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Abstract
Currently, there is a remarkable focus on green technologies for taking steps towards more use of renewable energy sources

within the sector of transportation and also decreasing pollution. At this point, employment of plug-in hybrid electric

vehicles (PHEVs) needs sufficient charging allocation strategy, by running smart charging infrastructures and smart grid

systems. In order to daily usage of PHEVs, daytime charging stations are required and at this point, only an appropriate

charging control and a management of the infrastructure can lead to wider employment of PHEVs. In this study, four

swarm intelligence based optimization techniques: particle swarm optimization (PSO), gravitational search algorithm

(GSA), accelerated particle swarm optimization, and hybrid version of PSO and GSA (PSOGSA) have been applied for the

state-of-charge optimization of PHEVs. In this research, hybrid PSOGSA has performed very well in producing better

results than other stand-alone optimization techniques.

Keywords Nature-inspire metaheuristics � Hybrid optimization � Swarm intelligence � Artificial intelligence �
State-of-charge optimization � Plug-in hybrid electric vehicle

1 Introduction

Researches on green technologies for transportation sector

are gaining popularity among the research communities

from different areas. In this wake, Plug-in hybrid electric

vehicles (PHEVs) have great future because of their charge

storage system and charging facilities from traditional grid

system. Some researchers have shown that electrification of

transport sector can cause a large amount of degradation in

greenhouse gas emissions. Future transportation sector will

depend much on the advancement of this emerging field of

vehicle optimization. As a recent research interest regard-

ing improving general fuel efficiency over a wider capacity

battery system, the plug-in hybrid electric vehicles

(PHEVs) can be charged thoroughly thanks to conventional

power grid system. That also makes it possible the vehicles

to be run in ‘‘all-electric-range’’ (AER) continuously. All-

electric vehicles or AEVs is a kind of transport that use

electric power as only sources to run the system. An

improved adoption of PHEVs can play an important role

over alternative energy integration into traditional grid

systems because of that plug-in hybrid electric vehicles can

employ all of these related strategies via just a connection

to the smart grid [1]. It is needed to employ efficient

mechanisms—functions and algorithms running in the

context of smart grid technologies, for solving advanced

problems such as cost reduction, energy management,

efficient charging station via different objectives and also

system constraints [2].
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It is important that about 62% of the vehicles in the

United States (US) will comprise of PHEVs within the year

2050, according to the statistics provided by the Electric

Power Research Institute (EPRI) [3]. Here, one remarkable

objective is making the proper communication between the

PHEV and the power grid more practical. For the maxi-

mization of customer contentment and minimization of

burdens on the grid, a complicated control appliance will

need to be addressed in order to govern multiple battery

loads from a numbers of PHEVs properly [4]. The total

demand pattern will also have an important impact on the

electricity production owing to differences in the needs of

the PHEVs parked in the deck at certain time [5]. Proper

management can ensure strain minimization of the grid and

enhance the transmission and generation of electric power

supply.

According to the locations, control of PHEV charging

can be in whether household charging or public charging.

The introduced optimization here deals with the public

charging station for plug-in vehicles. That’s because most

of PHEV charging is expected to take place in public

charging location [6]. Wide diffusion of PHEVs in the

market depends on a well-organized charging infrastruc-

ture. On the traditional power grid, there will be extra stress

by the power demand from this new load [7]. Conse-

quently, a good number of PHEV charging stations with

suitable facilities are essential to be built for recharging

electric vehicles, for this some strategies have been pro-

posed by the researchers [8]. Charging stations are needed

to be built at workplaces, markets/shopping malls and

home. Boyle [9] suggested the necessity of building new

smart charging station with powerful communication

between utilities along with sub-station controlling infras-

tructure over proper energy utilization and grid stability.

Also, sizeable energy storage, cost minimization; Quality

of Services (QoS) and intelligent charging station for

optimal power are underway [10]. In this stage, numerous

techniques and methods were recommended for deploy-

ment of PHEV charging stations [11].

Among the research efforts, it is aimed to accomplish

practical ways for proper interaction between the PHEV

and the power grid. In this context, an advanced mecha-

nism of control will be required to be designed for gov-

erning multiple loads of battery from a number of PHEVs

appropriately, in the context of maximizing customer

pleasure and minimizing the freightage on the grid [6].

Swarm intelligence came from the mimic of the living

colony such as ant, bird, and fish in nature, which shows

unparalleled excellence in swarm than in single in food

seeking or nest building. Drawing inspiration from this,

researches design many algorithms simulating colony liv-

ing, such as ant colony optimization (ACO) algorithm [12],

particle swarm optimization (PSO) algorithm [13], artificial

bee colony (ABC) algorithm [14], and gravitational search

algorithm (GSA) [15], which shows excellent performance

in dealing with complex optimization problems [16]. The

intrinsic characteristics of all the population-based meta-

heuristic algorithms like particle swarm optimization

(PSO) and gravitational search algorithm (GSA) are to

maintain a good compromise between exploration and

exploitation in order to solve the complex optimization

problems [17].

The performance of PHEV depends upon proper uti-

lization of electric power which is solely affected by the

battery state-of-charge (SoC). In Plug-in hybrid electric

vehicles (PHEVs), a key parameter is the state-of-charge

(SoC) of the battery as it is a measure of the amount of

electrical energy stored in it. It is analogous to fuel gauge

on a conventional internal combustion (IC) car [17]. State-

of-charge determination becomes an increasingly vital

issue in all the areas that include a battery. Previous

operation policies made use of voltage limits only to guard

the battery against deep discharge and overcharge. Cur-

rently, battery operation is changing to what could rather

be called battery management than simply protection. For

this improved battery control, the battery SoC is a key

factor indeed [18].

A charging station is one way that the operator of an

electrical power grid can adapt energy production to energy

consumption, both of which can vary randomly over time.

Generally, PHEVs in a charging station are charged during

times when production exceeds consumption and are dis-

charged at times when consumption exceeds production

[19]. In this study, it is needed to perform an in-depth study

for maximizing the average SoC for making intelligent

energy allocation simpler for PHEVs in a charging station.

For covering the general objective and its sub-ones, four

swarm intelligence-based techniques: particle swarm opti-

mization (PSO), gravitational search algorithm (GSA),

accelerated particle swarm optimization (APSO), and

hybrid version of PSO and GSA (PSOGSA) were applied

for solving the particular optimization problem hence

presents comparative study on these four techniques.

Results obtained thanks to this study are important findings

for such an advanced real-world optimization problem of

charging plug-in hybrid electric vehicle.

2 Mathematical formulation of the charging
optimization

Assume that, we have a charging station employing a

capacity of total power called as P. Total N numbers of

PHEVs need to be served in a day (24 h). In order to make

the system more effective, the suggested system should

allow PHEVs for leaving the charging station before their
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expected leaving time. It is worth to mention that; each

PHEV is regarded to be plugged-into the charging station

once. The aim is to separate power intelligently for each

PHEV coming to the charging station. The state-of-charge

is the main parameter which needs to be maximized in

order to allocate power efficiently. For this, the fitness

function considered in this chapter is the maximization of

average SoC, hence, allocates energy for PHEVs at the

next time step. The constraints considered are: charging

time, present SoC and price of the energy.

The fitness function is defined as:

Max J kð Þ¼
X

i

wi kð ÞSoCi k þ 1ð Þ ð1Þ

wi kð Þ¼f Cr;i kð Þ; Tr;i kð Þ;Di kð Þ
� �

ð2Þ

Cr;i kð Þ¼ 1� SoCi kð Þð Þ � Ci ð3Þ

where Cr;i kð Þ is the battery capacity (remaining) needed to

be filled for i no. of PHEV at time step k; Ci is the battery

capacity (rated) of the i no. of PHEV; remaining time for

charging a particular PHEV at time step k is expressed as

Tr;i kð Þ; the price difference between the real-time energy

price and the price that a specific customer at the i no. of

PHEV charger is willing to pay at time step k is presented

by Di kð Þ; wi kð Þ is the charging weighting term of the i no.

of PHEV at time step k (a function of charging time, price

of the energy and also present SoC); SoCi k þ 1ð Þ means the

state for charge of the i no. of PHEV at time step k þ 1.

The weighting term considered here corresponds to a

bonus, which is proportional to the attributes associated

with a PHEV. As an example, if the considered PHEV

comes with a lower initial SoC and less charging time (as

remaining) and the driver is willing to pay a higher price,

this particular PHEV battery charger will receive more

power by the system:

wi kð Þa Cr;i kð ÞþDi kð Þþ1=Tr;i kð Þ
� �

ð4Þ

The charging current is also assumed to be constant over

Dt.

SoCi kþ1ð Þ � SoCi kð Þ½ � � Capi¼Qi¼Ii kð ÞDt ð5Þ
SoCi k þ 1ð Þ¼SoCi kð Þ + Ii kð ÞDt=Capi ð6Þ

where the sample time Dt is defined by the charging station

operators, and Ii kð Þ is the charging current over Dt.
The model of battery is considered as a capacitor cycle,

where is the capacitance of battery (Farad). The model is

briefly as:

Ci:
dVi

dt
¼Ii ð7Þ

Therefore, one can assume here that the change of voltage

to be linear over a small time interval,

Ci: Vi k þ 1ð Þ � Vi kð Þ½ �=Dt¼Ii ð8Þ
Vi k þ 1ð Þ � Vi kð Þ¼IiDt=Ci ð9Þ

Because the decision variable is the power allocated to the

vehicles, replacing Ii kð Þ with Pi kð Þ,
Ii kð Þ ¼ Pi kð Þ=0:5� ½Vi k þ 1ð Þ � Vi kð Þ� ð10Þ

Vi k þ 1ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Pi kð ÞDt

Ci
þ V2

i kð Þ

s

ð11Þ

Substituting (10) into (6) yields

SoCi k þ 1ð Þ¼SoCi kð Þþ Pi kð ÞDt

0:5:Ci:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Pi kð ÞDt

Ci
þV2

i kð Þ
q

þVi kð Þ
h i

ð12Þ

Finally, the objective function becomes

J kð Þ¼
X

wi: SoCi kð Þþ 2Pi kð ÞDt

0:5:Ci:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Pi kð ÞDt

Ci
þV2

i kð Þ
q

þVi kð Þ
h i

2
64

3
75

ð13Þ

There are two kind of inequality constraints used here to

optimize the fitness function: (1) power from the charging

station operator and (2) individual PHEV’s state-of-charge

(SoC). Power obtained from the utility (Putility) and the

maximum power (Pi;max) absorbed by a specific PHEV

correspond to the constraints regarding primary energy.

The overall charging efficiency of a particular charging

station is described by g. From the system point of view,

charging efficiency is supposed to be constant at any given

time step. Maximum battery SoC limit for the i no. of

PHEV is SoCi;max. When SoCi reaches the values close to

SoCi;max, the i no. of battery charger passes to a mode of

standby. Here, limits by the constraint DSoCmax is applied

over the state of charge ramp rate.

Table 1 represents the fitness function parameters,

which were adjusted—updated for the optimization pro-

cess. There are total three (03) kinds of parameter: fixed,

variables and constraints. Total charging time is fixed to

20 min and charging station efficiency assumed to be 0.9.

The values are retrieved from various literatures [4, 28].

Moreover, State-of-Charge is in the range of 0.2–0.8 [29].

2.1 Swarm intelligence algorithms for charging
optimization

The chosen four swarm intelligence algorithms for the

charging optimization problem of this study can be

explained briefly as follows, in order to enable readers to

have enough idea about capabilities of the related algo-

rithms regarding effective, intelligent optimization:
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2.1.1 Particle swarm optimization (PSO)

PSO is not only a technique, but also is known as a tech-

nique of evolutionary computation as introduced by Ken-

nedy and his colleague Eberhart [15]. This technique was

briefly an inspiration from social behavior shown by bird

flocking. In detail, there are some particles (in other words,

candidate solutions) in the algorithm structure and these

particles fly within the search space for searching the best

solution. In the meantime, they all are affected by the best

solution (best particle) along their travel done. In other

words, particles consider both best solutions, which are

their own top solution and the best one, which has been

detected so far. Generally, each of the particles should

focus on its current velocity, current position, and position

difference according to pbest and the gbest separately, for

updating its position. PSO is briefly started to run over a

randomly placed group of particles (solutions) and after

that it runs over searching for optimum solution(s) by

updating generations. In each iteration, all particles are

updated by considering two ‘‘best’’ values, which are

respectively the best solution (fitness) a particle has

achieved so far. (This is called as ‘‘pbest’’. Also, the fitness

value is stored). And the ‘‘best’’ value got so far by any

particle in the related population (This is the global best

value and called as the ‘‘gbest’’).

PSO was mathematically modelled as followed as:

Vtþ1
i ¼wvtiþc1:rand : pbesti � xti

� �
þc2:rand: gbest � xti

� �

ð14Þ

xtþ1
i ¼xti þ Vtþ1

i ð15Þ

where vti means velocity of the particle i at the iteration t. w

is briefly a weighting function as follows:

x¼xmax �
wmax � xmin

Itremax

Itre ð16Þ

The principal steps in PSO can be summarized as follows

(Fig. 1).

The values known as the most appropriate ones for xmin

and xmax are respectively 0.4 and 0.9 [22]. For c1 and c2, it

is 1–2 [7] while 2 is known as the most appropriate one in

different cases [23]. On the other hand, rand means a

random number as between 0 and 1 [7], xti is the current

position of particle i at iteration t, pbesti means the pbest of

the agent i at the iteration t.

2.1.2 Accelerated particle swarm optimization (APSO)

Accelerated PSO was developed in order to accelerate the

convergence of the algorithm is to use the global best only,

by Yang [24] at Cambridge University in 2007. PSO and

APSO-based optimizations have already been studied by

the researchers for optimal design of substation grounding

grid [25], performance analysis regarding MIMO radar

waveform [26], designing frame structures [27], dual

channel speech enhancement [28] and a faster path planner

[29] etc.

In the algorithmic structure of the APSO, members of a

population are called as particles while the population itself

is the swarm. APSO briefly runs by initial adjustment as a

randomly located population and here, each particle moves

randomly according to some factors.

Table 1 Parameter settings of the objective function

Parameter Values

Fixed parameters Maximum power, Pi;max = 6.7 kWh

Charging station efficiency, g = 0.9

Total charging time, Dt = 20 min

Power allocation to each PHEV: 30 W

Variables 0.2 B state-of-charge (SoC) B 0.8

Waiting time B 30 min (1800 s)

16 kWh B battery capacity Cið Þ B 40 kWh

Constraints
P

i Pi kð Þ� Putility kð Þ � g

0� Pi kð Þ� Pi;max kð Þ
0� SoCi kð Þ� SoCi;max

0� SoCi kþ 1ð Þ � SoCi kð Þ�DSoCmax

Particle’s position and velocity initialization

Particle’s velocity update 

Particle’s position update 

Particle’s best known position “pbest” update 

 Swarm’s best known position “gbest” update 

Termination criteria met?

Return best solution

No

Yes

Fig. 1 Flowchart of particle swarm optimization (PSO)
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A simplified version that could speed up the conver-

gence of the algorithm is to use the global best only. So, in

the APSO [94], the velocity vector is manufactured by a

basic formula as where randn is drawn from (0, 1) to

replace the second term. The update of the position is

simply like-

Vtþ1
i ¼ Vt

i þ a:randnðtÞ þ b:ðg� � xtiÞ ð17Þ

where randn is drawn from N (0, 1) and the update of the

position is like the standard PSO method. The update of the

position can be written in a single step in order to increase

the convergence even further, as:

xtþ1
i ¼ ð1� bÞxti þ b:g� þ ar ð18Þ

In our simulation, we use [30]:

a ¼ 0:7t ð19Þ

Figure 2 shows the flowchart of APSO method.

The typical values for this accelerated PSO are

a & 0.1–0.4 and b & 0.1–0.7; nevertheless, a & 0.2 and

b & 0.5 are proposed [25]. In general, any evolutionary

search algorithm shows improved performance with a rel-

atively larger population. However, a very large population

will cost more in terms of fitness function evaluations

without producing significant improvements. In this simu-

lation, the population size is set to 100. The parameter

settings for APSO are demonstrated in Table 2.

2.1.3 Gravitational search algorithms (GSA)

GSA is briefly a population based optimization approach as

developed by Rashedi et al. [17]. In this algorithm, there

are total four specifications of each mass (or agent), which

is position, inertial mass, passive gravitational mass and

also active gravitational mass and. The position regarding

the mass corresponds a solution of a particular problem. In

this context, the masses (which are gravitational and iner-

tial) are calculated through a fitness function. GSA briefly

includes some agents (in other words, candidate solutions)

and masses of these agents are proportional to their value

calculated through fitness function. Along the appeared

generations, all the masses attract each other by the gravity

forces between them. Here, a heavier mass means higher

force of attraction. In this context, the heavier masses seem

close to the global optimum affects other masses, as pro-

portional to their distances.

GSA-based optimization has already been used for

economic dispatch with valve-point effects, optimal sizing

and suitable placement for distributed generation (DG) in

distribution system, post-outage bus voltage magnitude

calculations, optimization of synthesis gas production [31],

solving thermal unit commitment (UC) problem [32] and

finding out optimal solution for optimal power flow (OPF)

problem in a power system [33] etc. by the researchers.

Specifically, we are studying the application of the Grav-

itational Search Algorithm (GSA) method for developing

real-time and large-scale optimizations for allocating

power.

The gravitational force is expressed as follows:

Fdij tð Þ ¼ G tð ÞMpi tð Þ �Maj tð Þ
Rij tð Þ þ e

xdj tð Þ � xdi tð Þ
� �

ð20Þ

where Maj is the active gravitational mass related to agent j,

Mpi is the passive gravitational mass related to agent i,

G tð Þ is gravitational constant at time t, e is a small con-

stant and Rij tð Þ is the Euclidian distance between two

agents i and j. The G tð Þ is calculated as:

Fig. 2 Flowchart of accelerated particle swarm optimization (APSO)

Table 2 APSO parameter

settings
Parameters Values

Size of the swarm 100

Maximum no. of steps 100

Alpha, a 0.2

Beta, b 0.5

Maximum iteration 100

Number of runs 50
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G tð Þ ¼ G0 � exp �a� iter=maxiterð Þ ð21Þ

where a and G0 are descending coefficient and primary

value respectively, current iteration and maximum number

of iterations are expressed as iter and maxiter. In a prob-

lem space with the dimension d, the overall force acting on

agent i is estimated as following equation:

Fdi tð Þ ¼
XN

j¼1;j 6¼i

randjF
d
ij tð Þ ð22Þ

where randj is a random number with interval [0, 1]. From

law of motion we know that, an agent’s acceleration is

directly proportional to the resultant force and inverse of its

mass, so the acceleration of all agents should be calculated

as follow:

acdi tð Þ ¼ Fdi tð Þ
Mii tð Þ

ð23Þ

where t a specific is time and Mii is the mass of the object

i. The velocity and position of agents are calculated as

follow:

veldi tþ 1ð Þ ¼ randi � veldi tð Þ þ acdi tð Þ ð24Þ

xdi tþ 1ð Þ ¼ xdi tð Þ þ veldi tþ 1ð Þ ð25Þ

where randi is a random number with interval [0, 1].

Moreover, the step involves in optimization using GSA is

shown Fig. 3.

In the technique of Gravitational Search Algorithm, the

agents are firstly located via random values as each of them

is accepted as a candidate solution. Following that, veloc-

ities of all agents are adjusted according to (23) while the

gravitational constant, overall forces, and accelerations are

set respectively by using the Eqs. (20) (21), and (22). The

Eq. (24) is used for calculating positions of the agents. In

this context, run of the GSA will be stopped when the

stopping criterion of 100 iterations is met. Here, the

parameter settings regarding GSA are shown in Table 3.

The GSA parameters were selected: Primary parameter,

G0 = 100, Acceleration coefficient, a = 20 and no. of mass

agents = 100. Since each agent could observe the perfor-

mance of the others, the gravitational force is an infor-

mation-transferring tool. The parameter settings for GSA

are demonstrated in Table 3.

2.1.4 Hybrid particle swarm optimization and gravitational
search algorithm (PSOGSA)

PSOGSA-based optimization has been employed already

over the problem of economic load dispatch [34, 35],

optimal static state estimation [36], dual channel speech

enhancement [37], training feed-forward neural networks

[38] and multi-distributed generation planning [39] etc.

The basic idea is to fit in the exploitation ability in PSO

with the exploration ability in GSA to synthesize both

algorithms’ strength. The basic idea of PSOGSA is to

combine the ability of social thinking (gbest) in PSO with

the local search capability of GSA. In order to combine

these two algorithms, velocity update is proposed as:

viðt þ 1Þ ¼ w� viðtÞ þ a0 � rand � aciðtÞ þ b0 � rand
� ðgbest � xiðtÞÞ

ð26Þ

where vi tð Þ means velocity of the agent i at the iteration t.

On the other hand, w is the weighting factor, rand means a

random number (between 0 and 1), aci(t) means the

acceleration of the agent at the iteration t. Finally, gbest is

Primary population generation

Each agent’s fitness function evaluation

Global best and worst population update

Mass and acceleration calculation for each agent

Position and velocity update

Meeting the final criteria?

Return best solution

No

Yes

Fig. 3 Flowchart of gravitational search algorithm

Table 3 GSA parameter settings [17]

Parameters Values

Primary parameter, G0 100

No. of mass agents, n 100

Acceleration coefficient, a 20

Constant parameter,e 0.01

Power of ‘R’ 1

Maximum iteration 100

Number of runs 50
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the best solution detected so far. Here, a
0
and b

0
are the

weighting factors [40]. With adjusting a
0
and b

0
, the abil-

ities of global search and local search can be balanced. The

position of the particle xi t þ 1ð Þ in each iteration is updated

using the equation:

xiðt þ 1Þ ¼ xiðtÞ þ viðt þ 1Þ ð27Þ

The flowchart of hybrid PSOGSA method is shown in

Fig. 4.

PSOGSA (adjusted according to the parameter setting in

Table 4) was also run over the same fitness function and it

was compared with the performance of gravitational search

algorithm, by considering average best fitness. Maximum

iterations and even swarm sizes were set exactly same to

that of GSA and PSO techniques for achieving an objective

comparison approach. The values of parameters c1, c2 and

alpha were set as standard values, 0.5, 1.5 and 23 respec-

tively [38]. The total number of runs remain 50 for the fare

comparison purpose with other single techniques.

3 Application details

In order to optimize state-of-charge with respect to

charging time and present SoC, the explained four swarm

intelligence-based methods (PSO, GSA, APSO, and

PSOGSA) were applied considering the fitness function

stated at the Eq. (13). All the optimization techniques were

simulated to achieve the best fitness values by running

them over the computer system having the configuration of

CPU: CoreTM i5-3470 M, Processor: 3.20 GHz, RAM:

4.00 GB, with the MATLAB version-R2013a for the

software environment of optimization experiments. A

general flow of the application done in the study is pre-

sented in Fig. 5.

The related application process—comparison was done

over five different problem scenarios over changing num-

ber of PHEVs: (1) 50 PHEVs, (2) 100 PHEVs, (3) 300

PHEVs, (4) 500 PHEVs, and (5) 1000 PHEVs. Findings

and discussion moving from them are expressed under the

next section.

4 Findings and discussion

Considering the application flow and five different problem

scenarios, obtained findings can be expressed briefly as

follows, over each of the employed swarm intelligence

algorithms.

4.1 Findings with particle swarm optimization
(PSO)

The algorithm was adjusted to run for a total of 100 iter-

ations despite the fitness value converges before five iter-

ations for all five scenarios and become stable. That’s why

an early convergence may cause the fitness function to trap

into local minima.

For 50 PHEVs, the maximum best fitness and minimum

best fitness were 469.7489 and 7.6478 respectively. The
Fig. 4 Flowchart of PSOGSA

Table 4 Parameters settings of PSOGSA

Parameters Values

Size of the swarm 100

Maximum iteration 100

PSO parameter, C1 0.5

PSO parameter, C2 1.5

Gravitational Constant, G0 1

GSA Constant parameter, a 23

Number of runs 50
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average best fitness is 165.9650. In 100 PHEVs, the max-

imum best fitness and minimum best fitness were 767.8722

and 9.5076 respectively. The average best fitness increases

up to 182.9313. For 300 PHEVs, the maximum best fitness

and minimum best fitness were 793.09 and 5.9631

respectively. The average best fitness is 197.5908. For 500

PHEVs, the maximum best fitness and minimum best fit-

ness were 774.559 and 5.9631 respectively. The average

best fitness is 197.5908. Finally, in 1000 PHEVs, the

maximum best fitness and minimum best fitness were

678.9197 and 0.9963. The average best fitness decreases up

to 172.4528.

Because PSO is a population-based optimization tech-

niques and the fitness function is non-linear, so the fitness

values fluctuates for each iteration [31–34]. Table 5 briefly

presents the result. According to the table, it can be

indicated that the average best fitness is in almost similar

value scope for five different scenarios.

Table 6 shows the average computational time require-

ment for PSO method. The average computational time for

50 PHEVs is 1.620 s while for 1000 PHEVs it increases up

to 2.328 s.

4.2 Findings with accelerated particle swarm
optimization (APSO)

The algorithm was adjusted to run for a total of 100 iter-

ations but the fitness value converges after 10 iterations and

become stable. Consequently, there is an early convergence

that may cause the fitness function to trap into local min-

ima. This can be avoided by increasing the size of swarm

hence the computational time will also be increased as

well. For instant, a trade-off should be taken into consid-

eration between the proper convergence and computational

time.

Here, we applied each scenario 50 times for having idea

about the performance and also superiority and efficiency

level of the related algorithm.

In 50 PHEVs, the maximum best fitness and minimum

best fitness were 469.7489 and 7.6478 respectively. The

average best fitness is 165.9650. In 100 PHEVs, the max-

imum best fitness and minimum best fitness were 679.7151

and 9.5076. The average best fitness here is 182.9313. In

300 PHEVs, maximum best fitness and minimum best fit-

ness were 541.4769 and 5.9631 respectively. The average

best fitness is 197.5908. For 500 PHEVs, the maximum

best fitness and minimum best fitness were 615.8314 and

5.9631. The average best fitness is 197.5908. In 1000

PHEVs, the maximum best fitness and minimum best fit-

ness were 678.9197 and 0.9963. The average best fitness is

172.4528.

As APSO is a population-based optimization techniques

and the fitness function is non-linear, so the fitness values

fluctuates for each iteration [31–34]. However, the maxi-

mum best fitness remains in the range of 450–700 and the

minimum best fitness remains in the range of 0.5–10.

According to Table 7, average best fitness is in near value

scopes for five different scenarios.

As APSO is a population-based optimization techniques

and the fitness function is non-linear, so the fitness values

fluctuates for each iteration [31–34]. However, the

Fig. 5 Flowchart of the charging optimization application in the study

Table 5 Fitness evaluation for

PSO
Fitness function J (k) 50 PHEVs 100 PHEVs 300 PHEVs 500 PHEVs 1000 PHEVs

Max. best fitness 910.7513 767.8722 793.0902 774.559 697.1115

Avg. best fitness 142.839 171.102 169.3119 144.8008 156.8019

Min best fitness 4.8377 5.3836 5.219 7.1805 0.7301
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maximum best fitness remains in the range of 450–700 and

the minimum best.

Table 8 shows the average computational time require-

ment for APSO method. The average computational time

for 50 PHEVs is 1.696 s and for 1000 PHEVs it increases

up to 2.092 s.

APSO requires more adjustment of parameters,

according to the standard form of PSO. But more number

of PHEVs can be solved in less time by APSO, comparing

to the PSO. By using the APSO, the velocity vector is

effective for the capability of local exploitation. Also,

APSO suffers early convergences in primary stages. In

order to avoid premature convergence, Gravitational

Search Algorithm (GSA) has been used in this study.

4.3 Findings with gravitational search algorithm
(GSA)

Majority of the optimization algorithms comes with local

searching techniques and these techniques may get stuck

on the local maxima. Most search techniques make an

effort for searching and detecting a global maximum in the

presence by the local Maxima [20]. At this point, the GSA

is good at performance shown during searching process.

The term: exploration is used for defining the ability of an

algorithm to spread out the problem in search gap whereas

the term: exploitation is for the ability of detecting opti-

mum solution, which is near to a favorable one [21].

In 50 PHEVs, 781.1267 and 0.2191 were found as the

maximum best fitness and the minimum best fitness values.

Here, the average value of best fitness is 158.8289. For 100

PHEVs, 872.648 and 1.005 were the maximum best fitness

and the minimum best fitness values respectively. At this

point, the average value of best fitness decreases up to

182.309. For 300 PHEVs, the maximum best fitness and

minimum best fitness were 743.1251 and 2.3279 respec-

tively. The average best fitness is 172.4296. In 500 PHEVs,

the maximum best fitness and minimum best fitness were

836.2707and 0.9818. The average best fitness decreases up

to 152.36437. For 1000 PHEVs, the maximum best fitness

and minimum best fitness were 968.7652and 7.2747. The

average best fitness decreases up to 161.52349.

Finally, Table 9 summarizes the result. From that it can

be concluded that, average best fitness remain almost in

similar pattern for five different scenarios.

Table 10 shows the Average computational time

requirement for GSA method. The average computational

time for 50 PHEVs is 2.72 s while for 1000 PHEVs it

increases up to 2.092 s.

We performed each scenario 50 times to have idea

regarding the performance and also superiority and effi-

ciency of the related algorithm.

For 50 PHEVs, the maximum best fitness and minimum

best fitness were 931.03 and 7.6478 respectively. The

average best fitness is 165.9650. In 100 PHEVs, the max-

imum best fitness and minimum best fitness were 625.82

and 3.39 respectively. The average best fitness decreases

up to 184.36. For 300 PHEVs, the maximum best fitness

Table 6 Average computational time for PSO

Number of PHEVs Computational time (s)

50 PHEVs 1.620

100 PHEVs 1.669

300 PHEVs 1.764

500 PHEVs 1.953

1000 PHEVs 2.328

Table 7 Fitness evaluation for

APSO
Fitness function J (k) 50 PHEVs 100 PHEVs 300 PHEVs 500 PHEVs 1000 PHEVs

Max. best fitness 469.75 679.71 679.55 615.83 678.92

Avg. best fitness 162.70 168.23 147.42 184.15 171.16

Min best fitness 7.6478 3.46 3.54 5.9631 0.9963

Table 8 Average computational time for APSO

Number of PHEVs Computational time (s)

50 PHEVs 1.696

100 PHEVs 1.706

300 PHEVs 1.761

500 PHEVs 1.832

1000 PHEVs 2.092

Table 9 Fitness evaluation of GSA

Number of PHEVs Computational time (s)

50 PHEVs 2.720

100 PHEVs 4.439

300 PHEVs 11.279

500 PHEVs 18.165

1000 PHEVs 36.275
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and minimum best fitness were 434.16 and 7.43 respec-

tively. The average best fitness is 181.03. In the case of 500

PHEVs, the maximum best fitness and minimum best fit-

ness were 454.04 and 7.23 respectively. The average best

fitness is 186.70. Finally, for 1000 PHEVs, the maximum

best fitness and minimum best fitness were 740.40 and

0.17. The average best fitness decreases up to 185.16.

From the above numerical data, we can analyze the

simulation behavior of APSO method. As it is a popula-

tion-based optimization techniques and the fitness function

is non-linear, so the fitness values fluctuates for each iter-

ation. However, the maximum best fitness remains in the

range of 400–950 and the minimum best fitness remains in

the range of 0.1–8. Table 11 summarizes the result. From

that it can be concluded that, average best fitness remain

almost in similar pattern for four (05) different scenarios.

Table 12 shows the Average computational time

requirement for APSO method. The average computational

time for 50 PHEVs is 4.228 s while for 1000 PHEVs it

increases up to 72.408 s.

4.4 A comparison among swarm intelligence
techniques

In addition to the findings over each algorithm, it is also

important to focus on a comparison including all algo-

rithms. This sub-section deals with that in this manner. In

detail, all of the four techniques were run on same com-

puter along with same iterations (100) and total 50 inde-

pendent runs in order to ensure the fare comparison [31].

The comparisons among applied swarm intelligence-based

techniques are given below:

4.4.1 Stopping criteria

In any swarm intelligence algorithm there are some initial

solutions from which candidate solutions are created. Next,

each solution is evaluated and the algorithm choose the

best solution. If the stopping criteria is met, the algorithm

will produce final solution otherwise it will again search for

best solutions from the initial step.

4.4.2 Convergence analysis

Speed and rate of convergence to the optimal solution are

significant when an algorithm discovers an ideal solution to

a given problem [41]. Here, a trade-off is required to be

done between computational time and the proper conver-

gence. Table 13 shows the number of iterations needed to

be converged for each algorithm for five different cases.

4.4.3 Fitness value

Fitness value presents the solutions for optimization tech-

nique applying to a particular objective function upon

given constraints and set of parameters. The fitness value

represents the strength of any optimization technique. In

detail, maximum best fitness, average best fitness and

minimum best fitness have been presented in order to

evaluate the performance of the applied optimization

techniques. PSOGSA shows best fitness values for all five

cases (50, 100, 300, 500 and 1000 PHEVs). The fitness

value comparison among all techniques are shown in

Fig. 6. Single techniques like GSA and APSO show overall

better result compared to PSO technique.

Table 10 Average

computational time for GSA
Fitness function J (k) 50 PHEVs 100 PHEVs 300 PHEVs 500 PHEVs 1000 PHEVs

Max. best fitness 781.1267 872.6483 743.1251 836.2707 968.7652

Avg. best fitness 158.8289 182.309754 172.4296 152.36437 161.52349

Min best fitness 0.2191 1.0059 2.3279 0.9818 7.2747

Table 11 Fitness evaluation for

APSO
Fitness function J (k) 50 PHEVs 100 PHEVs 300 PHEVs 500 PHEVs 1000 PHEVs

Max. best fitness 931.03 625.82 434.16 454.04 740.40

Avg. best fitness 184.36 188.67 181.03 186.70 185.16

Min best fitness 3.39 3.71 7.43 7.23 0.17

Table 12 Average computational time for APSO

Number of PHEVs Computational time (s)

50 PHEVs 4.228

100 PHEVs 7.902

300 PHEVs 22.326

500 PHEVs 36.824

1000 PHEVs 72.408
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4.4.4 Computational time

In order to maintain fare comparison, all the simulation

runs on same computer as well as same swarm size (pop-

ulation) and iteration. Figure 7 shows the average

computational time comparison of all the four optimization

techniques considering five scenarios. PSOGSA, the hybrid

technique takes more time to complete 100 iterations

whereas both PSO and APSO techniques show better

results in terms of computation time.

4.4.5 Robustness

Robustness is based on the ability of an optimization

problem to perform well over a wide range of population

[42]. Furthermore, optimization strategies and parameters

must either remain constant over the set of problems or

should be automatically set using individual test problems

attributes. Among our optimization techniques, PSOGSA

shows best robustness as the standard deviation is less

compared to PSO, APSO and GSA. Table 14 shows the

standard deviations of each techniques considering all five

cases of PHEVs. According to the table, single methods

like PSO, APSO and GSA show deviation in terms of

average best fitness values. The standard deviation for each

of these techniques is more than 10. Whereas, Hybrid

PSOGSA shows the standard deviation 2.55.

5 Future research directions

Obtained results—findings in this study open the doors to

further ideas. In this context, it is possible to think about

some future research directions. Multi-objective capability

should also be provided for multi-criteria optimization

problems [43]. Some of remarkable ones can be explained

as follows:

• Ant colony optimization (ACO) Ant colony optimization

(ACO), introduced by Dorigo in his doctoral disserta-

tion, is a class of optimization algorithms modeled on

the actions of an ant colony. ACO is a probabilistic

technique useful in problems that deal with finding

better paths through graphs. Artificial ‘ants’ simulation

agents locate optimal solutions by moving through a

parameter space representing all possible solutions [12].

For solving a highly non-linear fitness function, ACO

method can be applied in order to achieve high fitness

value and also less computation time. This method is a

member of Swarm Intelligence (SI) group. So, the

similar results are expected like PSO and APSO.

Researchers should apply ACO for solving charging

problem of PHEVs and find the outcomes with exten-

sive comparison with other methods.

• Artificial bee colony (ABC) optimization Artificial bee

colony (ABC) algorithm is one of the most recently

introduced swarm-based algorithms. In ABC, as a

population based algorithm, the status of a food source

Table 13 Convergence iterations

Number of PHEVs Number of iterations taken to be converged

PSO APSO GSA PSOGSA

50 \ 10 \ 10 35 \ 5

100 \ 10 \ 10 35 \ 5

300 \ 10 \ 10 15 \ 5

500 \ 10 \ 10 40 \ 5

1000 \ 10 \ 10 5 \ 5

Fig. 6 Average best fitness versus number of PHEVs

Fig. 7 Average best fitness versus number of PHEVs
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symbolizes a possible solution to the optimization

problem and the nectar amount of a food source

corresponds to the quality (fitness) of the associated

solution [44]. Future studies for solving smart charging

problem of PHEVs should involve the ABC, too

because of its proved success in advanced optimization

problems.

• Hybridization with local search method Although

swarm intelligence-based methods have established

their capability to explore large search spaces, they

are comparatively incompetent in fine-tuning the solu-

tion. Future studies can be carried out by hybridizing

PSO or GSA (swarm intelligence-based algorithm) with

local search method.

6 Conclusions

In this study, it was aimed to optimize state-of-charge, with

respect to charging time, present SoC and in this context,

the performed applications covered the related sub-objec-

tives of optimizing the state-of-charge of Plug-in hybrid

electric vehicle using swarm intelligence techniques and a

general performance evaluation of swarm intelligence

techniques in terms of fitness value and computational

time. In order to achieve that, the study has employed four

swarm intelligence techniques called particle swarm opti-

mization (PSO) and gravitational search algorithm (GSA),

accelerated particle swarm optimization (APSO) and

hybrid version of PSO and GSA (PSOGSA), respectively.

Because the results—findings that can be obtained with this

study are important for an advanced real-world optimiza-

tion problem like charging plug-in hybrid electric vehicle,

necessary emphasis has given to different types of problem

scenarios and the applied swarm intelligence research

flows in this manner.

The future research works will be carried out with other

meta-heuristics approaches such as Genetic Algorithms,

Differential Evolution, Harmonic Search Algorithms, Ant

Colony Optimization, Cuckoo Search Algorithms and

hybrid optimization techniques of swarm intelligence and

evolutionary computation.
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