
Lightweight solutions to counter DDoS attacks in software defined
networking

Mauro Conti1 • Chhagan Lal1,3 • Reza Mohammadi2 • Umashankar Rawat3

Published online: 25 April 2019
� Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
A distributed denial of service (DDoS) attack on any of the major components (e.g., controller, switches, and southbound

channel) of software defined networking (SDN) architecture is a critical security threat. For example, the breakdown of

controller could disrupt the data communication in the whole SDN network. A possible way to perform DoS is to generate

a large number of new, but short length traffic flows. These flows will trigger malicious flooding requests to overload the

controller and causes overflow in flow tables at SDN switches. In this paper, we propose two lightweight and practically

feasible countermeasures against two different types of DDoS attacks called Route Spoofing and Resource Exhaustion in

SDN networks. For Route Spoofing attack, we introduce a technique called ‘‘selective blocking’’, which stops an adversary

node from maliciously using other users active communication routes. To countermeasure Resource Exhaustion attack, we

propose a solution called ‘‘periodic monitoring’’, which detects adversary nodes based on the traffic analysis statistics that

are gathered within a time window. We implement and perform result analysis of the attacks and their proposed coun-

termeasures. When using our proposed countermeasures in the target SDN scenarios, the simulation results indicate an

adequate reduction in bandwidth consumption and processing delay of new request, and it also depicts substantial gain in

packet delivery rate. Additionally, we present the receiver operating characteristic curve, which shows the sensitivity and

specificity of our countermeasures along with their detection accuracy.

Keywords Software-defined networking (SDN) � Security � Denial-of-service attack � OpenFlow, Resource exhaustion

attack

1 Introduction

Over the years, the continuous growth in enterprise net-

works and data centers such as Google, Facebook, and

Microsoft, regarding size and complexity raises various

administrative and security challenges. As a result, the

network research community recognizes SDN, an approach

to meet these challenges. SDN decouples the control logic

from the closed and proprietary implementations of tradi-

tional network devices. It enables practitioners and scien-

tists to support the design of fine-grained network

management policies and innovative network functions in a

much more straightforward, flexible, and powerful way [1].

Therefore, SDN has quickly emerged as a novel technology

for various networking architectures. For instance, Internet

of Things (IoT) [2], Heterogeneous Ultra-Dense Networks

[3], and Cloud Computing Environments [4] are some of

the applications that uses the unique SDN features to

& Chhagan Lal

chhagan@math.unipd.it

Mauro Conti

conti@math.unipd.it

Reza Mohammadi

mohammadi.rm@gmail.com

Umashankar Rawat

umashankar.rawat@jaipur.manipal.edu

1 Department of Mathematics, University of Padova, Padua,

Italy

2 Computer Engineering Department, Bu-Ali Sina University,

Hamedan, Islamic Republic of Iran

3 Manipal University Jaipur, Jaipur, India

123

Wireless Networks (2019) 25:2751–2768
https://doi.org/10.1007/s11276-019-01991-y(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0002-0051-1551
http://crossmark.crossref.org/dialog/?doi=10.1007/s11276-019-01991-y&domain=pdf
https://doi.org/10.1007/s11276-019-01991-y

improve their network security or communication relia-

bility. Unfortunately, the lack of smart network planning,

security threats, and situation management in SDN limit its

performance and applicability in the real world [5].

The reference implementation of SDN that is widely in-

use is called OpenFlow [6]. The existing OpenFlow pro-

tocol implementation in SDN mainly uses two communi-

cation interfaces namely ‘‘northbound’’ and ‘‘southbound’’.

The northbound interface facilitates communication

between the controller and the application/business logic,

while the southbound interface is used for relaying infor-

mation between the control plane and the data plane

components. When a matching rule is not present in the

forwarding table of an OpenFlow switch (OF-switch) for

an incoming message, the data plane asks the controller for

further actions through a southbound protocol. In this way,

for each new message1 that an OF-switch receives, it has to

query the controller to install new rules. Hence, each new

message at OF-switch consumes resources (e.g., CPU,

memory and bandwidth) at both the planes. This handling

process for each new packet in SDN leads to issues related

to its scalability and security. For instance, an attacker

could launch a dedicated DDoS attack [7] by sending a

large number of new messages to the control plane. These

messages will cause communication bottleneck in south-

bound communication and throttle the throughput and

processing capacities of the controller as well as edge OF-

switches.

1.1 Motivation

In order to perform a DDoS attack in SDN, the adversary

can exhaust resources of one or more of the following

network components.

– Buffer memory at OF-switches,

– Communication channel bandwidth between data and

control planes,

– Processing power at controller and OF-switches,

– Reserving unnecessary resources at some target servers,

and

– Communication channels bandwidth at data plane.

The existing SDN architectures place the network security

applications at control plane to counter various security

threats such as DDoS attacks. However, implementing

security features at control plane hinders the performance

of these security applications. It is due to the presence of

inherent communication bottleneck between the data plane

and the control plane. The bottleneck not only add com-

munication delay, but it also limits the amount of traffic

that these security applications can process. Additionally,

such implementations also limit scalability due to the

presence of an insufficient number of controllers in the

SDN as compared with the number of OF-switches.

Therefore, to provision possible and robust security appli-

cations in SDN, the OF-switches need to support more

advanced functionalities rather than just forwarding the

control and data messages.

Over the years, various solutions were proposed to

countermeasure DDoS attacks in SDN networks [8–11].

Although these approaches have different implementation

details to detect attacks, they share a similar design prin-

ciple and architecture. A vital issue in the designs is to

identify which flow information (such as destination IP,

port number, and packet sequence number) is essential to

be reported to the controller. Note that, due to its capacity

limitation, it is not feasible for the controller to receive and

analyze information for all network flows from all

switches. A simple solution to this problem that has been

proposed in most of the state-of-the-art is to rely on OF-

switches to perform pre-processing on received flow

information, generate summarized statistics (e.g., changes

of flow rates), and report the summary to the controller.

However, to accomplish the pre-processing at OF-switches,

one has to rely on extra components (e.g., appliances),

which results in additional deployment cost. Also, flow pre-

processing in switches (e.g., analysis of changes of flow

rates) may lead to loss in crucial original information, and

thereby the controller could mistakenly omit attack flows.

It is especially serious when stealthy DDoS attacks (e.g.,

Crossfire [12] through route spoofing) or non-link-flooding

attacks (e.g., TCP flooding to achieve resource exhaustion

attack) take place. Under these attacks, the information

reported by the OF-switches always fall in the standard

category, and thus, it will be difficult for the controller to

know if an attack is happen. Hence, such techniques may

neither be able to detect specific attacks, and even if they

do, the detection accuracy is questionable.

1.2 Contributions

In this paper, we propose and analyze potentially useful

solutions to detect and prevent two DDoS attacks in SDN.

The first attack called Route Spoofing (RS), which targets

the data plane resources, i.e., computation resources at OF-

switches and communication channels bandwidth. The

second attack called Resource Exhaustion (RE), which

exploits the southbound interface’s scalability issue that

exists due to the limited bandwidth channel between the

data and control planes. Both these attacks could work in

wired or wireless networks that are attached with SDN

edge routers. However, the attacks are more effective in the

wireless SDN networks because the IP and MAC spoofing

1 We use the term ‘‘new message’’ for the packets for which the OF-

switch does not find a matching rule in its forwarding table.

2752 Wireless Networks (2019) 25:2751–2768

123

is relatively easy to perform in wireless networks when

compared with the wired networks. The major reasons

behind analyzing these two attacks together in this paper

are as follow: (1) both the attacks aim to perform DoS

through data or control plane against the benign hosts, (2)

the system and attack model for both the attacks are same

due to the nature of these attacks, and (3) one attack per-

forms DoS at data plane while the other performs it on

control plane, thus, these attacks cover the behaviour of a

large set of DoS attacks, and we believe that the same

countermeasures, which we proposed in this paper can be

used with slight or no modifications to counter various

other forms of DoS attacks in SDN.

To handle the RS attack, we design and implement a

module called ‘‘selective blocking’’ at OF-switches. It

checks each incoming message at the OF-switches against

a set of security policies that are installed on these

switches, and the suspected malicious messages will be

forwarded to the controller to take further security actions.

Another security module called ‘‘periodic monitoring’’,

which is also installed at OF-switches to enforce a set of

rules on the incoming traffic and it uses randomness in the

received traffic as a measure of anomaly detection. The

violation of these rules and low randomness in few selected

metric values will be suspected as an indication of an

ongoing RE attack. This paper is an extended version of

our preliminary work appeared in [13]. In this paper, we

make the following significant research contributions.

– We present novel DDoS attacks, and we show their

impact through implementation. In particular, through

simulation results, we analyze the behavior of various

data and control plane network entities against two

DDoS attacks called Route Spoofing and Resource

Exhaustion in various target SDN scenarios. We show

that the RS attack effectively causes DDoS for end-

hosts by disrupting the communication system at data

plane, while the RE causes DDoS by exhausting the

resources of controller, OF-switches, and data servers

(such as a remote HTTP server).

– We propose two simple and practically feasible exten-

sions called ‘‘selective blocking’’ and ‘‘periodic mon-

itoring’’ which are mainly implemented on the data

plane OF-switches. These solutions provide adequate

security from the aforementioned DDoS attacks. Unlike

our preliminary work that appeared in [13], in this work

the ‘‘periodic monitoring’’ countermeasure consists of a

two phase detection process, i.e., entropy-based and

new low-traffic flows rate based. The two solutions can

work separately or can be combined to complement

each others limitation. Additionally, we ensure that the

proposed extensions are transparent (i.e., no changes

are required at end hosts machines) and they exhibit

lower collateral impact (i.e., benign flow’s setup time is

not adversely affected and keep the false positives and

false negatives lower).

– To show the feasibility and effectiveness of the

proposed countermeasures, we implement a prototype

SDN system in MiniNet emulator, which is evaluated in

various adversarial scenarios. In this extended version,

we show that our proposed countermeasures have the

following key advantages: (1) promptness - the detec-

tion modules can quickly identify the compromised

data flows and OF-switch interfaces after a small

number of consecutive observations, which are done

using number of mice flows, randomness in the specific

parameters of received new messages, and identifying

the IP and MAC spoofing, (2) versatility: our proposed

detection modules exhibits the ability to detect DDoS

attacks of versatile nature, i.e., no matter how the

malicious traffic is generated, and (3) accuracy: the

proposed countermeasures can differentiate between

benign, flash, and malicious traffic, and make more

accurate decisions when compared to the state-of-the-

art. The evaluation results show that the proposed

countermeasures can efficiently tackle the two afore-

mentioned DDoS attacks regarding detection time,

network throughput, correctness, and network

overheads.

1.3 Organization

The rest of this paper is organized as follows. In Sect. 2, we

present the related work. Section 3 describes the design

and working methodology of Route Spoofing attack and its

countermeasure, and Sect. 4 describes the design and

working methodology of Resource Exhaustion attack and

its countermeasure. In Sect. 5, we present the details of

target SDN scenario that we set up for emulation, and we

also present the performance evaluation using the results

obtained. Finally, Sect. 6 concludes our work with possible

future directions.

2 Related work

The programmability and flexibility provided by SDN

allows the network providers to enable in-network security

functions. These functions include firewalls, monitoring

applications, access control and middlebox support through

OF-switches [14]. For instance, authors in [15] propose

Bohatei, which is a SDN and NFV based flexible and

elastic DDoS defense system for traditional networks.

Similarly, other research works use SDN technologies for

traffic monitoring and tackling DDoS and amplification

Wireless Networks (2019) 25:2751–2768 2753

123

attacks in traditional networks [16, 17]. However, before

using SDN to improve the security of other networks, it is

imperative to ensure that the SDN functionalities are pro-

tected from various attacks [18]. To this end, this section

reviews the state-of-the-art countermeasure techniques that

have been proposed in SDN to address its various security

challenges [10].

SPHINX [19] is a framework which detects SYN

flooding attack by investigating the rate of the new SYN

requests. If the rate of new SYN request is above the

administrator-specific threshold, SPHINX raises the alarm,

and the controller can perform the prevention. FlowFence

[20] is a defense system for SDN which is based on

bandwidth coordination technique. In FlowFence, each OF-

switch has a monitor that measures the average occupation

of its interfaces. If the monitor detects any congestion on

the interfaces, the OF-switch reports to the controller. To

prevent users’ starvation, the controller limits the rate of

ongoing flow along a path.

Authors in [21] presents AVANT-GUARD, which

detect and prevent the TCP SYN flooding attack. AVANT-

GUARD uses connection migration mechanism in data

plane switches as a proxy for incoming TCP SYN packets

and limits the effect of the control plane saturation attack.

AVANT-GUARD informs the controller and request for

flow rules only for the users who have been performed

three-way TCP handshaking process. It handles only

attacks launched using TCP services, but no support is

provided for UDP flooding attacks. While [22] presents

TopoGuard, which is a security extension for SDN. It is

implemented on the controller, and it can detect network

topology poisoning attacks along with the host location

hijacking and link fabrication attacks. LineSwitch [23] is

another solution which has been proposed to eliminate the

weaknesses of AVANT-GUARD. Similar to AVANT-

GUARD, LineSwicth acts as a TCP proxy and it also uses

connection migration mechanism. But, unlike AVANT-

Guard, LineSwitch proxies a minimum number of TCP

requests and uses probabilistic blacklisting mechanism.

In [9], authors propose an entropy-based DDoS detec-

tion mechanism implemented at the edge OF-switches. The

authors extend a copy of the packet number counter of each

flow table entry in the OpenFlow table called as

‘‘RP_Local’’. The entropy is calculated by each OF edge

switch based on the destination IP’s which are present in

their network. However, the approach requires placing the

proposed solution in every OF-edge switch as part of DDoS

detection, and it assumes a static threshold and provides no

method to discriminate flash crowd from the attack traffic.

FloodGuard [24] is an OpenFlow extension for pre-

venting DOS attacks in SDN. FloodGuard consists of two

modules: (1) proactive flow rule analyzer, and (2) packet

migration. The former proactively insert the flow rules to

the switches to prevent overloading problem during the

data-to-control plane saturation attack. In [25], authors

propose a collaborative technique for SYN flooding attack

detection and containment. Authors develop new compo-

nents called ‘‘monitors’’ and ‘‘correlators’’ for mitigating

DDoS attacks. The monitor continuously listens to the

ongoing traffic to detect the SYN packets with different

source IP addresses which denote IP spoofing. When the

monitor detects an attack, it informs the correlator by

sending an alert message that contains the number of

source IP addresses found in SYN packets.

In [26], authors introduce a new attack in SDN namely

‘‘freeloading’’ attack in which an attacker bypasses the

process of installing the flow rules, and it sends their

messages by exploiting the existing flow rules in the for-

warding table of an OF-switch. In freeloading, an attacker

spoof’s IP/MAC address of an existing host in the network,

and it gathers the information about the host’s flow rules.

Then, the attacker compromises the physical access to the

local networks and launches a stealthy attack without

installing any flow rules. To prevent this type of attacks,

the authors proposed watermarking technique. The pro-

posed countermeasure requires changes in end-host soft-

ware, thus lacks transparency.

Authors in [8] proposes SLICOTS, an extension module

in the OpenDayLight controller to countermeasure TCP

SYN flooding attack. In SLICOTS, first, all the TCP

communications are stored on their nature of set-flag in a

‘‘pending_list’’. The pending list attaches every connection

record with either hSYN; SYN ACK;RSTi. Any record on

‘‘pending_list’’ is counted as an illegitimate record, and if

the number of illegitimate records for a specific host

exceeds a predefined threshold (K), it will install a DROP

rule on the edge switch of that host. SLICOTS suffers from

MAC spoofing, and it statically chooses a threshold of the

pending connections associated with a host, and it does not

provide any discriminating behavior between flash crowd

vs. attack traffic. Similarly, authors in [10] presents a

thorough treatment of solutions against DDoS in the SDN

environment.

FL-GUARD (Floodlight-based guard system) in [27] is

presented as a solution to handle the DDoS attacks in SDN.

The proposed system works in three steps, first, it realize an

anti-spoofing of source IP address, second, it support vector

machine algorithm to detect the DDoS attacks, and third,

the controller inserts a new rule in the flow table to block

attacks at the source port. Authors in [11] proposes Rein-

forcing Anti-DDoS Actions in Realtime (RADAR) to

detect and throttle DDoS attacks via adaptive correlation

analysis built upon unmodified commercial off-the-shelf

SDN switches. It is a practical system to defend against a

wide range of flooding-based DDoS attacks, e.g., link

flooding, SYN flooding, and UDP-based amplification

2754 Wireless Networks (2019) 25:2751–2768

123

attacks while requiring neither modifications in SDN

switches/protocols nor new appliances. However, the paper

does provide a way to differentiate between the flash and

malicious traffic, and it suffers from the MAC and IP

spoofing attacks. Recently, authors in [28] present SGuard,

a security application on top of the NOX controller that

mainly contains two modules: Access control module and

Classification module. It employs six-tuple as a feature

vector to classify traffic flows, meanwhile optimizing

classification by feature ranking and selecting algorithms.

All the modules will cooperate with each other to complete

a series of tasks such as authorization, classification and so

on.

3 Route spoofing attack
and countermeasure

In this section, we discuss the working methodology of

Route Spoofing (RS) attack, and we present details of our

proposed countermeasure for the same.

3.1 Route spoofing attack

In SDN, it is possible for malicious users to send their

messages by exploiting the existing active data flow’s

information from the network. In wireless local area net-

works, where multiple nodes are connected to an OF-

switch, an adversary can learn about the active data flows

by first performing eavesdropping attack on these OF-

switches. To perform eavesdropping, the adversary can

simply use the promiscuous mode feature of the wireless

networks. Once the adversary has information about the

active data flows, then it can use these spoofed routes for

data transmission by using the IP addresses of their

neighbor nodes as the source IP address for its own

transmitting messages. Thus, performs the RS attack by

sending traffic on active routes that belong to other users in

the network. Additional, other information about network

topology and active data flows can also be easily obtained

using network tools such as trace-route, ping, and link layer

discovery packet (LLDP) [26]. An adversary can use

multiple neighbor IP addresses to send a large amount of

traffic to different destinations in the network. This

behavior can lead to data plane resource exhaustion attack

because the adversary could spoof a set of active routes,

and it uses these to transmit unwanted high data-rate traffic

in the network. The presence of high data-rate unwanted

traffic will cause low packet delivery for legitimate traffic

flows due to link congestion, it increases end-to-end delay,

and OF-switches input-output buffer will overflow.

The possible real-world scenarios in which the RS attack

affects greatly are as follows:

– In a network, where each user has to pay for their data

usage, an adversary can get free data transmission, and

the genuine user whose IP address is used by the

adversary for data transmission has to pay extra.

– In a network, where the data plane has limited

communication bandwidth due to a large number of

users in the network, such behavior of adversary will

result in a DoS attack. Depending upon the rate of data

transmission by an adversary on the spoofed routes or

number of active routes spoofed, it can cause a different

level of congestion on the data plane.

Figure 1 illustrates an instance of a possible attack

scenario for RS attack. Table 1 depicts an instance of the

forwarding rule table (FRtable) at OF-switch (say S1). As it

can be seen from Table 1, the rules that the controller has

installed has the following interpretation; all the packets

received from port 1 with source and destination IPs as

192.168.1.1 and 192.168.1.4 will be forwarded to output

port 3, and all the packets received from port 2 with source

and destination IPs as 192.168.1.2 and 192.168.1.3 will be

forwarded to port 4. Let’s assume that host 2 is an attacker

node, and as per the entries in Table 1, it can only send data

to host 3. Both host 1 and host 2 are connected to a switch,

which is then connected to port 1 of S1. In this scenario, the

attacker can easily spoof the IP address of host one as both

are in the same local area network, and later it will use the

spoofed IP address as source address in all the messages

that it will transmit to host 3. In this way, host 2 uses a

forged address, and it can lead towards possible data plane

resource exhaustion attack.

3.2 Proposed countermeasure

The detection unit of our proposed countermeasure called

‘‘selective blocking’’ for RS attack comprises of two sep-

arate modules (i.e., IP and MAC spoofing detectors). These

modules also run on the OF-switches as it is shown in

Fig. 2, hence, an adversary that resides on the host network

has no knowledge or has no control over these modules.

The adversary can only perform the IP spoofing or MAC

spoofing on the hosts that resides in the same network with

the aim to launch the RS attack. It is seen from Fig. 2 that

upon reception of a new message, IP spoofing detector

checks for IP spoofing attack because a RS attacker uses

spoofed IP addresses. If the detector detects an attack, i.e.,

multiple nodes are using the same source IP, it notifies the

controller for further action. However, if no IP spoofing is

detected then the possibility that the IP spoofing is being

done along with MAC spoofing is checked. It is done by

forwarding the message to the MAC spoofing detector. If a

MAC spoofing attack is detected, it is informed to the

controller. If no spoofing is detected, the packet is

Wireless Networks (2019) 25:2751–2768 2755

123

processed normally by OF-switch. The functionalities of

these two detection modules are as follows.

The IP spoofing detector will use the information

gathered from MAC layer header of the received new

packet. We implement the indicator on the OF-switch as a

module that runs the detection process for the RS attack,

and upon detection, it sends an alarm packet to the con-

troller. The prevention unit is implemented at the con-

troller. During its processing, the detection unit creates a

table named network table, which stores IP and MAC

addresses of currently active flows. An instance of

network table is shown in Table 2. Each entry in the

network table consists of a unique \IP;MAC[pair,

which are currently active in data transmission in SDN

network. network table is indexed by MAC address. We

assume that a single IP address is bind with only one

network interface card (i.e., MAC address) at any given

time, thus each entry of \IP;MAC[pair in the

network table exhibits a relation R, which satisfy the

functional dependency IPi ! MACi (i.e., each IPi value in

R is associated with precisely one MACi value in R). When

an OF-switch receives a packet, the IP spoofing detector

running on it will extract the \IP;MAC[pair from the

packet, and checks it in the network table for a relation R.

If this pair is not present in the network table, it is added to

it. But, if the switch finds an IP address which is associated

with two or more different MAC addresses in the

network table, it concludes that an adversary might be

using an IP address of a neighbor to send traffic in the

network anonymously. However, the detection process will

fail, if an adversary spoofs the \IP;MAC[pair because

by doing so it will be able to satisfy the relation R. Thus,

the IP spoofing detector will not able to detect an IP

spoofing instance. For this reason, all the packets that

Fig. 1 Example—Target SDN scenario

Table 1 Forwarding table at S1
P_in SRC_MAC DST_MAC SRC_IP DST_IP ... ACTIONS

1 * * 192.168.1.1 192.168.1.4 ... P_out 3

2 * * 192.168.1.2 192.168.1.3 ... P_out 4

...

IP Spoofing
Detector

MAC Spoofing
Detector

No Attack
Incoming
packets

Attack

OF-Switch
processing

Attack

Notify controller

Fig. 2 Detection unit running at OF-Switches

Table 2 network_table instance

IP address MAC address

92.168.1.1 00:00:00:00:00:a1

192.168.1.2 00:00:00:00:00:a2

192.168.1.3 00:00:00:00:00:a3

192.168.1.4 00:00:00:00:00:a4

... ...

2756 Wireless Networks (2019) 25:2751–2768

123

passes the first detector will feed to the second detector

(i.e., MAC spoofing detector) as it is shown in Fig. 2.

TheMAC spoofing detector is implemented based on the

approach presented in [29]. The proposed technique keeps

track of the sequence number of each traffic flow to detect

MAC spoofing attack. Upon reception of a frame, the

algorithm calculates the gap G between the sequence

number of the current frame and that of the last frame

received from the same source address. If G ¼ 0, the cur-

rent frame is considered as a retransmitted frame, while if

G ¼ 1 or G ¼ 2, the current frame is considered the right

one. But, if the gap between the current frame and previous

frame is in between 3 and 4096, then it is considered an

abnormal sequence number. We choose the method given

in [29] for our MAC spoofing detector implementation due

to its following advantages:

– It does not require any change at end hosts.

– There is no additional overhead incurred in extraction

of sequence numbers for MAC spoofing detection

because these fields are extracted from each received

packet when the packet header is being checked for the

RS) attack detection.

– The detection approach remains robust, even in cases,

where an adversary predicts the next sequence number.

In such case, the OF-Switch will receive two frames

(one from adversary and one from the benign host) with

the same sequence number, and the OF-switch needs to

check weather its a retransmitted frame or a spoofed

frame. To resolve such situations, the OF-switch keeps

a copy of the recently received frame, and it can use the

copy to verify if the current frame is retransmitted

frame or not.

– It only leverages the sequence number field in the link-

layer header of IEEE 802.11 frames.

– The false positive and false negative rate of this method

is nearly zero.

Once an anomaly is encountered by any of the detection

units running on the edge OF-switch, the switch generates a

packet named alarm packet consisting of the detected

source host’s \IP;MAC[pair. The mitigation unit at

controller gets activated as soon as it receives the

alarm packet. We implement the mitigation unit as a

module on the OpenDayLight controller, which uses

IListenDataPacket interface of OpenDayLight to listen

for incoming packets. In particular, inside the OpenDay-

Light controller, a module named ‘‘Host Tracking’’ create

and maintain a Host Profile data structure to track the

location of a host, i.e., from which OF-switch a host is

connected to the SDN network. The Host Profile contains

MAC, IP and Location (i.e., network address) of the host,

this information is collected by the controller when a host

connects first time with an OF-switch. The prevention

module uses this Host Profile to recognize the attacker in

the SDN. When the prevention module receives the

alarm packet from an OF-switch through the OpenFlow

southbound interface, it first extracts the \IP;MAC[
pairs from the packet. Then, it checks them with the Host

Profile. In the Host Profile structure, the IP addresses will

be associated with only one MAC address and not with the

rest of the MAC address(es) that are mentioned in the

received packet, thus, it identifies the host that is using a

neighbor IP address to perform RS attack. As a result, the

controller sends a forwarding rule to block the malicious

host(s).

When an attacker performs the IP and MAC spoofing at

the same time, our detection approach is able to identify the

attack, however it is not possible to identify which of the

one from the two identified nodes is an attacker. For

instance, when the MAC spoofing detector founds two

frames with the same sequence number and they are not the

identical (i.e., not a retransmission event), it has no way to

identify which of the frame is spoofed one. Therefore, in

our RS) attack detection approach, while blocking the

attacker flows the legitimate users might also get blocked.

However, our approach blocks the detected malicious flows

for a short random duration. The blocking period starts

with a minimum value (i.e., 5 ms), and this value increases

each time the same flow is detected as malicious flow by

the controller. The blocked period allows the genuine hosts

attached to that flow to use the specific countermeasures at

their end to avoid future IP and MAC spoofing. Our

blocking approach is aimed to let the benign hosts to work

at their full capacity, which we achieve by our method

because as soon as the malicious hosts high rate traffic is

blocked, the network resources become available for the

benign hosts. Figure 3 depicts our proposed attack detec-

tion and prevention technique for Route Spoofing attack

regarding a flow-chart.

4 Resource exhaustion attack
and countermeasure

In this section, first we describe the Resource Exhaustion

(RE) attack which leads to data and control plane saturation

in SDN. Later, we present our proposed countermeasure to

detect and mitigate the RE attack. Table 3 provides the list

of symbols along with their meaning that has been used to

explain the RE attack and its countermeasure.

4.1 Resource exhaustion attack

In RE attack, the aim of an adversary is two-folded.

Wireless Networks (2019) 25:2751–2768 2757

123

– Perform a TCP SYN flooding attack to target the

controller’s processing power and destination server’s

resources. When a new SYN packet is received by an

OF-switch, the packet is sent to the controller for

further processing. The controller identifies a route

between source and target server and install the

forwarding rules on the data plan switches. Upon

reception of a SYN message the server opens a new

connection and allocate a set of resources to this new

connection. In this way, an attacker uses several fake

SYN packets to waste: (1) resources at the server, (2)

processing power at the controller, and TCAM memory

at the OF-Switches. The primary detection phase of our

proposed countermeasure detects the TCP SYN flood-

ing attack (refer to Sect. 4.2.1).

– An adversary send huge amount of new packets (or new

very small duration data flows) with different source IP

and port, and/or destination IP and port. For each such

packet, the receiving OF-switch will forward it to the

controller for further processing. Such packets exhaust

the southbound link bandwidth, OF-Switch TCAM

memory, and controller resources, thus denies or delays

service to benign hosts. We consider that these new

packets are UDP packets, but the attack can be

combined with the TCP SYN flooding packets as well.

To identify such fake data flows, we propose a

countermeasure, which we explain in Sect. 4.2.2.

4.2 Proposed countermeasure

To countermeasure the RE attack, we propose a lightweight

solution called ‘‘periodic monitoring’’. It detects the

adversary nodes based on the traffic analysis statistics

gathered over a period using a two-phase (called primary

i.e., Sect. 4.2.1, and secondary i.e., Sect. 4.2.2) anomaly

detection module. Once an anomaly is detected, the switch

notifies about it to the controller for mitigation purposes.

The detection module is implemented on the OF-switch as

an extension, while the prevention technique is imple-

mented at the controller.

4.2.1 Primary detection phase

In this phase, our proposed approach uses the randomness

of data packets in a flow to detect the DDoS attack. It is

because an increase in randomness in data flows lead to an

increase in entropy and vice verse. The two components

that are essential for DDoS detection using entropy are:

(a) window size, and (b) entropy threshold value. The

window size is either based on a period or on a specified

number of packets, we use a period as a measure for

window size. Entropy is calculated within this period to

measure the randomness in receiving packets. However, to

detect an attack, a threshold entropy is required. If the

newly calculated entropy passes a threshold entropy or is

below it, then depending on the detection technique used, a

possible attack can be detected.

Equation 1 shows a window, where ri is the random

variable and fi represent its frequency of occurrence. To

compute the entropy, Eq. 2 is used where PðriÞ denotes the
probability of occurrence of each random variable in the

set.

W ¼ fðr1; f1Þ; ðr2; f2Þ; ðr3; f3Þ; . . .; ðrn; fnÞg; ð1Þ

PðriÞ ¼ fi=N ð2Þ

Fig. 3 Flow-chart to countermeasure route spoofing attack

2758 Wireless Networks (2019) 25:2751–2768

123

N ¼ f1 þ f2 þ f3 þ � � � þ fn; ð3Þ

Here, N represent the total number of occurrences of all the

outcomes. The entropy of a discrete random variable (R)

that is present in a system is defined as follow.

EðRÞ ¼
Xn

i¼1

�PðriÞlog2PðriÞ: ð4Þ

Here, n represent the number of unique outcomes (i.e.,

unique destIP or destport). Since entropy falls in the range of

[0, log2n], and it would vary for different window sizes.

Therefore, we normalize the entropy to get fall in the same

scale of entropy, i.e., in the range of [0, 1], which is

independent of the sample size of the window as it can be

seen in Eq. 5.

ENðRÞ ¼ EðRÞ
log2 n

: ð5Þ

Our approach calculates the entropy of incoming new

packets in a fixed time window to determine a possible

abnormal behavior. In particular, entropy is calculated on a

set, where the set consists of one or more of the following

parameters, namely, source IP address (srcIP), destination

IP address (destIP), destination port (destport), OF switch

input port (OFSip), and TCP flags (TCPflag) [30]. In gen-

eral, in non-attack scenarios there are multiple hosts which

communicates with each other and their packets identified

with a set \destIP; destport [or \srcIP; destIP [will be

randomly distributed in the network. However, in the

presence of an adversary, a particular service irrespective

of its location will generate packets with same destIP,

destport or generate a large number of new messages by just

changing the destIP. In such scenarios, the randomness is

limited due to nature of the attack. Hence entropy will

decrease to a noticeable level. Although an adversary could

also send new messages with spoofed IP addresses, this

will increase the randomness (or entropy) when it is cal-

culated using the set \srcIP; destIP [. But, if the entropy

calculation is being done based on the number of new

packets received with different source IP in a given win-

dow, then the randomness will be low. However, the low

randomness could also occur if the same source is estab-

lishing some genuine connections with different destina-

tion nodes. For such cases, i.e., where a possibility of an

ongoing attack is detected by our primary phase, the sec-

ondary phase will do further analysis to ensure that the

lower entropy is due to an attack and not due to the

increase in the genuine traffic flows in the network.

Key Observation

Let’s take an example of TCP SYN flooding attack. Flow

entropy is higher for a normal case of traffic scenario because

the number of packets for a destination IP will be of uniform

nature. However, once message flooding (such as SYN

packets) is active, there will be a dominance of attack flows,

and consequently, a continuous significance decrease in the

entropy would be observed for the duration of the attack

period. It is because the concentration of packets for a par-

ticular destination IP (victim node) will be verymuch greater

than for the other destination IP. Therefore, it causes a situ-

ation of alarm when there is a sudden decrease in entropy.

Formal Proof Assume that a TCP SYN flooding attack

is taking place. Let E(R) denotes entropy at the two con-

secutive time units within an interval, say Dt (t0 and

t0 þ Dt) respectively. As the difference found in the sub-

sequent entropy values is less than a quantity k (threshold

entropy), hence we can write:

EðRÞ jt¼t0
� EðRÞ jt¼t0þDt � k; ð6Þ

where, t represents time, and k (k[0) represents the

threshold entropy at that point of time. Subsequently, we

are now in a position to ascertain whether entropy will

decrease or increase continuously for the chosen time

window. Therefore, we have to test the nature of the

deviate of entropy over the assumed time period.

E
0 ðRÞ ¼ lim

Dt!0

EðRÞ jt¼t0þDt � EðRÞ jt¼t0

Dt
: ð7Þ

Combining Eqs. 6 and 7 we get,

E
0 ðRÞ� � k; ð8Þ

E
0 ðRÞ\0: ð9Þ

Using Eqs. 7–9, it could be explained that if there is a

continuous decrements occur in the values of entropy, and

it is found to be lower than a threshold, it could be seen as a

Table 3 Notations

Symbol Meaning

R Discrete random variable

ri Instance of R

fi Frequency of occurrence of ri

PðriÞ Probability of occurrence ri in W

W Monitoring window

Ei Set of entropy in W

N Total number of occurrences of all the outcomes

n Number of unique outcomes

k Threshold entropy

Dt Time interval of W

r Standard deviation of normal entropy values

l Number of nearest normal entropy values, i.e., mean

entropy

M Minimum times that satisfied the Eq. 6

Wireless Networks (2019) 25:2751–2768 2759

123

sign of either malicious traffic or a surge of a flash crowd.

Hence, further work has to be done to discriminate the two

flows. To this end, we will propose, in Sect. 4.2.2, the

details of our secondary detection phase which executes

after the primary phase to improve the true positive rate of

our detection process. Please note that both the detection

phases will run in parallel and report the controller when an

anomaly is found. Therefore, in cases, where the primary

phase is fail to differentiate between malicious traffic and

flash traffic, the secondary phase might get success or vice

verse.

Threshold Entropy Estimation

Threshold estimation process consists of two parts. First

is to find an average entropy value, and the second is to

perform a normal distribution analysis on the calculated list

of entropy values to get an average entropy (apt) which is

then set to threshold entropy. For calculating the apt, we

setup the network traffic in the following manner.

– 5% of the overall network traffic directed towards

victim host.

– 10% of the overall network traffic directed towards a

victim host.

– 15% of the overall network traffic directed towards a

victim host.

– 20% of the overall network traffic directed towards a

victim host.

– 25% of the overall network traffic directed towards a

victim host.

Figure 4 describes our theory (using the simulation results)

for getting the normalized entropy values with respect to

above mentioned approach. All the five scenarios would

provide us a set of points of valid normalized entropy

which is subject to a varied intensity of traffic distribution.

Collected samples of normal entropy are subjected to

normal distribution analysis of statistical approaches.

When scatter-plotting these values, we see that it follows a

Bell-like curve. Therefore according to ‘‘standard deviation

and coverage theorem of normal distribution theory’’ about

68% of values come from a normal distribution is found to

fall in one standard deviation (r) with the mean (l), about
95% of the values lie fall two standard deviations, and

about 99.7% falls within three standard deviations. This

fact is well known as the 68� 95� 99:7 (empirical) rule or

the 3-sigma rule. Therefore, mathematically for finding the

initial or subsequent points in the threshold. Once a set of

points of valid normalized entropy (Ei) is available which

is gathered during a fixed window size, our THRESHOLD

function shown in Algorithm 1 will be used to calculate the

threshold entropy.

Time and space complexity Procedure threshold esti-

mation requires a traversal of the entire size of \Ei [.

Generalizing it, the algorithm incurs n steps for the exe-

cution, thus contributing a time complexity of O(n). Local

variables l and r require constant space, but \Ei [being

a list of size n contributes to a total space complexity of

O(n).

Finally, since the network traffic characteristics cannot

remain similar all the time, we believe that the threshold

entropy should be adaptive. Therefore, with the dynamism

of traffic scenario, the point of threshold should change

over the time. Hence, whenever any window’s entropy is

found to be greater than the threshold, we would regard

that entropy as one of the normal entropy and put that

entropy value into \Ei [, as this one indicates one of the

benign entropy. Now, when the Ei is full, mean and stan-

dard deviations for the set \Ei [is calculated. Hence, a

new threshold will be provided to the system to proceed

further. By doing this, we have read the characterization of

the network traffic situation and act so.

 0.72

 0.75

 0.78

 0.81

 0.84

 0.87

 0.9

 0.93

 0.96

 0.99

 100 200 300 400 500 600 700 800 900 1000

N
or

m
al

iz
ed

 e
nt

ro
py

Time (sec)

5% on a host
10% on a host
15% on a host

20% on a host
25% on a host

Fig. 4 Distribution of normalized entropy with varying load on victim

host

2760 Wireless Networks (2019) 25:2751–2768

123

4.2.2 Secondary detection phase

Algorithm 2 depicts the steps taken during secondary

detection phase. As it can be seen from Algorithm 2 that the

detectionmethod uses a PacketMonitoringTable (OFtable
s) at

each OFs. It consists of \NpcktSip;NpcktDip;NpcktMAC;

T ;CT [tuple. When a openflow switch (OFs) receives a

new data packet (i.e., Npckt), it extracts the tuple

\NpcktSip;NpcktDip;NpcktMAC [, and the packet is sent to

the controller. The NpcktMAC of the extracted tuple is sear-

ched in theOFtable
s . If a match is found, the value ofCT in the

corresponding row is increased by one, if no match is found,

then a new tuple is created, and a TIMER (T) of t second is

associatedwith the newly created entry. The above process is

done only for the Npckt, thus it minimizes the control over-

head of searching and storing new entries in the OFtable
s .

Upon the expiry of each T, the detector module com-

pares the value of average CT (i.e, C
avg
T) with the specified

value of Tflow. Each time the value of Tflow is randomly

selected between a set of values. If the C
avg
T generated by

the host is more than Tflow in last n times,2 each t second

duration, the host is suspected as a RE attacker. For the

suspected host, the second phase of the ‘‘periodic moni-

toring’’ technique will be performed before sending an

alarm packet to the controller.

In the second phase, the detection method uses multiple

parameters which include, a time interval (t), number of

mice3 flows (Fmice), mice flow threshold (Tmice), and a

probabilistic parameter which is chosen by the network

administrator. We choose this probabilistic parameter in

the same way we choose the threshold entropy in our pri-

mary phase. Using these mice values, an RF attack detec-

tion parameter (RFdet) is calculated at the OF-switch using

the following Eq. 12.

RFdet ¼
Fmice � Tmice

Fmice

: ð10Þ

To avoid blocking the benign users that send more traffics

containing the mice flows, we have considered a proba-

bilistic parameter say P 2 f0; 1g, and it is set by the

administrator. The detection unit periodically counts the

number of mice flows for each host. The edge OFs detects a

host that sends more than Fmice per t second, and it cal-

culates RFdet value for that host. If RFdet is greater than P,

then it informs the controller to block the host. To better

understand the approach, let’s take an example. Suppose

that t = 5 s, P = 0.5 and Tmice = 10 are the assigned values to

these parameters for the detection unit on the edge OFs. In

this scenario, assume that there are two users, one benign

and the other is attacker. The benign user generates 15

mice flows, and the attacker generates 25 mice flows per t.

For these two users, the RFdet values will be as follows:

RF
benign
det ¼ 15� 10

15
¼ 0:3; ð11Þ

RFattacker
det ¼ 25� 10

25
¼ 0:6: ð12Þ

Since RFattacker
det is greater than P ¼ 0:5, the detection unit

informs the controller about the attacker. According to

Eq. 12, it can be concluded that if the attackers generate a

high volume of mice flows, the probability of blocking

them is increased. In particular, this phase can suspect a

host as an attacker who generates mice flows greater than

below the equation:

Fmice [
Tmice

1� P
: ð13Þ

It is worth to mention that using probabilistic parameter

such as above for attack detection is a conventional

2 Use of lower values for n might increase the number of false

positives, and use of higher values will increase the detection time for

the attack.
3 A mice flow is a data flow that contains less than 3 packets.

Wireless Networks (2019) 25:2751–2768 2761

123

approach and have used by various literature such as

[23, 31, 32] to name a few. Our proposed ‘‘periodic mon-

itoring’’ technique only notifies the controller by sending

an alarm packet, if a host is suspected an attacker in both

the aforementioned detection phases. Upon reception of

alarm packet, the control detects (by using Host Profile

data structure) the host machine and install blocking rules

on OFs for the suspected attacker node.

5 Simulation and result analysis

In this section, we present the details of the experimental

setup, which we use to analyze the performance of our

proposed novel attacks and their respective countermea-

sures. In Sect. 5.2, we present the impact of Route

Spoofing attack on various SDN scenarios along with the

effectiveness of our proposed countermeasure by consid-

ering various network metrics. Similarly, the impact of

Resource Exhaustion attack and its countermeasure is

presented in Sect. 5.3.

5.1 Evaluation setup

We use Mininet [33] as an emulator for implementing all

the target scenarios along with OpenDaylight [34] as a

network controller. As described in the previous section,

both the countermeasures consists of two units (i.e., the

detection unit, implemented at OF-Switches, and the pre-

vention unit, implemented on the controller) both are

installed as a plugin into the software OpenFlow reference

switch [35]. All experiments are executed over on a

machine with the following configuration: CPU Intel Core

i7-4700MQ-2.4 GHz and 6 GB RAM. The impact of both

the attacks and the effectiveness of their countermeasures

have been investigated over similar topologies. The target

SDN topology consists of 9 OF-switches, 12 hosts (8

benign and four attackers), and one controller. The source-

destination pairs are selected randomly in the network

scenario. The link bandwidth is set to 100 Mbps, and the

delay for each link is set to 5 ms. Simulation time is set to

500 s.

5.2 Route spoofing attack

In the scenario that we use to analyze RS attack, we

implemented two separate Java applications to config-

ure source and destination nodes as UDP client and server.

There are four benign senders who send traffic to 4 recei-

vers. Each benign sender runs the UDP client application to

send 5–30 packets of size 512 bytes per second to the

benign receiver. To perform the attack, we use Hping [36]

that generates spoofed IP addresses. Each attacker sends

UDP packets of size 1000 bytes with different rates using

the Hping tool. To distribute the attack effect over the

network, the first attacker starts to send packets after the

40th second, and the remaining attackers start with the

interval of 20 s. The spoofed packets go along the existing

path between the benign sender and receiver without the

intervention of the controller.

We use the following metrics to shows the impact of the

attack and the effectiveness of our proposed

countermeasure.

– Packet delivery ratio (q) This metric will indicate the

data packets that are dropped in intermediate switches

due to a buffer overflow caused by the high-speed

attacker traffic over the spoofed routes.

– Average end-to-end delay (D) This metric will show

how the attacker’s traffic is introducing various delays

in the genuine user traffic, such as delay in forwarding

data packets at OF-switches.

– Network bandwidth consumption (b) This metric

denotes the impact of attacker added traffic on the

bandwidth consumption at data plane.

Figure 5 shows the effect on q with the increase in

attack rate for normal scenario, for RS attack (RS-A), and

for RS countermeasure (RS-C). As depicted in Fig. 5 that

when the rate of malicious packets increases the q
decreases for benign users. This is because the malicious

traffic causes congestion over the network links. But with

the use of our proposed countermeasure, the malicious

users have been detected and blocked. Thus q does not

change much for benign users.

Figure 6 shows the effect on D with the increase in

attack rate for normal, RS-A and RS-C. It is evident that

increasing the rate of malicious packets lead to congestion

over network links as well as on the OFS forwarding

queues. Thus, it incurs long delays for data packets. We

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

 5 10 15 20 25 30

Pa
ck

et
 D

el
iv

er
y

R
at

io

Attack Rate (Pckt/sec)

Normal RS-A RS-C

Fig. 5 Packet delivery ratio (q) with increased malicious packet rate

2762 Wireless Networks (2019) 25:2751–2768

123

can see in Fig. 6 that for RS-A the delay starts decreasing

after 15 Pckt/s. It is because the D becomes saturated

around the point where attacker rate approaches to 15 Pckt/

s, and the further increase in attack rate will not affect the

D in a significant way. It has been observed that at higher

attack rates the attack packets were started to cancel the

malicious effect of each other, because the controller is

already busy with the processing of the previously received

attack packets. In the presence of our proposed counter-

measure, the malicious packets will no longer be present in

the network, and this prevents longer delays in data

delivery. Figure 5 shows simulation results for average b in

RS for the three comparing techniques. As it can be seen

from Fig. 7, the presence of a large number of malicious

packets in the network due to RS attack leads to higher

bandwidth consumption. The proposed countermeasure

decreases b due to the reasons above.

Figures 8 and 9 shows the simulation results for b with

the simulation time in the absence and in the presence of

the our proposed countermeasure. These figures helps to

properly investigate the behavior of RS attack and our

countermeasure in real time. Figure 9 shows that using

countermeasure technique leads to preventing malicious

packets injection to the network, thus results in lower b.

5.3 Resource exhaustion attack

In this scenario, we have configured the application layer

for hosts that act as source or destination in the network.

We also configured few cases where a host can use mul-

tiple IPs associated with the same MAC address. This is

done to depict situations where multiple flows are setup

between two hosts. We use a scenario where six senders

initiate two new requests with different destination IP per

second. When the controller receives these requests, it

calculates a route and installs forwarding rules at OFs. To

configure the attackers, the same script is used where four

attackers generate TCP (for SYN flooding attack) for a

target server and UDP packets with different destination IP

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 5 10 15 20 25 30

En
d-

to
-E

nd
 D

el
ay

 (m
s)

Attacke Rate (Pckt/sec)

Normal RS-A RS-C

Fig. 6 End to end delay (D) with increased malicious packet rate

 0

 5

 10

 15

 20

 25

 30

 35

 40

 5 10 15 20 25 30

B
an

dw
id

th
 U

sa
ge

 (K
bp

s)

Attack Rate (Pckt/sec)

Normal RS-A RS-C

Fig. 7 Bandwidth consumption (b) with increased malicious packet

rate

 6
 9

 12
 15
 18
 21
 24
 27
 30
 33
 36
 39
 42

 40 60 80 100 120 140 160 180 200 220 240 260 280 300

B
an

dw
id

th
 U

sa
ge

 (K
bp

s)

Simulation Time (sec)

Rate_5
Rate_10

Rate_15
Rate_20

Rate_25
Rate_30

Fig. 8 Bandwidth consumption (b) with simulation time without

countermeasure

 0.0088

 0.00885

 0.0089

 0.00895

 0.009

 0.00905

 0.0091

 40 60 80 100 120 140 160 180 200 220 240 260 280 300

B
an

dw
id

th
 U

sa
ge

 (M
bp

s)

Simulation Time (sec)

Rate_5
Rate_10

Rate_15
Rate_20

Rate_25
Rate_30

Fig. 9 Bandwidth consumption (b) with simulation time with

countermeasure

Wireless Networks (2019) 25:2751–2768 2763

123

addresses. DITG (Distributed Internet Traffic Generator) is

used to generate the legitimate traffic. The legitimate traffic

consists of 70% TCP data and 30% UDP data. The Center

for Applied Internet Data Analysis (CAIDA) has released

‘‘DDoS Attack 2007’’ Dataset containing the attack traffic

to the victim nodes. We use this dataset for our experi-

ments and use the Scapy (Python tool) to generate DDoS

flooding attack traffic from bots to the victim node.

We start our analysis using the results gathered for

anomaly detection that is performed by the primary phase

of our ‘‘periodic monitoring’’ module. We evaluate the

performance of our entropy-based primary detection

module against the TCP SYN flooding attack and compare

it with recent state-of-the-art (i.e., SLICOTS [8]).

To compare our entropy based detection (EBD) tech-

nique with SLICOTS, we use the target scenario which is

similar to SLICOTS paper. Specifically, we perform the

comparison for scalability and sensitivity metrics. In the

target scenario (S1), the attackers generate malicious SYN

packets with a rate ranging from 50 to 350 packets per

second (upper bound is due to hardware limitations). The

number of malicious and benign hosts are set to 120 and 2,

respectively. For EBD technique, the values of dt ¼ 6

(based on Fig. 10) and M ¼ 3, and the threshold entropy k
is calculated dynamically using Algorithm 1, while for

SLICOTS, the value of threshold (K) is varied between 10

and 100 [8] (Fig. 11). For further discussion on this trade-

off, in Fig. 12, we show the receiver operating character-

istic (ROC) curve for both the comparing protocols. The

FPR (or 1-specificity) is the percentage of malicious SYN

packets which are incorrectly identified as benign SYN

packets, and the TPR (or sensitivity) is the percentage of

benign packets which are correctly identified as benign

packets. These metrics are measured under DDoS TCP

SYN flooding attacks to one victim host. As it is seen in

Fig. 12, the EBD reaches to 100% TPR at the point when it

has approximately 13% FPR. On the other hand, the SLI-

COTS results in nearly 20% FPR until it reaches to 100%

TPR. The EBD has 7% low FPR than SLICOTS because

unlike SLICOTS which uses fixed threshold values to

identify the fake SYN requests generated by an adversary,

the EDB uses adaptive threshold entropy calculation pro-

cedure. Moreover, the randomness check performed in

EDB uses a carefully selected set of parameters (i.e.,

source and destination IP addresses, destination port, OF

switch input port, and TCP flags), which are absent in

SLICOTS.

Figure 11 shows the attack detection time with

increasing number of attackers for SLICOTS and EBD

techniques. As it can be seen in Fig. 11, the detection time

remains nearly same for both the methods because both

solutions use the similar type of constant value(s) as a

threshold for blocking the attackers. However, the detec-

tion time for EBD is slightly lower due to its threshold

entropy calculation process which is dynamic and adaptive.

The detection time for EBD will be more than SLICOTS if

 0.2
 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

 0 50 100 150 200

N
or

m
al

iz
ed

 e
nt

ro
py

Time (s)

Monitoring time = 3
Monitoring time = 6

Monitoring time = 9

Fig. 10 Normalized entropy values with different Dt

 3

 3.03

 3.06

 3.09

 3.12

 3.15

 3.18

 3.21

 3.24

 3.27

 3.3

 20 40 60 80 100 120

D
et

ec
tio

n
tim

e
(s

ec
)

Number of attackers

SLICOTS EBD

Fig. 11 Attack detection time with increasing number of attackers

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40

Tr
ue

 p
os

iti
ve

 ra
te

 (%
)

False positive rate (%)

SLICOTS EBD

Fig. 12 ROC curve comparison between SLICOTS and EBD

2764 Wireless Networks (2019) 25:2751–2768

123

it is followed by the secondary detection phase of our

periodic monitoring module, although this will also yield

lower false positives and negatives. Hence, a trade-off

between detection time and precision could be used

depending on the application scenario.

The rate of generating of different request packets for

attackers is kept much higher when compared to benign

users. As we mentioned in Section III-B, the detection unit

sends an alarm to the controller if, it finds an attacker who

sends more than Tf new flows in t s. Indeed, choosing a

large value for these parameters would result in a delay in

the attack detection, and thus scarce efficiency. On the

contrary, by choosing a low value for these parameters

would cause a too early detection with a higher false

positive rate. For all the scenarios, unless specified other-

wise, we have set the threshold Tmice ¼ 10, t ¼ 1 (i.e., the

detection unit monitors flows after every second) and

P ¼ 0:3. We consider mice flow as a flow which has lower

than three packets. The metrics of interest for this attack

are as follows: a) Average number of entries in the OFs (g),
and benign request processing time (s).

Figure 13 shows simulation results for g for normal

scenario (i.e.,pure), for RE attack (RE-A) and for RE

countermeasure (RS-C). As it can be seen in Fig. 13 that

the number of entries in the forwarding table of an OFs

increases rapidly due to the RE attack. This increase in

entries not only causes the lookup delay for forwarding

packets but, it also makes the OFs to overwrite the benign

user data flow rules in the forwarding tables due to insuf-

ficient memory. Moreover, the Fig. 8 also shows that by

using our proposed technique, the controller blocks the

suspect attackers and as a result, the number of entries

stored in OFs decreases significantly.

Figure 14 shows simulation results for s with an

increase in the rate of malicious packets in the network for

pure, RE-A and RS-C. As shown in Fig. 14, the processing

time of new benign requests increases with the presence of

malicious packets in the network. This is because in the RE

attack, the data to control plane link, as well as the con-

troller, becomes saturated due to a large number of requests

coming from OFs and as a result, the controller will not be

able to process new requests immediately. By implement-

ing our countermeasure, the attackers will be blocked and

processing time for new requests will be decreased.

RE attack detection time and precision with varying

values of the probabilistic parameter P, some mice flows

per second (Fmice), mice flow threshold (Tmice), as the

second phase of our proposed ‘‘periodic monitoring’’

technique has these three adjustable parameters. The

Fig. 15 shows results for the attack detection time with

increasing Tmice values for various P values. For the results

in Fig. 15, we consider a fixed value of 20 flows for Fmice.

As it can be seen from the Fig. 15, as expected the attack

detection time increases with increase in Tmice and P.

Although, the increase in detection time with lower P

comes with lower detection precision as few honest users

will also be detected as attacker due to low probability

values. In particular, we can conclude that choosing large

values for P and Tmice leads to longer delays in attack

detection procedure, while their too lower values cause an

increase in false positives. The above reasons also hold true

for the detection precision results shown in Fig. 16.

6 Conclusions

In this paper, we investigated two security vulnerabilities in

SDN, and we implemented effective countermeasures to

prevent the same. We have shown that an attacker, with

minimal effort, can launch attacks such as Route Spoofing

and Resource Exhaustion, which causes significant harm to

the data communication process in the SDN. To effectively

handle these attacks, we propose lightweight and efficient

 700
 1400
 2100
 2800
 3500
 4200
 4900
 5600
 6300
 7000
 7700
 8400
 9100
 9800

 10500
 11200

 5 10 15 20 25 30

O
F-

Sw
itc

h
En

tri
es

Attack Rate (Pckt/sec)

Normal DCS-A DCS-C

Fig. 13 Number of entries in the OFs with malicious packet rate

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24

 5 10 15 20 25 30

A
ve

ra
ge

 p
ro

ce
ss

in
g

D
el

ay
 (s

ec
)

Attack Rate (Pckt/sec)

Normal DCS-A DCS-C

Fig. 14 Benign request processing time with malicious packet rate

Wireless Networks (2019) 25:2751–2768 2765

123

solutions that detect and block the attacker in its initial

phase of an attack. Simulation results obtained for the

relevant metrics shows the feasibility of implementation

and correctness of the proposed countermeasures. Our

proposed solution monitors ongoing traffics behavior on

data plane and informs the controller in case of any security

policy violations, and the controller takes adequate action

to isolate the detected malicious nodes from the network.

We have observed that when both the detection phases in

‘‘periodic monitering’’ works in parallel, the number of

attacks detected are higher, but the precision is a bit lower

when compared to the scenarios where the secondary phase

is executed following a primary detection phase. However,

in the later, the detection time increases.

As a future work, we would like to investigate current

and improved solutions for cases where a stronger adver-

sary exists in the network. For such cases, we will explore

solutions that include probabilist and statistical techniques

for detecting the attacks in more effective and accurate

manner.

Acknowledgements Chhagan Lal and Mauro Conti are supported in

part by EU LOCARD Project under Grant H2020-SU-SEC-2018-

832735, and in part by Huawei Project ‘‘Secure Remote OTA Updates

for In-Vehicle Software Systems’’ under Grant HIRPO

2018040400359-2018. The work of M. Conti was supported by the

Marie Curie Fellowship through European Commission under

Agreement PCIG11-GA-2012-321980.

References

1. Kreutz, D., Ramos, F. M. V., Verı́ssimo, P. E., Rothenberg, C. E.,

Azodolmolky, S., & Uhlig, S. (2015). Software-defined net-

working: A comprehensive survey. Proceedings of the IEEE,

103(1), 14–76.

2. Conti, M., Kaliyar, P., & Lal C. (2018). CENSOR: Cloud-enabled

secure IoT architecture over SDN paradigm. Concurrency and

Computation: Practice and Experience, 31(8), e4978.

3. Du, J., Gelenbe, E., Jiang, C., Zhang, H., & Ren, Y. (2017).

Contract design for traffic offloading and resource allocation in

heterogeneous ultra-dense networks. IEEE Journal on Selected

Areas in Communications, 35(11), 2457–2467.

4. Yan, Q., Yu, F. R., Gong, Q., & Li, J. (2016). Software-defined

networking (SDN) and distributed denial of service (DDoS)

attacks in cloud computing environments: A survey, some

research issues, and challenges. IEEE Communications Surveys

& Tutorials, 18(1), 602–622.

5. Wickboldt, J. A., Jesus, W. P. D., Isolani, P. H., Both, C. B.,

Rochol, J., & Granville, L. Z. (2015). Software-defined net-

working: Management requirements and challenges. IEEE

Communications Magazine, 53(1), 278–285.

6. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G.,

Peterson, L., Rexford, J., et al. (2008). Openflow: Enabling

innovation in campus networks. SIGCOMM Computer Commu-

nication Review, 38(2), 69–74.

7. Zhang, P., Wang, H., Hu, C., & Lin, C. (2016). On denial of

service attacks in software defined networks. IEEE Network,

30(6), 28–33.

8. Mohammadi, R., Javidan, R., & Conti, M. (2017). Slicots: An

sdn-based lightweight countermeasure for tcp syn flooding

attacks. IEEE Transactions on Network and Service Manage-

ment, 14, 487–497.

9. Wang, R., Jia, Z., & Ju, L. (2015). An entropy-based distributed

DDoS detection mechanism in software-defined networking. In

2015 IEEE Trustcom/BigDataSE/ISPA (pp. 310–317). Helsinki.

10. Kalkan, K., Gur, G., & Alagoz, F. (2017). Defense mechanisms

against ddos attacks in sdn environment. IEEE Communications

Magazine, 55(9), 175–179.

11. Zheng, J., Li, Q., Gu, G., Cao, J., Yau, D. K. Y., & Wu, J. (2018).

Realtime ddos defense using cots sdn switches via adaptive

correlation analysis. IEEE Transactions on Information Forensics

and Security, 13(7), 1838–1853.

12. Kang, M. S., Lee, S. B., & Gligor, V. D. (2013). The crossfire

attack. In 2013 IEEE symposium on security and privacy (pp.

127–141).

13. Mohammadi, R., Javidan, R., Keshtgary, M., Conti, M., & Lal, C.

(2017). Practical extensions to countermeasure dos attacks in

software defined networking. In 2017 IEEE conference on net-

work function virtualization and software defined networks (NFV-

SDN) (pp. 1–6).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 3 6 9 12 15 18

A
tta

ck
 d

et
ec

tio
n

tim
e

(s
)

Mice flow threshold

P = 0.1 P = 0.3 P = 0.5 P = 0.7

Fig. 15 Attack detection time with increasing mice threshold for

various P values

 0.972

 0.975

 0.978

 0.981

 0.984

 0.987

 0.99

 0.993

 0.996

 0.999

 1 2 3 4 5 6

Pr
ec

is
io

n

Mice flow rate (per sec)

T-mice = 10
T-mice = 20

T-mice = 30
T-mice = 40

T-mice = 50

Fig. 16 Detection precision with varying mice rate

2766 Wireless Networks (2019) 25:2751–2768

123

14. François, J., Dolberg, L., Festor, O., & Engel, T. (2014). Network

security through software defined networking: A survey. In

Proceedings of the conference on principles, systems and appli-

cations of IP telecommunications, ser. IPTComm ’14. ACM (pp.

6:1–6:8).

15. Fayaz, S. K., Tobioka, Y., Sekar, V., & Bailey, M. (2015).

Bohatei: Flexible and elastic ddos defense. In 24th USENIX

security symposium (USENIX Security 15) (pp. 817–832).

Washington, DC: USENIX Association.

16. Rebecchi, F., Boite, J., Nardin, P., Bouet, M., & Conan, V.

(2017). Traffic monitoring and ddos detection using stateful sdn.

In 2017 IEEE conference on network softwarization (NetSoft)

(pp. 1–2).

17. Chen, C., Chen, Y., Lu, W., Tsai, S., & Yang, M. (2017).

Detecting amplification attacks with software defined networking.

In 2017 IEEE conference on dependable and secure computing

(pp. 195–201).

18. D’Cruze, H., Wang, P., Sbeit, R . O., & Ray, A. (2018). A

software-defined networking (SDN) approach to mitigating

DDoS attacks. In S. Latifi (Ed.), Information technology—New

generations. Cham: Springer.

19. Dhawan, M., Poddar, R., Mahajan, K., & Mann, V. (2015).

Sphinx: Detecting security attacks in software-defined networks.

In NDSS.

20. Felipe, A., Piedrahita, M., Rueda, S., Mattos, D. M. F., Carlos,

O., & Duarte, M. B. (2015). Flowfence: A denial of service

defense system for software defined networking. In Global

information infrastructure and networking symposium (GIIS).

21. Shin, S., Yegneswaran, V., Porras, P., & Gu, G. (2013). Avant-

guard: Scalable and vigilant switch flow management in soft-

ware-defined networks. In Proceedings of the 2013 ACM SIGSAC

conference on computer & communications security, ser. CCS

’13.

22. Sungmin, L. Hong, Xu, H., Wang, G., & Gu (2015). Poisoning

network visibility in software-defined networks: New attacks and

countermeasures. In NDSS.

23. Ambrosin, M., Conti, M., Gaspari, F. D., & Poovendran, R.

(2017). Lineswitch: Tackling control plane saturation attacks in

software-defined networking. IEEE/ACM Transactions on Net-

working, 25(2), 1206–1219.

24. Wang, H., Xu, L., & Gu, G. (2015). Floodguard: A dos attack

prevention extension in software-defined networks. In Proceed-

ings of the 2015 45th annual IEEE/IFIP international conference

on dependable systems and networks, ser. DSN ’15.

25. Chin, T., Mountrouidou, X., Li, X., & Xiong, K. (2015). Selective

packet inspection to detect dos flooding using software defined

networking (sdn). In 2015 IEEE 35th international conference on

distributed computing systems workshops (pp. 95–99).

26. Park, Y., Chang, S. Y., & Krishnamurthy, L. M. (2016). Water-

marking for detecting freeloader misbehavior in software-defined

networks. In 2016 International conference on computing, net-

working and communications (ICNC) (pp. 1–6).

27. Liu, J., Lai, Y., & Zhang, S. (2017). Fl-guard: A detection and

defense system for DDoS attack in sdn. In Proceedings of the

2017 international conference on cryptography, security and

privacy, ser. ICCSP ’17 (pp. 107–111) ACM. [Online]. Avail-

able: http://doi.acm.org/10.1145/3058060.3058074.

28. Wang, T., & Chen, H. (2017). Sguard: A lightweight sdn safe-

guard architecture for dos attacks. China Communications, 14(6),

113–125.

29. Guo, F., & Chiueh, T-c. (2006). Sequence number-based MAC

address spoof detection (pp. 309–329). Berlin: Springer.

30. Kumar, P., Tripathi, M., Nehra, A., Conti, M., & Lal, C. (2018).

SAFETY: Early detection and mitigation of TCP SYN flood

utilizing entropy in SDN. IEEE Transactions on Network and

Service Management, 15(4), 1545–1559.

31. Zhu, H., Du, S., Gao, Z., Dong, M., & Cao, Z. (2014). A prob-

abilistic misbehavior detection scheme toward efficient trust

establishment in delay-tolerant networks. IEEE Transactions on

Parallel and Distributed Systems, 25(1), 22–32.

32. Wang, S., Zhang, Z., & Kadobayashi, Y. (2013). Exploring attack

graph for cost-benefit security hardening: A probabilistic

approach. Computer Security, 32, 158–169.

33. http://www.mininet.org/.

34. http://www.opendaylight.org.

35. Openflow.org. openflow switching reference system. http://www.

openflow.org/wp/downloads/.

36. http://www.hping.org.

Mauro Conti is Full Professor at
the University of Padua, Italy,

and Affiliate Professor at the

University of Washington,

Seattle, USA. He obtained his

Ph.D. from Sapienza University

of Rome, Italy, in 2009. After

his Ph.D., he was a Post-Doc

Researcher at Vrije Universiteit

Amsterdam, The Netherlands.

In 2011 he joined as Assistant

Professor the University of

Padua, where he became Asso-

ciate Professor in 2015, and Full

Professor in 2018. He has been

Visiting Researcher at GMU (2008, 2016), UCLA (2010), UCI (2012,

2013, 2014, 2017), TU Darmstadt (2013), UF (2015), and FIU (2015,

2016). He has been awarded with a Marie Curie Fellowship (2012) by

the European Commission, and with a Fellowship by the German

DAAD (2013). His research is also funded by companies, including

Cisco and Intel. His main research interest is in the area of security

and privacy. In this area, he published more than 200 papers in top-

most international peer-reviewed journals and conference. He is Area

Editor-in-Chief for IEEE Communications Surveys and Tutorials, and

Associate Editor for several journals, including IEEE Communica-

tions Surveys and Tutorials, IEEE Transactions on Information

Forensics and Security, and IEEE Transactions on Network and

Service Management. He was Program Chair for TRUST 2015, ICISS

2016, WiSec 2017, and General Chair for SecureComm 2012 and

ACM SACMAT 2013. He is Senior Member of the IEEE.

Chhagan Lal is Postdoc fellow in

Department of Mathematics,

University of Padua, Italy and

Affiliate Associate Professor at

Manipal University Jaipur,

India. He obtained his Bachelors

in Computer Science and Engi-

neering from MBM Engineering

College, Jodhpur, India in 2006.

He obtained his Masters degree

in Information Technology with

specialization in Wireless com-

munication from Indian Institute

of Information Technology,

Allahabad in 2009, and Ph.D. in

Computer Science and Engineering from Malaviya National Institute

of Technology, Jaipur, India in 2014. He has been awarded Canadian

Commonwealth scholarship in 2012 under Canadian Commonwealth

Scholarship Program to work in University of Saskatchewan in

Saskatoon, Saskatchewan, Canada. His current research areas include

Blockchain Analysis, Security in Wireless networks, Software-

Wireless Networks (2019) 25:2751–2768 2767

123

http://doi.acm.org/10.1145/3058060.3058074
http://www.mininet.org/
http://www.opendaylight.org
http://www.openflow.org/wp/downloads/
http://www.openflow.org/wp/downloads/
http://www.hping.org

defined networking, Underwater acoustic networks, and context based

security solutions for Internet of Things (IoT) networks.

Reza Mohammadi is currently

working as an Assistant Profes-

sor in Department of Computer

Engineering, Bu-Ali Sina

University, Hamedan, Iran. He

received the M.Sc. degree in

computer networks from the

Shiraz University of Technol-

ogy in 2013, his Ph.D. degree in

computer networks from Shiraz

University of Technology, Shi-

raz, Iran. He has several publi-

cations in international

conferences and journals

regarding Underwater Wireless

Sensor Networks (UWSNs). He currently focused on software defined

networks (SDNs) as a new trend in computer networks. His major

fields of interest are SDNs, heuristic algorithms, performance evalu-

ation, UWSNs, ad hoc networks, and underground wireless sensor

networks.

Umashankar Rawat is currently

a Professor with the Department

of CSE, Manipal University

Jaipur. He received the Ph.D.

degree in computer science and

engineering from the Jaypee

University of Engineering and

Technology, Guna, in the area

of linux file system security, in

2013, and the M.E. degree in

computer engineering from Shri

Govindram Seksaria Institute of

Technology and Science,

Indore, in 2003. He is having 18

years of teaching experience.

His current research interests include security issues in Software

Defined Networks, information systems security, and distributed

systems.

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

2768 Wireless Networks (2019) 25:2751–2768

123

	Lightweight solutions to counter DDoS attacks in software defined networking
	Abstract
	Introduction
	Motivation
	Contributions
	Organization

	Related work
	Route spoofing attack and countermeasure
	Route spoofing attack
	Proposed countermeasure

	Resource exhaustion attack and countermeasure
	Resource exhaustion attack
	Proposed countermeasure
	Primary detection phase
	Secondary detection phase

	Simulation and result analysis
	Evaluation setup
	Route spoofing attack
	Resource exhaustion attack

	Conclusions
	Acknowledgements
	References

