h share the relations as expressed in (5) and (6).

r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ h2
p

ð5Þ

r2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ h2
p

ð6Þ

Thus, a and b can be obtained using (7) and (8).

a ¼ r2
2 � r1

2 þ d2

2d
ð7Þ

b ¼ r1
2 � r2

2 þ d2

2d
ð8Þ

Let the line joining the points A and B intersect the line

joining the centers of the circles at the point P0ðx0; y0Þ. The
coordinates x0 and y0 of the point P0 are obtained using (9)

and (10).

Algorithm 1 Localization
1: Initialize random beacon locations (bjx, bjy), j =

1, 2, . . . , B;
2: Initialize random locations for unknown nodes

(ujx, ujy), j = 1, 2, . . . , U ;
3: Initialize communication range (R) and noise variance σ;

4: Initialize maximum number of allowable iterations
(kmax);

5: Let L be the number of localizable nodes;
6: Let k = 1, L = 0, Ci = 0, i = 1, 2, . . . , U ;
7: while L ≤ U OR k ≤ kmax do
8: for i = i ≤ U do
9: for j = j ≤ B do

10: Estimate di using (1) and (2);
11: if d ≤ R then
12: Ci = Ci + 1;
13: end if
14: end for
15: end for
16: for i = i ≤ U do
17: if Ci ≥ 3 then
18: L = L + 1;
19: Select the three nearest beacons;
20: Compute (ûix, ûiy) using geometric method with

the help of the three beacon locations;
21: Use modified SFLA, ABC and PSO algorithms

with input (bjx, bjy), j = 1, 2, 3 and d;
22: Determine (ûix, ûiy) that optimizes E using (3);
23: end if
24: end for
25: Append (ûix, ûiy) to (bjx, bjy);
26: k = k + 1;
27: end while
28: Compute the mean square error of the entire localization

exercise E using (4).

Fig. 1 Intersection of two circles
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x0 ¼ x1 þ dx
a

d
ð9Þ

y0 ¼ y1 þ dy
a

d
ð10Þ

The coordinates of the point A are obtained using (11) and

(12).

xA ¼ x0 þ dy
h

d
ð11Þ

yA ¼ y0 � dx
h

d
ð12Þ

Similarly, the coordinates of the point B are obtained using

(13) and (14).

xB ¼ x0 � dy
h

d
ð13Þ

yB ¼ y0 þ dx
h

d
ð14Þ

4.2 Step 2: determine the point of intersection
of three circles

This is a logical extension of Step 1. This involves deter-

mining the coordinates of the points of intersections of

three circles taking two at a time. Three anchors are rep-

resented by circles C1, C2 and C3 centered at P1ðx1; y1Þ,
P2ðx2; y2Þ and P3ðx3; y3Þ, respectively, as depicted in

Fig. 2. Let the radii of these circles be r1, r2 and r3 meters,

respectively. The coordinates of the six points of inter-

section of three pairs of circles ðC1;C2Þ, ðC1;C3Þ and

ðC2;C3Þ are determined as discussed in Step 1. Since the

three circles intersect at the point I, three out of the six

intersection points obtained are identical. xI and yI , the

coordinates of this point I, represent the location of the

dumb node. This geometric trilateration method is deter-

ministic, simple and straightforward. However, since the

estimation of the distances between anchors and dumb

nodes involves large errors, the quality of localization

obtained using this method is unlikely to be very accurate.

That motivates the application of SI-based techniques for

sensor localization in WSNs.

5 Sensor localization using ABC, PSO
and MSFL algorithms

The SI-based algorithms used for multistage localization in

this study are presented in the following subsections.

5.1 Sensor localization using the ABC algorithm

The ABC is a population-based algorithm that models the

intelligent foraging behavior of honeybees. It has been used

to address several multidimensional constrained optimiza-

tion problems [20]. ABC comprises of three essential

components: Food sources, employed foragers and unem-

ployed foragers. Location of a food source represents a

possible solution to the optimization problem. The fitness

of the solution is related to the amount of nectar available

in a food source. The Bees are referred as employed bees,

onlookers and scouts and are used to bring the solution.

Each employed bee modifies a position corresponding to

the solution based on the visual information and evaluates

the quantity of nectar amount. The position of new food

source is generated using expression (15), where k 2
1; 2; . . .; S and j 2 1; 2; . . .;D are randomly chosen indexes.

S and D represent the number of honeybees and the

dimensionality of the search space, respectively.

vij ¼ xij þ /ijðxij � xkjÞ ð15Þ

The value of k is selected such that k 6¼ i and /� U½1;�1�.
Onlookers observe the food position brought by the

employed bees, evaluate the nectar information taken from

all employed bees and select the most feasible food source.

If a solution representing a food source is not improved by

a predetermined number of trials, then that food source is

abandoned and the employed bee is converted to a scout

bee. A control parameter refereed as limit (L) is used for

generating a scout bee. Scout bee produces new food

position as expressed in (16), where Q� U½1;�1�.

x
j
i ¼ x

j
min þ Qðxjmax � x

j
minÞ ð16Þ

The ABC algorithm fulfills the essential features of SI-

based algorithms such as feedback about the solutions,

fluctuation in solution by random values, sharing and

multiple interactions [7]. Some of the drawbacks of ABC

algorithms are: Population belonging to solution increases

the computation cost. As compared with other SI-based

Fig. 2 Intersection of three circles
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techniques, ABC requires more number of function eval-

uations and time. These disadvantages make ABC less

attractive for applications which have complex objective

functions.

5.2 Sensor localization using the PSO algorithm

The PSO algorithm includes a swarm of particles moving

towards the areas of solution. Particles have been assigned

with random positions and velocity at the initial stage.

Each particle is evaluated through a fitness function. Each

particle keeps track of its coordinates in the solution space

which are associated with the best solution or the best fit-

ness that has achieved so far. This value is referred as

personal best (pid). The best value obtained so far by any

particle in the neighborhood is called global best gd. With

the change of position of each particle, the fitness is

evaluated. The position of the particle is changed using

velocity. Velocity V and position X are updated using (17)

and (18) in each iteration. The update process is repeated

until a fixed number of iterations kmax have been reached or

an acceptable gd has been achieved.

Vidðk þ 1Þ ¼ w � VidðkÞ þ C1 � w1idðkÞ � ðpid � XidÞ
þ C2 � w2idðkÞ � ðgd � XidÞ

ð17Þ

Xidðk þ 1Þ ¼ XidðkÞ þ Vidðk þ 1Þ ð18Þ

Here, C1 and C2 are cognitive and social acceleration

coefficients, respectively. The particles are accelerated

towards pid and gd positions using these constants. w1idðkÞ
and w2idðkÞ� U½0; 1�. PSO has been effective in many

optimization techniques to obtain optimal solutions. Many

hybrid algorithms of PSO have been successfully used to

solve optimization problems.

5.3 Sensor localization using the MSFLA

Bio-inspired algorithms can provide near-optimal solutions

to data-driven problems having fluctuating constraints and

incomplete information [17]. They are simple and

resource-efficient. They have often provided higher quality

of results than those of deterministic approaches to multi-

dimensional optimization. The SFLA is a multidimensional

discrete optimization algorithm that is gaining popularity in

recent years [12]. The problem of sensor localization has

been posed in this study as a 2-dimensional optimization

problem. A modified SFLA has been used to determine the

coordinates of dumb nodes such that the resulting local-

ization error is minimum.

When an unknown node is in the range of three non-

collinear beacons, it estimates its distance from beacons.

This estimation is erroneous due to environmental factors

which can modelled with additive gaussian noise. The

known locations of beacons and the estimated distance

from each beacon are given as the input parameters to the

MSFLA. The algorithm aims at optimizing the localization

error.

The original SFLA is a metaheuristic algorithm intro-

duced in [12]. It combines the advantages of the PSO

algorithm and the genetics-based memetic algorithm. The

SFLA uses a virtual population of frogs that interact with

each other and with their environment to search for the

location that has an abundance of food. There is no cen-

tralized control that dictates the frogs’ behavior. The

interaction among the frogs leads to the emergence of

intelligent global behavior. The food represents the fitness

of a frog, which in turn refers to the location of a dumb

sensor node in this study.

The population of frogs is divided into multiple subsets

called memeplexes. The frogs search for the food location

within each memeplex. A frog leaps from a memeplex to

another with a certain step size. This represents local

search. During the search, the behavior of each frog gets

influenced by that of the others in its memeplex. This leads

to the process of evolution. After a certain number of

evolution steps, new memeplexes are formed by shuffling

the old ones. The processes of local search in each

memeplex and the shuffling of memeplexes are repeated

until the desired food quality is found or a predefined

maximum number of evolution steps have been taken.

The mathematical details of the various steps involved

in the SFLA are presented below:

Initialization A population of P frogs are

randomly initialized in a D-

dimensional search space.

The location of a frog i in the

dimension d in the search

space is represented as Xid,

where i = 1, 2, ..., P and

d = 1, 2, ..., D. The search

space is bound by the range

½Xmin;Xmax�. The number of

memeplexes M and the

maximum number of

iterations allowed is kmax.

The step size used for a frog’s

leaping in search of a better

food location is denoted by S.

Each frog evaluates its fitness

f using an objective function.

Xl denotes the best fitness in

one memeplex. Xw represents

the worst fitness in a

memeplex. The global best in
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all the memeplexes is

denoted by Xg.

Local search and evolution In every iteration, fitnesses of

Xl, Xg and Xw are determined

as fl, fg and fw, respectively.

Initially, fw is compared with

fl. If fl is better than fw, then a

new S and new Xw is

computed using (19). The

new position of Xw is denoted

by Xn. If fw has not improved

with the new Xn, then a new S

is computed with Xg using

(19).

S ¼ p1ðXl � XwÞ if fw\fl
p2ðXg � XwÞ if fl\fg

�

ð19Þ

Here, p1; p2 � Uð0; 1Þ, and

�Smax � Si � Smax. Frogs leap

from a memeplex to another

using Si in local search for

food. Based on Si, the better

frog position Xn is computed

using (20).

Xn ¼ Xi þ Si ð20Þ

The fitness of the new frog

position is denoted by fn. If fn
is inferior in comparison with

fl and fg, then frog positions

are changed to random posi-

tions using (21).

Xn ¼ p3ðXmax � XminÞ þ Xmax

ð21Þ

Here, p3 � Uð0; 1Þ. The pseu-

docode of the SFLA has been

presented in Algorithm 2.

Algorithm 2 SFLA
1: Initialize the frogs’ positions Xi;
2: Evaluate the fitnesses f(·) of the individual frogs in the

population;
3: Sort the population in the decreasing order of their

fitnesses;
4: while Convergence is not reached do
5: Divide P into M memeplexes;
6: for Each i=1 to kmax do
7: Determine local best, worst and global best frog

positions, Xl, Xw and Xg, respectively;
8: Compute the step size using (19);
9: Compute Xn using (20);

10: if No improvement then
11: Discard old Xw and replace with new positions

using (21);
12: end if
13: Replace Xi in their original locations in Mi and Sort

Mi in decreasing order of fitness;
14: i = i + 1;
15: end for
16: Shuffle memeplexes for global search;
17: Sort the population in the descending order of fitnesses

and update Xl and Xg;
18: end while

5.4 Proposed modification to the SFLA

The SFLA combines exploration and exploitation features

of multidimensional optimization. It has been used for

discrete and continuous optimization. This feature inspired

the authors to modify SFLA to explore the local search in a

more extensive manner. In the original SFLA, the new

position for Xw is determined using Xl in its memeplex. If

there is no improvement in the fitness, then it is replaced by

Xg. This is likely to leave better positions in the search

space left unexplored resulting in premature convergence.

A MSFLA has been proposed here to improve the

exploring capacity of the frogs. This modification has been

incorporated with an addition of a position vector ~Xi to

hold the past history of Xl used for calculation of S. The S

in the proposed MSFLA is determined using (22).

Si ¼ p4ð ~Xk � XwkÞ ð22Þ

Here, p4 � Uð0; 1Þ. ~Xk corresponds to Xl, and Xwk repre-

sents Xw in the iteration k, k ¼ 1; 2; . . .; kmax. In each k, the

Xl is added to the vector ~Xk. This modification enhances the

local search and allows the use of SFLA for continuous

optimization. The SFLA’s drawback of premature con-

vergence to local optima is thus overcome. The modifica-

tion has shown improved accuracy. However the

modification has resulted in a delayed convergence.

Additional storage and computing time are necessary for

the extra parameter ~Xk. Thus there is a trade-off between

the speed and accuracy.
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6 Numeric simulation and results

The details of numeric simulations and the results of

multistage localization performed using the geometric and

aforementioned metaheuristic methods have been pre-

sented in the following subsections.

6.1 Numeric simulation

All simulations have been carried out in MATLAB

installed on a computer having on Intel� CoreTM i5 pro-

cessor @ 3.20 HZ and 8 gigabytes of RAM. A flat sensor

deployment field of 100 � 100 square meters is consid-

ered. U dumb nodes and B beacons are deployed in the

sensor field randomly. Experiments are carried out for

multiple combinations of U and B. The accuracy of

localization (E) and the computing time (T) are recorded as

the performance metrics of localization. The discussion on

localization using deterministic, MSFLA, ABC and PSO

algorithms have been presented here.

6.1.1 Geometric trilateration-based localization

In this case study, each dumb node estimates its distances

from all beacons in its hearing range. Then it chooses the

three nearest beacons to localize itself. It localizes itself by

substituting the coordinates of the beacons’ locations and

the estimated distances, as expressed in (3). When a stage

of localization is complete, the localized nodes serve as

beacons, and the process continues stage by stage until all

localizable nodes estimate the coordinates of their

locations.

6.1.2 Sensor localization using metaheuristic algorithms

In this case study, each dumb node uses a bio-inspired

metaheuristic algorithm to localize itself in a distributed

manner. The coordinates of the beacon locations and the

estimated distances from beacons are the inputs to the

algorithm. Solution candidates in each algorithm represent

the coordinates of the location of the node. The objective

function expressed in (3) is used as a measure of fitness of

the solution candidates. The dynamics of the meta-heuristic

algorithm propel the solution candidates iteratively to find

the global minima point in the search space. This point

represents the closest estimate of the location of the dumb

node.

The computational complexity of the geometric trilat-

eration algorithm is O(n). Unlike metaheuristic algorithms,

it is neither population-based, nor it requires additional

space for storing the solutions of a previous iteration.

However, in the case of metaheuristic algorithms, the
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Fig. 3 Localization results for U = 50, B = 10, R = 40, r2 = 2
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number of iterations is generally not fixed. Some meta-

heuristic algorithms need thousands of iterations involving

significant computational effort in each iteration. Whereas,

others may use millions of iterations involving a little effort

for each iteration. Thus, the computational complexities of

metaheuristic algorithms are generally compared empiri-

cally using computational time or the number of evalua-

tions of the fitness function. The ABC and the PSO

algorithms have lesser numbers of steps and storage vari-

ables in comparison with MSFLA. The MSFLA requires

the storage of the solutions of the previous search opera-

tions to select better results. This results in the higher

number of iterations and more memory requirement than in

the other algorithms [34]. The computational complexity of

each metaheuristic algorithm is O(d � p ? C � p), where

d is the dimensionality of the problem, p and C represent

the population and cost of the fitness function, respectively

[33].

The results of node localization using geometric trilat-

eration, MSFLA, ABC and PSO algorithms are discussed

in Sect. 6.2.

6.2 Results and discussion

Locations of beacons and the locations of dumb nodes

estimated in each stage by deterministic, MSFLA, ABC

Table 1 Parameter setup for the deterministic, MSFLA, ABC and PSO algorithms in localization

Geometric MSFLA ABC PSO

Communication radius,

R = 30, 40 m

Number of memeplexes,

m = 10

Food sources, N = 100 Population of particles, P = 100

Noise variance r2 is varied

from 1 to 10

Number of frogs in each

memeplex, n = 10

Population of employed bees and

onlookers,
N

2
, Scout Bee, s = 1

Acceleration constants,

C1 ¼ C2 ¼ 2

Dimensions, D = 2 Number of frogs, f = m � n Limit for abandonment, l ¼ N _D Inertia weight, decreased

linearly w = 0.9 to 0.4

Deployment area =

100 � 100 square meters

Number of iterations,

kmax ¼ 100

Number of iterations, ðkmaxÞ ¼ 100 Number of iterations,

ðkmaxÞ ¼ 100

Table 2 Results of multi-Stage

localization for a sensor field

with Xmin ¼ 0, Xmax ¼ 100

square meters, U = 50, B = 10,

R = 30 m and r2 = 0.2

Trial Si Li Ei Ti

MSFLA ABC PSO � Geo MSFLA ABC PSO Geoa

1 1 37 0.076 0.183 0.283 0.385 3.751 1. 816 0.685 0.039

2 50 0.052 0.099 0.173 0.855 7.669 5.514 2.551 0.099

2 1 42 0.099 0.838 0.21 0.926 4.598 2. 127 0.815 0.032

2 50 0.045 0.088 0.123 0.508 8.135 5.801 2.703 0.092

3 1 43 0.062 0.171 0.165 0.384 4.407 2. 196 0.847 0.038

2 50 0.059 0.054 0.139 0.441 8.019 5.912 2.810 0.096

4 1 46 0.057 0.099 0.246 0.400 4.551 2. 129 0.873 0.040

2 50 0.034 0.143 0.131 0.210 8.634 6.198 2.986 0.108

5 1 40 0.059 0.075 0.104 1.217 4.135 2. 135 0.8432 0.038

2 50 0.042 0.051 0.097 1.943 7.976 2.995 2.816 0.098

Numbers written in boldface digits signify the lowest value of the corresponding parameters
aGeo geometric method

Table 3 A summary of results

of 50 trial runs of SFL, ABC,

PSO and geometric method for

D = 2 and xmin ¼ 0 and

xmax ¼ 100

Localization error E Computing time T

MSFLA ABC PSO Geoa MSFLA ABC PSO Geoa

Mean 0.252 0.326 0.367 0.381 15.113 4.724 1.221 0.071

Std. Deviation 0.188 0.249 0.288 0.323 0.509 0.218 0.071 0.032

U = 100, B = 30, r2 = 2, R = 30

Numbers written in boldface digits signify the lowest value of the corresponding parameters
aGeo geometric method
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and PSO algorithms in a trial run are depicted in Fig. 3.

The parameter setup for each algorithm used in localization

is presented in Table 1. These parameters are chosen as

suggested in the previous research literature. All the four

methods have exhibited acceptable accuracy. However

MSFLA is lot more accurate than the other three algo-

rithms. A statistical summary of the results of localization

performed using the four methods is presented in Table 3.

The comparison of deterministic and meta-heuristic

algorithm has been presented in terms localization error

(E) and computing time (T). Localization process is in

multiple stages. The results have been recorded in each

stage Si. Terms Ei and Ti denote the computing time and

the localization error in stage Si, respectively. Lower Ei and

Ti represents more accurate and quicker localization. Fur-

ther the parameter Li denotes the number of nodes that are

localized in stage Si. Higher Li represents more number of

localized nodes. The details of the Li, Ei and Ti have been

presented in Table 2.

The statistics of the results of the deterministic and bio-

inspired meta-heuristic algorithm localization is depicted in

Table 3. Table 3 points out the trade-off between the

localization accuracy and computing time.

The performance of MSFLA is superior to those of the

other localization algorithms in terms of localization

accuracy. Thus MSFLA is recommended in WSN appli-

cations in which require accurate localization is critically

important. However, MSFLA is slowest among the algo-

rithms studied here. The computing time of all algorithms

are recorded to study their speed of location. The following

is the list of algorithms arranged in the ascending order of

computing times.

1. Deterministic algorithm

2. The PSO algorithm

3. The ABC algorithm

4. The MSFLA

The geometric trilateration algorithm is the fastest of the

algorithms considered in this study. The high speed of the

geometrical method is attributed to the fact that it does not

involve population-based iterative search. Therefore, it is

most suitable in WSN applications that require quick

localization.

The PSO algorithm is faster in convergence than the

other metaheuristic algorithms. The ABC algorithm

involves a step in which the entire population of candidate

solutions is discarded and a new swarm is created if the

optimal solution has not been obtained in a given number

of iterations. This results in slower convergence. The

MSFLA requires the storing of local best solutions of

previous iterations. This adds to computational expenses in

each iteration. This causes the MSFLA to be the slowest.

The variation of localization error E with increase in the

environmental noise variance r2 has been depicted in

Fig. 4. The localization error E increases with the increase

in environmental noise variance r2. The results depicted in

Fig. 4 show that the localization using metaheuristic

algorithms is more accurate than the analytic method.

Scalability plays an important role in the WSN appli-

cations. In order to study the scalability, multiple experi-

ments have been conducted with increasing number of

dumb nodes. The results have been depicted in Fig. 5. The

performance of the MSFLA is consistently better than

other algorithms in all the experiments in terms of accuracy

of localization.

Heuristic algorithms result in the lower localization

error E with the increase in the density of nodes. This is

depicted in Table 4. With the geometric method, the value
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of E increases when the network is scaled to a larger size.

Metaheuristic algorithms result in improved accuracy with

the increase in number of nodes. In the geometric trilat-

eration method, the locations are estimated using geomet-

rical information and does not involve any error

optimization. Thus metaheuristic algorithms are more

suitable than the conventional deterministic algorithms

when the WSN has higher node population.

Multistage localization results in considerable saving in

the cost of hardware for localization. The localization cost

is determined as the cost of installation of GPS hardware

for localization. The cost of localization is higher, if the

GPS hardware is installed on each node. The multi-stage

localization considered here requires GPS hardware only

on beacons. Therefore the total cost of localization is

considerably low.

7 Conclusion

The performances of geometry-based and bio-inspired

metaheuristic algorithms have been compared in this paper

for the localization of sensor nodes in WSNs. First,

unknown nodes are localized using the geometrical trilat-

eration method. Further, the localization problem has been

formulated as a two-dimensional optimization problem and

addressed using SI-based metaheuristic algorithms. A brief

background of multistage localization has been presented.

An modified SFLA has been proposed and the same is

applied for sensor localization. The results of localization

using MSFLA have been compared with that of localiza-

tion using ABC and PSO algorithms. The MSFLA-based

localization results very high accuracy localization. The

other metaheuristic algorithms show better performance

than the geometrical method in terms of accuracy. How-

ever, metaheuristic algorithms result in slower localization

because of their population-based, iterative nature. There-

fore, they are recommended in WSN deployments in which

accuracy of localization is extremely important. On the

other hand, geometrical trilateration is recommended for

WSN deployments that require quick localization.

This study can be extended further in multiple direc-

tions. Localization of mobile sensor nodes is a natural

extension of this investigation. The development of algo-

rithms to determine optimal path for a mobile beacon is

another direction in which this research can be extended.

Further, quick and accurate algorithms can be developed by

hybridizing SI algorithms with those from the other para-

digms of CI for the sensor localization. Lastly, issues, such

as security and energy expenditure in localization of sensor

nodes in WSNs can be considered in the development of

the objective functions used in metaheuristic algorithms.
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