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Abstract
With the rapid development in ubiquitous smart sensors, wireless sensor networks have started to evolve into numerous

applications including healthcare, medical, agriculture, transportation, industry, internet of things, and smart cities.

However, satisfying Quality of Service (QoS) requirements of the diverse application domains remains a challenging issue

due to heterogeneous traffic flows, dynamic network conditions, and resource-constrained nature of sensor nodes. In this

regard, application-specific QoS provisioning techniques have received considerable research attention at the network

layer. This paper presents a systematic review on the QoS mechanisms that have been employed by routing protocols and

also highlights the performance issues of each mechanism. Afterwards, the survey presents a comparative analysis of

computational intelligence based QoS-aware routing protocols with their strengths and limitations. Finally, this survey

discusses various potential directions for future research in the field of QoS provisioning at network layer.
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1 Introduction

The recent advancement in low power electronics, and

ubiquitous smart sensors have made wireless sensor net-

work (WSN) as one of the most significant technologies

over the past decade. In most cases, a WSN integrates

automated sensing, processing, and wireless transmission

units into small electronics devices known as sensor nodes

[1]. These nodes scatter randomly and densely over the

geographical areas to sense various environmental param-

eters viz. temperature, pressure, humidity, sound, moisture,

and seismic events. The sensed information is routed hop-

by-hop towards the more potent node, referred as sink to

further processed and analyzed [2]. Senor based applica-

tions have started to involve in various platforms and areas,

including military surveillance, industrial and home

automation, healthcare monitoring, underwater navigation,

and environmental monitoring. Recently, researchers have

received have realized some specific denominations for

various WSN application domains [3] as shown in Fig. 1.

For instance, sensor networks used for transmitting video,

audio, and images particularly for surveillance and moni-

toring purposes may be called as wireless multimedia

sensor networks (WMSNs). Sensor networks deployed

inside factories or industries for machine condition moni-

toring and process automation termed as industrial wireless

sensor networks (IWSNs). When used for medical and

healthcare, the network can be labelled as wireless body

area networks (WBANs). In addition, when sensor nodes

deployed underwater to facilitate underwater navigation,

surveillance, pollution monitoring, and disaster prevention,

are termed as underwater wireless sensor networks

(UWSNs). Finally, when sensor nodes are mobile, they

may be called as mobile sensor networks (MSN). These

application domains have different constraints in their

nature and requirements which require QoS assurance in

terms of delay, reliability, energy-efficiency, bandwidth

utilization, adaptivity, scalability and throughput [4–9].

Hence, providing QoS assurance in resource limited envi-

ronment is one of the critical challenges that are addressed

either by modifing the existing routing protocols in WSNs
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or by proposing new QoS provisioning techniques, for

example, multi-constrained routing, clustering, multipath

routing, multiple sinks, and mobile sink. Therefore, this

survey explores the recently proposed QoS mechanisms

employed by routing protocols in WSN.

With the quick expansion of computational intelligence

(CI) over the past decade [10–12], routing protocols based

on particle swarm optimization (PSO), ant colony opti-

mization (ACO), artificial bee colony (ABC), evolutionary

algorithms (EA), fuzzy logic (FL), reinforcement learning

(RL), and bee mating optimization (BMO) have been

proposed to provide the application-specific QoS assurance

in WSN. An idea of using computational intelligence in

WSN is to provide flexibility and robustness towards net-

work failure, dynamic network topology, and variable

channel conditions in WSN. Thus, in this survey recently

proposed CI based routing protocols is surveyed that pro-

vide QoS support at the network layer in WSN.

1.1 Survey contributions

The major contributions of this survey are summarized as

below:

1. We provide an outline of QoS metrics that can be

addressed at the network layer in WSN.

2. A broad overview on issues affecting QoS provisioning

at the network layer is presented.

3. A detailed description on the various QoS mechanisms

employed by routing protocols in WSN.

4. A detailed analysis of computational intelligence based

QoS-aware routing protocols with their objectives,

QoS mechanisms, operations, and simulation/experi-

mental results is presented.

5. We provide a comparative analysis of CI-based QoS-

aware routing protocols with emphasis on the QoS

metrics along with their strengths and limitations.

6. We provide an insight into the future research direc-

tions that can improve the use of QoS provisioning

techniques in WSN.

The rest of the paper is structured as follows. Section 2

presents a review of existing surveys on QoS-aware routing

protocols in WSN. Section 3 discusses commonly

employed network layer QoS metrics, followed by the

issues affect QoS provisioning. Section 4 describes the

QoS mechanisms employed by routing protocols. In

Sect. 5, the CI- based QoS-aware routing protocols are

briefly discussed. Section 6 provides a comparative and

analytical analysis of the reviewed protocols. Finally,

Sect. 7 presents the conclusion and insights into future

research directions.

Fig. 1 Applications of WSN
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2 Related work

While going through the literature, we analyzed that

despite the considerable research on QoS-aware routing

protocols, only a few surveys have been presented. Surveys

[4, 13–16] are the prominent surveys that focus on pro-

viding QoS assurance at the network layer in WSNs. In [4],

a literature on the real-time QoS and WMSN routing pro-

tocols was presented. The reviewed protocols were classi-

fied on the basis of the number of routing metrics used to

locate the optimal path between source and destination. In

[13], energy-efficient routing protocols for WMSN were

overviewed and grouped into two categories based on the

QoS requirements: latency and multi QoS constrained. In

[14], authors presented a taxonomy of multipath routing

protocols classified on the basis of path utilization mech-

anisms for real-time WMSNs. They also investigated the

design issues for multipath strategy at the routing layer. In

[15], QoS-aware routing protocols were surveyed for

WBAN. Based on the network architecture, the authors

classified the surveyed protocols into two categories:

Multi-sink approach-based design and Single-sink

approach-based design. QoS aware routing protocol related

to every classification were compared based on their

operations, advantages, and shortcomings. Real-time QoS

routing protocols were briefly discussed in [16] for

WMSNs. The studied protocols were arranged into two

categories: probabilistic and deterministic protocols. Every

classification was further grouped into hard and soft pro-

tocols for the real-time environment and compared based

on QoS features, strengths, and limitations. Authors also

examined issues associated with real-time QoS assurance

in WMSNs.

Although a plethora of surveys on routing protocols [17]

are presented over the past decade. Most of these surveys

are limited in the context of reviewing the classical routing

protocols in WSN. Further, none of the existing survey

have provided the proper taxonomy on the network layer

mechanisms that allow for QoS provisioning in WSN.

Therefore, the present survey is an attempt to write a

systematic review on the recently proposed QoS mecha-

nisms employed by the routing protocols in WSN. This

survey presents a detailed analysis on computational

intelligence based QoS-aware routing protocols with their

objectives, operations, advantages, and limitations. More-

over, a brief comparison of computational intelligence

techniques at the network layer is also presented. This

comparison allows readers to select an appropriate CI

technique to meet the desired QoS levels for the emerging

WSN applications.

3 QoS metrics and challenges

With the rapid development in low power electronics and

ubiquitous smart sensors, wireless sensor networks (WSNs)

have started to evolve into wide range of monitoring and

tracking applications. These applications are associated

with various requirements of which a QoS routing protocol

should be aware in an attempt to meet them. However,

satisfying the strict QoS requirements of the emerging

modern applications in the resource-constrained environ-

ment induces new challenges to the routing protocols.

Thus, this section presents a brief outline on the most

common QoS metrics that can be fulfilled at the network

layer and the issues affecting the QoS provisioning in

WSN.

3.1 QoS metrics at network layer

The level of QoS provisioning at the network layer is

depend on several parameters, often termed as QoS met-

rics. It represents the QoS requirements of diverse WSN

applications. An application may demand a particular QoS

by specifying its requirements in terms of one or more QoS

metrics. Thus, defining an appropriate QoS metrics used for

a specific application is considered as a challenging task.

The most common QoS metrics that can be considered at

the network layer are summarized below [14, 17]:

1. Energy efficiency It is considered as the most predom-

inant QoS requirement because of the battery-operated

sensor nodes. Network layer can contribute to energy

efficiency by employing various mechanisms such as

clustering, multipath routing, or multiple sinks accord-

ing to the application requirements.

2. Latency It is characterized as the delay experienced by

a source node packet until it reaches the sink node.

Network layer can achieve minimum latency or end-to-

end delay by exploring shortest path among the source

and the sink during the data packet transmission.

3. Reliability (PDR) It is characterized as the ability of

the network to transmit real-time information to the

sink node with the least packet loss. Reliability at

network layer can be guaranteed by establishing

multiple route among the source and the sink for

redundant packet transmission under dynamic network

conditions.

4. Throughput It is defined as the rate of successful packet

delivery over the communication link. Thus, high

throughput should be taken into consideration while

proposing a routing protocol for real-time applications.

5. Network lifetime It is characterized as the number of

communication rounds until the first node dies (FND),

or a specific level of nodes dies. The FND metric is
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usually adopted in sparsely deployed WSNs. However,

in densely deployed WSNs, exhaustion of a single node

would not affect network connection and sensing

activity. Thus, in large or densely deployed WSN,

metrics such as HND (half node die) and LND (last

node dies) are also considered for the network lifetime

evaluation.

6. Adaptivity The data traffic load, network topology, and

wireless channel conditions may vary frequently due to

node mobility, wireless channel noise, and failure

probability of sensor nodes (example: nodes get

disconnect from the network due to battery depletion).

Therefore, a QoS mechanism must take into account

the continuous adaptation of network operation param-

eters in order to support the highly dynamic

environment.

7. Robustness It is defined as the ability of the routing

protocol to reconfigure the network connectivity

against sensor node and communication link failures.

In harsh environments, sensor nodes are usually

inclined towards the failure because of fast exhaustion

of their battery power or some hardware component

malfunctions. So, failure of a node disrupts the network

connectivity not only with the sink but also with the

neighbor sensor nodes. Thus, a routing protocol is

required to be robust against the sudden failure of the

sensor nodes.

3.2 Issues affecting QoS in WSN

Since WSNs are adopted in a wide range of monitoring and

tracking applications, they have multiple characteristics

associated with hardware and communication system

which induces certain problems for QoS provisioning. The

most predominant of these issues which influence the QoS

in WSN are summarized as follows [4, 17]:

1. Sensor node constraints Since the quantity of nodes in

WSN can be in hundreds or thousands, it is essential to

design a sensor node, which constrains its abilities in

terms of battery capacity, storage, computation, and

network communication range. Therefore, providing

QoS assurance in a resource-constrained environment

is considered as a challenges issue.

2. Dynamic network topology The network topology may

vary frequently due to addition and removal of nodes in

the network, node mobility, and node failure. There-

fore, dynamic network topology can cause an addi-

tional challenging issue for QoS provisioning in WSN.

3. Scalability It is the capacity of the network to

effectively deal with the developing measures of

information load. As the quantity of sensor nodes

expands, the unpredictability to deal with the measure

of information detected by nodes will get increased.

Therefore, the designed QoS mechanism needs to

operate well in the large-scale networks.

4. Heterogeneous traffic In WSNs, sensor nodes may

generate heterogenous data traffic such as streaming

videos, images, and periodic data packets. Therefore,

multiple traffic flows, and differentiated requirements

of each traffic flow imposes another challenging issue

to achieve differentiated QoS in routing protocols.

5. Redundant information The distributed behavior of

sensor networks allows sensor nodes to transmit

redundant information to the sink node. This redundant

information transmission guarantees reliability at the

cost of extra energy utilization. Thus, data aggregation

techniques must be introduced to maintain a strategic

distance from the redundant data transmission. How-

ever, this may simultaneously introduce an extra delay

in the network and this can impact QoS provisioning.

6. Unreliable wireless channel The radio channel quality

in WSN may be affected by different environmental

factors such as noise, multipath fading, shadowing, and

the capture effect. These issues need to be considered

in order to ensure reliability in WSN.

7. Energy balance Energy-efficiency is the important

consideration in the design of energy-constrained

WSN. The imbalanced traffic load distribution over

the sensor nodes during the data packet forwarding

may lead to the early energy depletion of the loaded

sensor nodes. Thus, a QoS mechanism should uni-

formly adjust the energy consumption load among the

sensor nodes along the route to the sink.

4 QoS mechanisms at network layer

This section describes the basic mechanisms which can be

employed by routing protocols to provide QoS in resource-

constrained WSN. Each of the QoS mechanisms has ability

to accommodate the impact of different QoS issues and

supports different QoS metrics based on the application.

QoS mechanisms included in Fig. 2 are discussed in detail

in the following subsections.

4.1 Service differentiation

Service differentiation [18] is the most predominant tech-

nique for QoS provisioning in resource-constrained WSN.

It effectively shares the constrained network resources

among the different traffic loads by prioritizing the traffic

based on one or more criteria such as remaining hop count,

remaining time to deadline, residual energy, traffic load,

and distance traveled and forms several traffic classes.
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Thereby, network layer considers each of these traffic

classes independently by establishing an optimal route for

each of the traffic class and tries to meet the QoS

requirements imposed by the significance of their carried

data.

Since the poor prioritization of the traffic classes causes

underutilization of network resources, it becomes hard to

provide QoS assurance in a resource-constrained environ-

ment. Thus, an effective service differentiation mechanism

should be taken dynamic priority assignment and dynamic

network conditions into consideration.

4.2 Clustering

Clustering the nodes is an imperative mechanism in WSNs

that provides QoS assurance in terms of energy efficiency

and reliability [19]. Clustering divides the network into

small sized clusters, in which each cluster has a cluster

head (CH) and member nodes as depicted in Fig. 3. Once

the network is set-up, the communication between the

nodes is characterized into intra-cluster and inter-cluster

communication. The member nodes send their data to the

associated CHs, and the CHs then forward aggregated data

to the BS either directly or via multi-hop routing. In the

recent past [20, 21], different clustering methods have been

presented which improve energy-efficiency via various

means: (i) By reducing the range of communication among

the clusters which require less transmission power, (ii) By

reducing the network load through data aggregation, (iii)

By adjusting the energy consumption load among the

nodes via CH rotation, (iv) By using sleeping schemes in

which the CHs are awake and rest of member nodes follow

the sleeping schedule, (v) By using TDMA based medium

access mechanism to perform intra-cluster communication

without collisions. Besides energy-efficiency, clustering

provides significant improvement in the network scalability

by maintaining a hierarchy in the network.

However, in multi-hop approach, CHs near to the BS

deplete their energy very rapidly because of high inter-

cluster relay traffic load, causing the hot-spot problem. In

this respect, algorithms with an unequal clustering support

should be further investigated to address the hot spot issue

in WSN. Moreover, in hierarchical WSN, the failure of a

CH node disrupts the network connectivity not only with

its associated member nodes but also with the neighbor

CHs nodes. Therefore, clustering algorithms need to be

considered a fault-tolerant issue in an attempt to maintain

the network connectivity and maximize the network

lifetime.

4.3 Multiple routing metrics

Multi-constraint QoS routing has come across as one of the

imperative techniques to support real-time services in

WSN. Routing metric is a parameter used to select the best

optimal relay node and network path towards the sink node

[22]. In order to meet the application-specific QoS con-

straints at network layer, several routing metrics have taken

into consideration such as delay, reliability, hop count,

traffic load, and residual energy for optimal route selection.

Fig. 2 QoS provisioning techniques at network layer Fig. 3 Cluster and cluster heads
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However, finding an appropriate routing metrics while

maintaining an efficient mathematical cost function have

been turned out to be an NP-complete issue, because the

optimization of one metric leads to the deprivation of

another and also increase in number of routing metrics

increases the complexity of route computation [13].

Although changing network dynamics makes difficult for

routing protocol to maintain updated information in

resource-constrained WSN.

4.4 Multiple sink

In large-scale WSNs, if a single sink is located at an area

that might be far from the source nodes, there is the

probability that the network performance degrades very

quickly. This is because the residual energy of sensor nodes

near to the sink get drained at much faster rate as compared

to the far away sensor nodes and hence, leads to the early

isolation of the sink. Moreover, data transmission through

multiple intermediate nodes may be expensive in terms of

E2E transmission delay. Therefore, by deploying multiple

sinks across the field, data transmission rate becomes fas-

ter, and the energy of nodes remains conserve as the data

packets are not required to propagate through multiple hops

to reach the sink [23]. However, for multiple sinks

deployment, it is imperative to locate the optimal number

and the position of the multiple sink nodes in an attempt to

limit the transmission delay while maintaining minimum

energy consumption.

4.5 Mobile sink

In WSN architecture, when a static sink node is used,

sensor nodes close to the sink exhaust their battery rapidly

as compared to other nodes, leading to premature network

failure. The mechanism of introducing mobile sink to the

WSNs framework has received adequate consideration in

recent years to maximize the network lifetime [24, 25].

With the deployment of mobile sink in the network, the

hotspots around the sink change constantly with its

movement and hence, the probability of each node to

become the neighboring node of the sink is also increased.

This results in the data traffic load distribution around the

mobile sink. However, the movement pattern of the sink

node is extremely essential for the execution of WSNs. The

controlled sink mobility improves network connectivity,

coverage, and reliability of data reporting in sparse and

partitioned architectures. With uncontrolled sink move-

ment, the network routes towards the sink node changes

very frequently, which introduces significant communica-

tion overheads in terms of energy and delay. Moreover, this

may also lead to the route failure among the source and the

sink because of the weak communication range. Thus, an

efficient routing recovery mechanism which determines an

optimal trajectory for the mobile sink is required to be

considered in the mobile sink WSNs.

4.6 Multipath routing

The idea of using multipath routing in WSNs is to deliver

QoS support to heterogenous traffic load by distributing the

traffic load along the multiple paths based on their QoS

requirements. The traffic distribution also balances the

energy consumption load and reduces the probability of

network congestion by alternating the forwarding nodes

among source and sink. Furthermore, multipath routing can

maintain the network reliability by redirecting the network

traffic load towards another active node in the case of

primary route failure [26]. However, multipath routing may

expand the complexity of WSN as it involves appropriate

strategies for fragmentation and defragmentation of mul-

timedia video streaming routed over multiple paths.

Table 1 summarizes the advantages and disadvantages

of the described QoS mechanisms employed by routing

protocols in WSN.

5 Computational intelligence based QoS-
aware routing protocol

Computational intelligence provides an adaptive mecha-

nism that induces intelligent behavior in a dynamic and

complex environment like WSNs [27]. In recent years,

with the quick expansion of CI techniques, routing proto-

cols based on ant colony optimization, fuzzy logic, particle

swarm optimization, artificial bee colony, evolutionary

algorithms, reinforcement learning, and bee mating opti-

mization have been widely adopted to ensure application-

specific QoS guarantee in the resource-constrained WSN

[10, 11]. Such routing protocols have proved to work well

under WSN-specific requirements such as network failures,

dynamic topology, and node mobility. In this section, we

discuss intelligent algorithms based QoS-aware routing

protocols in WSN.

5.1 Ant colony optimization

ACO [28] is a swarm intelligence technique which is

inspired from the intelligent and foraging behavior of real

ants in nature. The ants collaborate with each other through

an inter-mediator referred as the pheromone. It is a volatile

chemical material secreted by the ants while hunting down

the food source. The intensity of the pheromone trail is

used to locate the shortest path from their habitat towards

the food source. ACO comprises of two working insect

models known as forward ant and backward ant. Forward
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ants generate probabilistic solution based on two parame-

ters; pheromone trail and heuristic information [29]. The

probability of kth ant selecting a decision point j from

decision point i is evaluated as follows.

Pk
ij ¼

sij
� �a

gij
� �b

PN
j¼1 sij
� �a

gij
� �b

(

ð1Þ

where pheromone value sij indicates the posterior infor-

mation of the previously attained potential solution, the

heuristic value gij indicates the prior information of the

promising solution, a and b are the two weight parameters

which control the impact of pheromone and heuristic

qualities, respectively, and N represents the set of current

neighboring decision points of decision point i.

Once all the forward ants reach the destination, they

switch to the backward ants and thoroughly update the

pheromone concentration on the traversed path while

traveling towards the nest. The pheromone update on an

edge is evaluated as follows

sijðt þ 1Þ ¼ ð1� qÞsijðtÞ þ qDsijðt þ 1Þ ð2Þ

where q represents the pheromone evaporation rate, sij
represents the quantity of the pheromone laid by the ants on

edge ði; jÞ, and Dsijðt þ 1Þ represents the pheromone

quantity deposited by ants on edge ði; jÞ for the current

iteration. Though each ant is capable of constructing a

potential solution, the high-quality solution will result

through the global cooperation between the members of the

ant colony [29]. Figure 4 explains the operation of the

ACO algorithm.

Cai et al. [30] proposed an ACO based QoS-aware

routing protocol called ACO-QoSR in WSN. ACO-QoSR

protocol uses the intelligent searching feature of artificial

ants to resolve the delay constrained QoS routing issue in a

fully distributed manner. It determines the optimal routing

path by exploiting a trade-off between path delay and

residual energy ratio (ERR) of sensor nodes. Once the

existing path is broken, the intermediate nodes quickly

search for the backup routes to maintain a strategic distance

from any network interruption. Moreover, it mitigates

stagnation by integrating pheromone restricting and pher-

omone smoothing strategies in the convention ACO algo-

rithm. This integration limits the pheromone concentration

on non-ideal routes and furthermore avoids the generation

of dominant paths. Simulation results demonstrate that

ACO-QoSR protocol ensures significant reduction in the

path delay and the energy consumption while maintaining

the least routing overheads. However, it doesn’t consider

Table 1 Comparison of QoS mechanisms at network layer

QoS

mechanisms

Key ideas Advantages Limitations

Service

differentiation

Prioritizes and differentiates the network traffic

into several traffic classes according to the

significance of carried data

Supports heterogenous traffic load

Effectively shares the available

constrained resources among the

different traffic classes

Requires dynamic priority

assignment

Not adaptable to dynamic network

conditions

Clustering Splits the network into small sized clusters, in

which each cluster has a cluster head and

member nodes

Ensures load balancing

Improves network scalability

Avoids redundant data transmission

Suffers from hot spot problem

Requires fault tolerance mechanism

Multiple

routing

metrics

At network layer, several routing metrics have

taken into consideration for optimal relay

node selection towards the sink node

Effectively meets the application-

specific QoS requirements in

resource-constrained environment

Ensures load balancing

Selecting an appropriate routing

metrics is still remained as the NP-

complete problem

Mobile sink The controlled sink mobility increases the

probability of each node to become the

neighboring node of the sink

Balances traffic load

Improves network coverage and

scalability

Ensures reliable data delivery

Suffers from large control overheads

High probability of route failure due

to uncontrolled sink mobility

Multiple sinks Deploying more than one BSs over the

geographical area to avoid the early isolation

of a single BS

Balances the energy consumption

load

Improves network scalability

Faster the data transmission rate

Difficult to locate the optimal number

and the position of the multiple sink

nodes

Multipath

routing

Distributes the network traffic along the

multiple paths towards the destination

Ensures load balancing

Maintains network reliability

Effectively support heterogenous

traffic load

Requires appropriate strategies for

fragmentation and defragmentation

of multimedia video streaming
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the energy utilization because of retransmission of data

packets under the dynamic network conditions.

Cobo et al. [31] proposed an AntSensNet protocol which

integrates hierarchical architecture with an ACO-based

routing to meet the QoS prerequisites of WMSNs. It is a

hybrid routing protocol that considers reactive as well as

proactive components for efficient route establishment. It

supports various kind of multimedia media traffic classes

with diverse QoS requirements as shown in Fig. 5. This is

achieved by introducing a packet scheduling policy which

considers different priorities for each traffic class and

subsequently determines multiple paths that satisfy

different QoS requirements, such as delay, remaining

energy, and packet loss. AntSensNet protocol also intro-

duces an efficient multi-path video packet scheduling

mechanism in an attempt to reduce congestion in the video

packet transmission. Moreover, the hierarchical nature of

AntSensNet protocol reduces the collision among the

member nodes for data transmission and improves its

performance as far as energy efficiency and latency. Sim-

ulation results reveal significant improvement in delivery

ratio, energy efficiency, and E2E delay when compared

with the conventional AODV protocol for heterogeneous

traffic load. Nevertheless, AntSensNet protocol generates

Fig. 4 Ant colony optimization

Fig. 5 Queuing model of

AntSensNet protocol
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separate ants for control packets (FANT, BANT), data

packets (DANT), videos (VFANT, VBANT) and clustering

(MANT) which leads to large routing overheads and high

complexity.

Zuo et al. [32] proposed a hybrid multi-path routing

algorithm called DAWMNet for IWSNs. DAWMNet algo-

rithm integrates ant colony with dijkshtra’s algorithm for

reliable and deterministic data transmission. Dijkstra’s

algorithm determines shortest route across the source nodes

and the gateway during the initial route setup, while ACO

algorithm explores multiple redundant paths for data

transmission through pheromone diffusion and updation. In

addition, DAWMNet algorithm also has the ability to

handle the route failure due to dynamic topological chan-

ges by performing the route maintenance mechanism.

Simulation results reveal the effectiveness of the

DAWMNet algorithm in terms of E2E delay, delivery

ratio, and routing overheads when contrasted with the

conventional multipath routing protocols. However, its

efficiency decreases with increase in a number of dead

nodes, particularly in small-scale networks.

Tong et al. [33] proposed an ACO based multipath

routing protocol known as EAMR, which exploits the

intelligent searching of real ants for optimizing the energy

and delay constrained WSNs. It is based on the hybrid

routing approach which is reactive during the route estab-

lishment mechanism and proactive during the route main-

tenance. Initially, the source node establishes multiple

paths by broadcasting the forward ants. Once the forward

ants reach the destination, they switch to the backward ants

and thoroughly update the pheromone concentration on the

traversed path based on remaining energy of the path, hop

count towards the sink node, and path congestion. This

pheromone updating process achieves load balancing by

distributing the traffic along multiple paths based on the

estimated quality of path. Moreover, EAMR algorithm also

has ability to recover the link failure caused either by high

data traffic or by high node mobility. Through the exten-

sive simulations, authors have shown that EAMR protocol

outperforms in terms of E2E delay, and delivery ratio as

contrasted to AOMDV and EEABR protocols. However, it

generates high routing and control overheads during route

establishment.

Malik et al. [34] introduced an enhanced ACO based

QoS-aware routing protocol called EAQHSeN for hetero-

geneous WSNs. EAQHSeN protocol has the ability to meet

the diverse QoS constraints of heterogeneous traffic load

associated with multimedia and scalar sensor nodes. This is

achieved by exploring independent routing path for each

type of data traffic load. For multimedia data traffic,

EAQHSeN protocol considers residual bandwidth and E2E

delay as the heuristic factor for the selection of the next

hop node which is defined as follows:

Pd
ij ¼

ðsijÞaðbijÞb tdij

� �b

P
k2Nd

i
ðsikÞaðbikÞb tdik

� �b ; a; b� 1 ð3Þ

where Pd
ij indicates the probability of selecting a node j, sij

indicates the pheromone concentration for node j, bij and tdij
are a measure of bandwidth and E2E delay, respectively.

For scalar traffic, residual energy (ej) is considered as

the heuristic factor for next hop node selection which is

defined as follows.

Pd
ij ¼

ðsijÞaðejÞb
P

k2Nd
i
ðsikÞaðekÞb

; a; b� 1 ð4Þ

Simulation outcomes show significant improvement in

data delivery ratio, E2E delay, and residual energy when

compared with the standard AODV and EEABR protocols.

Moreover, EAQHSeN achieves robust adaptation under the

highly dynamic environment dictated by node mobility.

Wang et al. [35] proposed an improved ACO based

algorithm called IACO-MS which integrates clustering and

mobile sink technologies to address the hot spot problem in

the static network environment. The modified ACO in

IACO-MS routing algorithm improves the global search

ability and accelerates the convergence rate of conventional

ACO. IACO-MS routing algorithm determines an optimal

traversal path for mobile sinks for data collection by taking

into account the distance between the CHs and distance to

other mobile sinks. The distance heuristic factor efficiently

reduces the transmission delay and the energy consumption

of CHs. Simulation results demonstrate significant

improvement in network lifetime, energy efficiency, trans-

mission delay when compared to the ACO-M routing algo-

rithm. Nevertheless, IACO-MS algorithm does not have the

ability to handle the link failure due to the node mobility.

5.2 Particle swarm optimization

PSO [36] algorithmoriginates from the social conduct of bird

flocking, and fish tutoring. It comprises a swarm of prede-

fined particles say NP in search space, where a particle i

occupies a position Xi;d and a velocity Vi;d in the dth

dimension of global search space. During the search space,

every particle monitors its own personal best called pBesti
and a global best known as gBest in a swarm. After finding

the pBesti and gBest, a particle Pi updates its velocity and

position in each iteration by using Eqs. (5) and (6)

respectively.
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Vi;dðt þ 1Þ
¼ w� Vi;dðtÞ þ c1r1 pBesti;d � Xi;dðtÞ

� �

þ c2r2 gBest � Xi;dðtÞ
� �

ð5Þ

Xi;dðt þ 1Þ ¼ Xi;dðtÞ þ Vi;dðt þ 1Þ ð6Þ

where w indicates the inertial weight, r1; r2 indicate two

uniformly distributed random number and c1; c2 indicate

two non-negative constants called acceleration factor

commonly set to 2.0.

After getting a new position in each iteration, the par-

ticle Pi is evaluated by computing fitness function and

accordingly updates its pBesti as well as gBest as follows

Pbesti ¼
Pi if fitnessðPiÞ \ fitnessðPbestiÞð Þ
Pbesti Otherwise

�
ð7Þ

Gbest ¼ Pi if fitnessðPiÞ \ fitnessðGbestÞð Þ
Gbest Otherwise

�
ð8Þ

This process is iteratively repeated until a fixed number

of iterations Imax is reached. Figure 6 clarifies how a par-

ticle accomplishes a global optimum solution gBest that

reflects the best estimation of fitness particle by exploring

the search space. In Multi-constrained QoS routing, PSO

iteratively finds the best optimal path to meet the desired

QoS requirements [37].

Liu and Sun [38] proposed an agent-assisted based QoS-

aware routing protocol called QoS-PSO in WSN. It

exploits the intelligent searching features of particle swarm

to provide application-specific QoS. The QoS-PSO algo-

rithm selects synthetic QoS as the objective function which

incorporates numerous parameters, for example, delay,

bandwidth, and packet loss for optimal path selection. The

intelligent searching agents of the QoS-PSO algorithm can

effectively adopt changes in network topology, and routing

status of the node. These agents establish and maintain the

route towards the sink node. Simulation results show that

QoS-PSO algorithm outperforms AODV and EEABR, in

terms of delay, packet loss, and synthetic QoS. However, it

doesn’t consider the residual energy of sensor node while

making the routing decision which may lead to the high

energy consumption.

Hu et al. [39] proposed an effective routing recovery

mechanism called ECPSOA which adopts endocrine

cooperative PSO based algorithm to address the route

recovery problem with minimum communication over-

heads. This is accomplished by incorporating multiple

mobile sinks in the network for data accumulation. These

multiple mobile sinks create a virtual backbone in order to

establish reliable communication path for data collection.

Once the primary links fail either due to sink mobility or

complete energy depletion of the source nodes, the mobile

sink establishes an alternate path with high residual energy,

less transmission delay, less route distance and low energy

consumption to avoid any network disruption. The endo-

crine mechanism in PSO enhances the global searching

capability of the particles and accelerates the speed of

convergence. Simulation results show significant

improvement in communication overheads, energy con-

sumption, network delay, and robustness against the route

failure. Nevertheless, the alternate route selection in

ECPSOA with multiple mobile sinks increases the com-

putational complexity of the routing protocol.

Since conventional PSO is designed for continuous

optimization problems, it does not have the ability to

compute the discrete optimization problems. To address the

discrete routing problem, Yang et al. [40] proposed

GMDPSO, a greedy discrete PSO algorithm associated

with memory for mobile WSNs. GMDPSO algorithm

employs a greedy forwarding scheme to construct the

optimal routing tree which requires path delay, and energy

utilization as the QoS metrics for relay node selection.

Once the primary path associated with source node is

breakdown due to relay node failure, the route recovery

mechanism of GMDPSO algorithm quickly establishes an

alternate routing path to minimize the network delay.

Besides, the improved greedy forwarding routing, the dis-

crete PSO in GMDPSO algorithm redefines the position

and velocity of the particle under discrete scenario and

consequently redesigns the particle updating rule by con-

sidering the network topology. The discrete PSO mecha-

nism accelerates the global convergence rate and produces

high-quality solutions with minimum control overheads.

Simulation results show significant improvement in

robustness and adaptability towards the dynamic network

topology while maintaining energy consumption and

communication overheads at the minimum level.

In order to address the hop spot problem in static WSN,

Wang et al. [41] introduced a PSO based clustering algo-

rithm based on PSO with a mobile sink called EPMS.Fig. 6 Particle representation in PSO

2474 Wireless Networks (2020) 26:2465–2486

123



EPMS algorithm integrates mobile sink and virtual clus-

tering techniques to minimize latency and maximize net-

work lifetime. The virtual clustering in EPMS algorithm

considers residual energy and location of nodes for better

CH election. After cluster formation, the mobile sink

broadcasts Hello packets to the CHs for data collection and

the CH with maximum residual energy in its communica-

tion range is selected for data transmission. Simulation

results show significant deterioration in energy consump-

tion and transmission delay while maximizing the network

lifetime. Although, the fault tolerant mechanism of the

EPMS algorithm restores the network connectivity by

determining the broken path but can simultaneously induce

significant communication overheads.

5.3 Artificial bee colony optimization

ABC algorithm exploits the foraging behavior of honey

bees for optimizing multi-variable function problem [42].

In the ABC algorithm, honeybees forage for food source in

the search space. The location of a food source in search

space indicates a possible solution for the multi-con-

strained optimization problem and its nectar amount indi-

cates the quality of the solution associated with the food

source. The honeybees in ABC algorithm can be arranged

into three gatherings: employed bees, onlookers bees, and

scout bees. The employed forager bee exploits a food

source within its neighborhood based on local information

and its fitness cost. After each employed forager’s honey-

bees complete the entire search, they share the fitness

information of the food source such as direction, distance,

and profitability with the onlooker honey bees, through a

waggle dance. An onlooker bee evaluates the fitness

(nectar) information provided by the employed bee and

chooses a food source with a higher probability of nectar

being found. After certain forages, when some of the

existing food sources abandon by the employed bees, scout

bees start searching for new food sources randomly around

the hive [43]. Thereby, ABC algorithm achieves global

optimization through exploration which is performed by

artificial scouts, while attains local optimization through

exploitation which is executed by onlookers and employed

bees.

Karaboga et al. [44] exploited the intelligent behavior of

honey bees to design an optimized clustering mechanism in

WSN. Initially, authors have proposed ABC based clus-

tering algorithm for WSN called CWA, which selects

optimal CH by taking into consideration the effects of both

intra-cluster and inter-cluster distance ðf distÞ. The fitness

function of CWA is calculated as follows

f CWA ¼ f dist ð9Þ

Then, authors modify the proposed fitness function by

taking the battery level of nodes ðf energyÞ in order to extend

the lifetime of the network. The fitness function of

improved CWA (ICWA) is given by Eq. (10).

f ICWA ¼ b � f dist þ ð1� bÞf energy ð10Þ

where b is the weighing parameter. In order to introduce

the quantity of service in their proposed fitness function

(ICWAQ), the authors consider the packet delivery during

the data gathering process. The fitness function of ICWAQ

is given by Eq. (11).

f ICWAQ ¼ f ICWA þ f QoS ð11Þ

f QoS ¼ max
i¼1;2;...n

ðmi þ 1Þ
	 
�1

ð12Þ

where n is the number of clusters and mi represents the

member nodes of i the cluster head. Thus, the clusters with

a minimum number of member nodes would require less

scheduling time for data aggregation and hence, results in

less packet delivery delay. Simulation results show that the

ICWAQ algorithm exhibits better performance in terms of

maximizing network lifetime and minimizing network

transmission delay. However, the centralized clustering

approach of ICWAQ algorithm requires resource rich BS

with high computational capabilities.

Ari et al. [45] proposed an energy proficient routing

protocol called ABC-SD for cluster-based WSNs. It

addresses both clustering and routing issue in WSN by

exploring the foraging behavior of an artificial bee colony.

The clustering algorithm of ABC-SD protocol is a cen-

tralized control algorithm in which BS administers the CH

election by exploiting a trade-off between communication

links quality and energy consumption within the cluster

and thereby evaluates a weighted sum based multi-objec-

tive fitness function for the efficient assignment of sensor

nodes to the CHs. However, the routing procedure of ABC-

SD protocol is a distributed approach in which cost func-

tion for the efficient route selection is evaluated by

exploiting a trade-off between energy-efficiency and hop

count. Simulation results show that the ABC-SD protocol

exhibits significant improvement in network lifetime, net-

work coverage, and packet delivery ratio under the variable

network topology. Moreover, the controlled flooding

method in ABC-SD protocol significantly reduces the

control overheads.

5.4 Evolutionary algorithm (EA)

EA is used for complex and large sample space problems,

but in which sample space is not precisely defined. It deals

with the multiple set of candidate solutions known as
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population and executes in an iterative manner to generate

an optimal solution [46]. In this section, we discuss the

existing evolutionary algorithms such as GA, NSGA-II,

and SPEA proposed in the recent literature.

5.4.1 Genetic algorithm

GA is an evolutionary algorithm which imitates the evo-

lution process to generate optimized solution iteratively.

The flowchart of the execution of GA is shown in Fig. 7. It

initiates with the set of the randomly generated population

of individuals, called chromosomes, where each chromo-

some represents an array of genes. The fitness function of

each chromosome is evaluated based on the particular

problem and the chromosomes associated with high fitness

value are elected for the reproduction process in the next

generation. During reproduction, the chromosomes

recombine through a crossover operation to reproduce new

children. Crossover is a genetic operation which merges the

genetic components of two parents to generate new off-

spring. After crossover, a mutation operation is performed

on the selected chromosomes to generate new children by

randomly changing the genes of individual chromosomes.

In this way, a new sequence of genes produced using

crossover and mutation operations would replace the parent

chromosomes with least fitness value. This procedure is

repeated until an optimum solution is achieved.

In order to alleviate multi-constrained routing problems,

a special class of GA known as multi-objective genetic

algorithm (MOGA) have been introduced by [47]. MOGA

is a Pareto based optimization algorithm and evaluates an

optimal solution for two conflicting objectives. However,

Non dominated Sorting Genetic Algorithm-II (NSGA-II) is

perceived as the most efficient multi-objective evolutionary

algorithm (MOEA). NSGA [49], sorts the population on

the basis of non-domination and has the capability to

maintain the population diversity among all the non-dom-

inated individuals at less computational complexity.

MNSGA-II modifies the existing NSGA-II by adopting a

dynamic crowding distance to compute pareto optimal

solution. It provides more uniformly distributed solutions

in a less computational time as compared to NSGA-II [45].

5.4.2 Strength pareto evolutionary algorithm (SPEA)

An SPEA [48] achieves optimal solutions by maintaining

an archive containing a set of nondominated individuals.

Like NSGA-II, SPEA uses the dominance concept to pro-

mote elitism, but here a strength value is evaluated for

every non-dominated individual in both population and

archive. After all the individuals have assigned a Pareto-

strength, the fitness value is generally estimated on the

basis of Pareto-strength of non-dominated solutions. The

individuals with high fitness values are first achieved and

then the mating selection is applied using binary tourna-

ment on the previously assigned fitness values, in order to

fill the offspring vector, which is then subject to recom-

bination and crossover operators.

EkbataniFard et al. [49] proposed NSGA-II based QoS

protocol for routing in two-tiered WSNs. In the two-tiered

WSNs, high power relay nodes are considered as CHs

which route the aggregated data towards the sink node by

satisfying the application specific QoS requirements such

as E2E delay, energy utilization, and reliability through

crossover and mutation operation. Crossover operation is

utilized to create new routing tree and mutation operation

is used to create a new path in routing tree. This multi-

objective optimization algorithm in the proposed routing

protocol provides error free data transmission from the CHs

to the sink. Simulation results show that the proposed

routing protocol performs better in terms of various QoS

parameters such as delay, energy efficiency, and reliability

as compared to the existing multi-objective routing

protocols.

Murugeswari et al. [50] proposed a multi-objective QoS

routing approach in wireless mesh networks (WMN). The

proposed approach integrates MNSGA-II and analytic

hierarchy process (AHS) to formulate the multi-constrained

QoS routing problem into multi-objective routing for

optimal route selection. It determines the connectivity

among the sensor nodes by evaluating the status of a link in

terms of expected transmission count (ETX). Furthermore,Fig. 7 Flowchart of genetic algorithm
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in the case of high mobility scenario, the proposed

approach does not require any repair function to fix the

broken paths and also avoids the redundancy of nodes

towards the destination. Through the extensive simulation,

the authors show that the proposed approach outperforms

in terms of throughput and transmission delay under the

variable network density and node mobility. Nevertheless,

MNSGA-II algorithm in the proposed approach increases

computational complexity and communication overheads

of the routing protocol.

Magaia et al. [51] proposed SPEA based multi-objective

approach to address the QoS routing problem in WMSNs.

It determines an optimal path by providing a trade-off

between two conflicting objectives namely, minimizing

delay and minimizing Expected Transmission Count

(ETX). The ETX metrics in the proposed approach repre-

sents an estimation of the expected total number of trans-

missions essential for successful data packet delivery.

These link status metrics evaluate high-quality paths and

integrates the effects of asymmetry in link loss ratios, and

interference between successive links of the path. Simu-

lation results show a significant reduction in transmission

delay and packet loss ratio in comparison to DSR and

HTLC-MeDSR algorithm, especially in variable network

topology and node density scenarios. However, it does not

consider residual energy of the sensor nodes for making a

routing decision, which leads to high energy consumption.

To address the reliable data delivery issue of the existing

hierarchical routing protocol in UWSNs, Faheem et al. [52]

proposed a novel QoS aware evolutionary cluster-based

routing protocol (QERP) for real-time UWSN-based

applications. The clustering approach of QERP organizes

small-sized clusters into a connected hierarchy in an

attempt to uniformly disseminate the energy and the data

traffic load among the sensor nodes. The multi-hop routing

approach in QERP determines optimal next hop node

towards the sink node by considering area, residual energy

and E2E delay of the node. This greedy routing approach

maintains reliability and avoids data path loops to ensure

successful data transmission towards the sink node.

Moreover, during the sensor node failure, a dynamic power

adjustment approach and its routing table determines an

optimal relay node to restore the network connectivity and

significantly reduces the probability of packet loss in

highly dynamic underwater environments. Simulation

outcomes show that QERP decreases network delay, and

energy utilization and increases packet delivery ratio in

comparison to VBF and DBR routing approaches. How-

ever, it does not consider the impact of node density,

excessive noise and high interference in UWSN

applications.

5.5 Fuzzy logic

FL is a mathematical technique able to do reasoning based

on the estimated human thinking. Unlike, a classical set

theory where the outputs are either true or false, FL creates

intermediate values based on inference rules and linguistic

variables. The architecture of fuzzy logic system comprises

of three fundamental modules, namely, fuzzifier defuzzi-

fier, and inference engine as depicted in Fig. 8. The

fuzzifier takes crisp values as the system input and returns a

fuzzy degree of membership corresponding to each crisp

value. The inference engine maps the fuzzified system

inputs to the corresponding fuzzy sets with the assistance

of a fuzzy rule base. It assigns membership degree to each

fuzzy set which is characterized by a linguistic term, like

‘‘high’’, ‘‘low’’, ‘‘medium’’, ‘‘small’’ and ‘‘large’’. In

defuzzifier, the results obtained from the inference system

are transformed into the crisp values through defuzzifica-

tion process. There are several defuzzification methods

such as averaging method, and centroid method. However,

the execution of fuzzy logic requires minimum system

development cost, design time, and computational memory

[53].

Minhas et al. [53] introduced a multi-objective online

routing algorithm based on fuzzy logic called FMOLD for

delay sensitive WSN applications. It determines the opti-

mal path by providing a trade-off between two conflicting

objectives, i.e., maximizing network lifetime and mini-

mizing routing delay associated with source node. It

defines fuzzy membership function independently for each

objective and then, evaluates the multi-objective output

function by aggregating the individual objectives through

ordered fuzzy averaging (OFA) operator as given by

Eq. (13).

lij ¼ b�min lijlt; l
ij
md

� �
þ ð1� bÞ � lijmd þ lijmd

2

 !

ð13Þ

where lij is the fuzzy multi-objective membership function

of edge eðvi; vjÞ, lijlt is fuzzy membership function for

network lifetime, lijmd is the fuzzy membership for the

delay and b 2 ½0; 1� is a constant. Once the scalar value is

obtained, a weight w is assigned to edge i; j by using the

following equation

wij ¼ 1� lij ð14Þ

After assigning weights to the nodes, the multi-objective

path is determined by utilizing Dijkstra’s algorithm. Sim-

ulation results show that FMOLD outperforms in mini-

mizing the data transmission delay in comparison to FML

algorithm. However, it generates high control overheads

during the data transmission process.
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Gaddour et al. [54] proposed an FL based QoS-aware

routing protocol called OF-FL for Low Power and Lossy

Networks (LLNs). The OF-FL protocol considers multiple

routing metrics including E2E delay, hop count, residual

energy, and link quality to determine the optimal neighbor

node. Simulation results show that OF-FL protocol exhibits

a significant reduction in the average hop count and the

network delay while maximizing the network lifetime.

However, it suffers from large computation and control

overheads while making the routing decision.

Priya et al. [55] introduced a multi-constraint, multi-

objective routing approach called FMMQR to provide

guaranteed reliability and on-time data delivery regardless

of unreliable communication links and restricted resource.

This is achieved by introducing fuzzy ‘A-star’ algorithm in

the proposed approach which considers both energy and

bandwidth constraints. Each node in FMMQR protocol is

associated with a guidance list, used to determine the best

next hop node for data messages transmission. For broad-

cast messages transmission, each node employs fuzzy rules

which considers traffic load, link quality, and residual

energy. Moreover, the overhearing nature of broadcast

messages reduces the effort to determine the active dura-

tion of sensor nodes while transmission. For routing unicast

messages, each sensor node employs a modified fuzzy A

star approach that considers residual energy, traffic load

and hop count to balance the energy consumption load.

Simulation results show a significant reduction in redun-

dant data transmission and active duration of the sink node

while maximizing the network lifetime under the multiple

sinks scenarios.

5.6 Reinforcement learning

RL is a machine learning approach in which the agents

perform a necessary action to improve the long-term

reward. The agent model of RL algorithm usually consists

of State, Action, and Reward. At each step of correlation

between the agent and the dynamic environment, the agent

receives the status of a current state, ‘s’, of the environment

as an input and decides to perform an action, ‘a’, according

to its acquired knowledge as shown in Fig. 9. The elected

action may change the environmental state and this state

transition information is routed through a scalar reward, r

towards the agent node. This reward signifies the appro-

priateness of performing an action a 2 A in state s 2 S. As

time passes, the learning agent correlates each state-action

pair with the highest reward based on its past experience

and hence, achieves optimal performance evaluation.

Q-learning is the most commonly used RL technique in

literature. The reward function of In Q-learning algorithm

is expressed in terms of Q-value which is updated when an

action at is performed at state st. The future total reward is

calculated by using Eq. (15):

Qðst þ 1; at þ 1Þ ¼ Qðst; atÞ þ k; ½rðst; atÞ � Qðst; atÞ�
ð15Þ

where rðst; atÞ represents the immediate reward of exe-

cuting an action at at state st, and 0 B k B 1 represents the

learning rate which indicates the speed at which the

learning will happen. This learning approach can be real-

ized in a distributed environment like WSNs, where each

sensor node attempts to execute specific actions that are

supposed to maximize its long-term rewards [56, 57].

Liang et al. [58] proposed an RL based QoS routing

protocol called RL-QRP for WBANs. The RL-QRP utilizes

dispersed Q-learning mechansim which considers packet

delivery ratio and E2E delay associated with the nodes as

the link quality indicators for optimal path selection. After

routing the data packet, source node gets either a positive

Fig. 8 Fuzzy logic system

Fig. 9 Reinforcement learning
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or negative reward from its neighboring nodes. Both

reward and expected future reward update the Q-value

associated with the sensor node, which is used to make the

future decisions for optimal path selection. Moreover, the

flexible nature of the protocol makes it adaptable towards

the highly dynamic traffic. Simulation results show a sig-

nificant reduction in packet loss ratio and average E2E

delay when compared to the QoS-AODV protocol, espe-

cially in high mobility scenario. However, this work is

based on independent distributed reinforcement learning

(IndRL) which does not support global optimization and

limits its use to small-scale networks only.

Jin et al. [59] proposed Q-learning based delay-aware

routing algorithm known as QDAR to maximize the life-

time of UWSNs. By employing a Q-learning approach, the

QDAR algorithm determines a global optimal path by

taking into account the propagation delay and the residual

energy of the sensor nodes. Consequently, each node

evaluates its energy-related cost function ceðeiresÞ and

delay-related cost function ctðtijÞ and forwards the col-

lected information to sink node through the data-ready

packet.

ce eires
� �

¼ 1� eires
eiini

ð16Þ

where eires and eiini are remaining energy and initial energy

of node respectively.

ctðtijÞ ¼ 1� 1

tij þ 1
ð17Þ

where tij is the packet transmission delay associated with

node i and j. The adaptive detouring path mechanism in

QDAR algorithm exploits trades-off between residual

energy and delay in order to achieve load balancing among

the sensor nodes and maximizes the lifetime of the net-

work. Moreover, the unique packet structure of QDAR

algorithm has the ability to quickly adapts to the dynamic

underwater conditions. Simulation results show significant

improvement in the residual energy of sensor nodes while

maintaining minimum path delay. However, it does not

consider energy utilization cost due to retransmission under

dynamic network conditions.

5.7 Bird mating optimization

BMO is an evolutionary-based searching algorithm,

inspired by the mating behavior of birds in nature [60, 61].

The steps associated with the execution of the BMO

algorithm is given as follows:

1. Initialization It initiates with the population of indi-

viduals referred as the society and each member in the

society called bird, represents a feasible solution in the

population.

2. Fitness value The quality of each bird in a society is

evaluated by inserting its values into the fitness

function. It represents the ability of the bird to bring

more food and memorize the routes towards the

destination.

3. Ranking The birds are ranked according to their fitness

values attained in step 2.

4. Classification The individuals having the most promis-

ing genes are considered as females, while the others

are selected as males. The female birds are individuals

with a higher score in society and can be grouped into

two classes: parthenogenetic and polyandrous. How-

ever, the male birds have the lower score in society and

can be classified into three groups: monogamous,

polygynous, and promiscuous. Each bird makes uti-

lization of one of these approaches to breed.

5. Breeding The female birds in society attempts to raise

broods and pass on better genes to her broods by

mating with predominant males probabilistically.

6. Replacement Each bird reaches the optimal solution by

incorporating its brood to the society based on the

fitness evaluation. If the brood has better quality in the

search space, the bird will abandon the society and the

brood will restrain in it, otherwise, the brood will

abandon, and the bird will remain in the society.

7. Final selection The entire process repeats iteratively

until a predefined number of generations is reached.

Consequently, the bird with superior quality is selected

as the final solution in the society.

In order to provide reliable communication in a smart

grid environment, Faheem and Gunjor [62] proposed a

dynamic clustering-based energy efficient and QoS-aware

routing protocol known as EQRP. The EQRP exploits the

intelligent searching and mating behavior of birds to

address the clustering and routing problems in WSN. The

fitness function of the clustering mechanism in EQRP

constructs uniform size cluster in order to ensure

stable load balancing among the CHs. It also includes link

quality associated with sensor nodes to ensure reliable data

transmission in the smart grid. However, the routing

mechanism of EQRP takes into account the inter-cluster

distance, the hop count, the residual energy, and the

proximity degree for relay node selection in an attempt to

balance the intra-cluster and inter-cluster energy con-

sumption load among the CHs. Simulation results show

that the EQRP provides a significant reduction in packet

loss rate, energy consumption, E2E delay, and memory

utilization in the network. Moreover, it addresses the fault

tolerance routing issue by electing the backup route in case

of any primary route failure.
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6 Analytical discussion and summary of CI
based QoS-aware routing protocols

This section provides a brief summary and a comparative

analysis of CI-based QoS-aware routing protocols in WSN

as shown in Tables 2 and 3. Table 2 highlights the primary

QoS mechanisms, transmission mode, merits, limitations,

and the scope of application of the reviewed QoS-aware

routing protocols. Table 3 gives the comparative analysis

of different CI-based QoS-aware routing protocols on the

basis of QoS evaluation parameters. In this comparative

analysis table, tick mark indicates that the given routing

protocol improves the corresponding QoS metrics in WSN.

After the comprehensive analysis of reviewed protocols,

it can be seen that most of the routing protocols employ

multiple techniques to provide QoS support at the network

layer in WSN. In this regard, a concluding graphical rep-

resentation on various QoS mechanisms employed by the

reviewed routing protocols is presented as shown in

Fig. 10. This section will also facilitate the researchers to

quickly analyze various computational intelligence algo-

rithms discussed in this paper and select the appropriate

intelligent algorithms based on their advantages and limi-

tations as shown in Table 4 to provide QoS support at

network layer in WSN. ACO is the most widely adopted

intelligent algorithm by the researchers that provide QoS

support to heterogenous traffic load through multi-con-

strained and multipath routing. In case of sink mobility,

Table 3 Comparative analysis of reviewed protocols

Computational

intelligence

technique

Protocols QoS metrics Year

Energy

efficiency

Delay Reliability

(PDR)

Throughput Network

lifetime

Adaptivity Low control

overheads

Robustness

ACO ACO-QoSR [30] 4 4 4 4 4 2006

AntSensNet [31] 4 4 4 4 4 4 2010

DAWMNet [32] 4 4 4 4 4 2013

EAMR [33] 4 4 4 4 4 2015

EAQHSeN [34] 4 4 4 4 4 2017

IACO-MS [35] 4 4 4 4 2017

PSO QoS-PSO [38] 4 4 4 4 2012

ECPSOA [39] 4 4 4 4 4 4 2015

GMDPSO [40] 4 4 4 4 4 4 2016

EMPS [41] 4 4 4 4 2017

ABC ICWAQ [44] 4 4 4 2012

ABC-SD [45] 4 4 4 4 4 2016

EA NSGA-II [49] 4 4 4 2010

MNSGA-II [50] 4 4 4 4 2016

SPEA [51] 4 4 4 4 2015

QERP [52] 4 4 4 4 4 2018

Fuzzy logic FMOLD [53] 4 4 4 2009

FMMQR [54] 2014

OF-FL [55] 4 4 4 4 2017

RL RL-QRP [58] 4 4 4 4 4 2008

QDAR [59] 4 4 4 4 2017

BMO EQRP [62] 4 4 4 4 4 4 4 2018

Service 
Differentiat

ion
6%

Multiple 
Routing 
Metrics

53%

Clustering
15%

Multipath 
Routing

9%

Multiple 
Sink
6%

Mobile 
Sink
11%

Fig. 10 QoS mechanisms used by articles
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PSO algorithm can be used due to its ease of implemen-

tation and fast convergence rate. However, ABC and BMO

are best suited for implementing multi-objective clustering

in WSN. In addition, FL works well for the conflicting

routing situations which do not require any complex

mathematical model. Finally, EA and RL can also be

employed by various routing protocols to support appli-

cation-specific QoS requirements in WSN.

7 Conclusion and future research directions

The recent advancements in QoS provisioning techniques

to support wide variety of applications such as smart grid,

IOT, military surveillance and Body Area Networks has

become a great matter of concern for the researchers

worldwide. This survey has introduced a novel taxonomy

on research related to QoS provisioning techniques at the

network layer in WSNs. The QoS-aware intelligent routing

Table 4 Summary of computational intelligence techniques

CI techniques Advantages Disadvantages

Fuzzy logic The execution of FL requires minimum system development

cost, design time, and computational memory

FL based routing algorithms in WSNs have the potential for

dealing with conflicting situations without requiring any

complex mathematical model

FL induces large computation complexity and control

overheads while making the routing decision

Fuzzy rules are not adaptable towards the network dynamics

and required to be re-learnt with dynamic network

conditions

Ant colony

optimization

ACO is the most preferred CI technique for multi-constrained

routing due to its distributed nature

It has the ability to withstand with the highly dynamic

environment

It distributes network traffic load among all the sensor nodes

through multipath routing

ACO lacks the necessary information to find optimal paths at

the beginning and takes more time to converge

It generates high routing overheads in form of forward and

backward ants

Particle swarm

optimization

PSO is another most popular CI technique used in WSNs due

to its ease of implementation on hardware or software, fast

convergence rate, and highly optimal solution

PSO based routing protocols show significant improvement in

terms of robustness and adaptability towards the dynamic

sink mobility and the network topology while maintaining

minimum communication overheads

The iterative nature of PSO does not make it suitable for real-

time applications

PSO has large memory constraint which requires resource-

rich base station

Artificial bee

colony

ABC algorithm achieves global optimization through

exploration which is executed by artificial scouts, while

attains local optimization through exploitation which is

managed by onlookers and employed bees

It effectively solves the optimization problem related to

multimodal and multivariable functions

ABC has slow convergence problem due to the random

solutions generated by the components

Reinforcement

learning

RL based routing protocols find an optimal path through

experiences and rewards which do not require any precise

network state information for optimal route reservation

They are fully distributed, easy to implement, scalable, and

flexible towards the changing network topology

They are robust against the node and link failure

RL algorithm needs sufficient time to explore and learn the

network dynamics which degrades network delay and

throughput in the initial period of simulation

The length of the learning period in RL depends on network

size and node’s density, which increases exponentially with

increase in the number of nodes

Evolutionary

algorithm

EA-based routing protocols efficiently solve multi-objective

routing problem where predetermined information about the

network such as topology, density, and size is not required

The inbuilt parallel nature and ability to optimize hard real-

time problems make GAs suitable for data aggregation

mechanism

EA-based routing protocols have high computational

complexity and processing requirements in order to collect

sufficient information at the sensor nodes before

determining an appropriate relay node for data forwarding

EA has slow convergence speed which restricts its

implementation in real-time applications

It lacks the ability to deal with changing network topology

and communication link failures

Bird mating

optimization

BMO algorithm has comparatively fewer parameters to

evaluate the fitness function

It has the ability to locate most promising regions with better

solutions

For complicated problems, BMO algorithm is not efficient in

identifying the high performance regions of a solution

space. It shows premature convergence or poor efficiency
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protocols discussed in this survey reflect the importance of

CI-techniques in WSN. A comparative analysis of

reviewed protocols along with advantages and research

issues is also presented. It is observed that the existing

QoS-aware routing protocols have various limitations such

as slow convergence, network disruption, unreliable

delivery, and high computational complexity. Hence, more

effective and adaptive QoS-aware routing protocol should

be designed in order to meet the application-specific QoS

requirements of resource-constrained WSN. In future, fol-

lowing work can be explored to overcome the research

issues of the existing QoS-aware routing protocols.

• Cross-layer approach The heterogeneous traffic (video

streaming, still images, audio, scalar data) has multiple

QoS constraints, which are addressed by considering

various routing metrics like delay, reliability, packet

loss rate, congestion, energy consumption, and hop

count during the optimal path selection. These routing

metrics are highly influenced by MAC layer parameters

such as congestion factor, channel access delay, queu-

ing delay, type of data traffic and duty-cycle duration.

Thus, MAC-aware routing metrics need to be devel-

oped in an attempt to jointly enhance the QoS

performance of resource-constrained WSN.

• Mobility Most of the existing QoS-aware routing

protocols are designed for static WSN. The increasing

interest in medical care and mission-critical applica-

tions require the use of mobile nodes. However,

mobility in sink/sensor nodes induces various issues

such as dynamic topology variation, energy manage-

ment, and mobility overheads. Hence, these issues need

to be addressed in order to give efficient QoS assurance

in mobile sensor networks.

• Error-free transmission To effectively handle the delay

and reliability-constrained applications, such as battle-

field communication, military surveillance, disaster

management, and healthcare monitoring, where secure

and error-free transmission of data packets is required.

But the issues such as node’s misbehaviour attack,

packet tempering, and black hole attack are the hurdles.

Thus, trust-aware routing needs to be developed to

support QoS in a highly reliable environment.

• Fault-tolerant routing The high probability of sensor

node failure due to quick battery exhaustion or some

hardware components malfunction may lead to infor-

mation loss among the sensor nodes and the BS.

However, in hierarchical WSN, the failure of a CH

node disrupts the network connectivity not only with its

associated member nodes but also with the neighbor

CHs nodes. Therefore, a fault-tolerant routing mecha-

nism needs to be considered to re-establish the network

connectivity.

• Hybrid intelligence Most of the conventional intelli-

gence algorithms have some shortcomings such as slow

convergence, high learning period, and sensitive to

initial value and it is often very difficult to obtain the

desired result with one of these algorithms alone. In

order to address these issues associated with optimiza-

tion algorithms, the future research should focus on the

development of hybrid intelligence algorithms [9].

Little research has done so far in this area, such as

Fuzzy-ABC [63], Fuzzy-ACO [64], GA-ACO [65], and

Fuzzy-GA [66] etc. and it requires to be further

explored.

• Multi-channel routing Multi-channels routing brings

great potential for maximizing the network concurrency

and throughput by allowing the parallel transmissions

over multiple channels. It also has ability to deal with

high bandwidth data in WMSNs. Although several

solutions have been proposed at the physical and MAC

layers to address the issues associated with multi-

channel access networks, further research on develop-

ing efficient routing approaches that exploits the

potential benefits of multi-channel access capability to

promote efficient data delivery in WMSNs.
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