
An extended access control model for permissioned blockchain
frameworks

Muhammad Yasar Khan1 • Megat F. Zuhairi1 • Toqeer Ali2 • Turki Alghamdi2 • Jose Antonio Marmolejo-Saucedo3

Published online: 4 March 2019
� Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
In distributed environment, a digital transaction or operation requires transparency and trust among multiple stakeholders.

Several approches address such issues however, among these blockchain provides a viable solution which has received wide

acceptance in the recent past. Permissioned blockchain solutions adopt more efficient consensus algorithms and smart

contracts. There are many smart-contract solutions exists (such as, etherium, IBM blockchain, hyperledger fabric), however,

much of them mainly follow traditional access control models. A role-based access control model provides controlled access

of resources to members. This research work presents an extended usage control model known as DistU (Distributed Usage

Control). DistU is proposed to capture all possible access control models required by a business for permissioned blockchain

frameworks. DistU can monitor a resource continuously during the operation and update the attributes accordingly, per-

forming different actions, such as denying or revoking permissions. We believe that the proposed DistU usage control model

can provide a fine-grained control for blockchain resource management. The paper also contributes to provide a protoype

implementation of fine-grained permission model on Hyperledger Fabric. The reason of selecting Fabric for this research is

that, it is the first execute-order achitecture blockchain that provides a platform to develop general business applciations.

Secondly, it is an opensource operating system of permissioned blockchain with huge industry support.

Keywords Permissioned blockchain � System chaincode � Access control � Usage control � Continuous monitoring

1 Introduction

The conception of blockchain is introduced by an anony-

mous researcher in 2009 [1]. The initial idea of such

technology is to offer a digital currency that is completely

decentralized. By using cryptography techniques and con-

sensus algorithms [2], known as Proof-of-Work (PoW) [3],

a trust paradigm between untrusted members can be

developed. Each transaction of the block must link to its

previous generated block, and because of this structure, a

blockchain can traverse back to the origin block. As such, a

blockchain contains immutable records of every transac-

tion made.

Beside the cryptocurrency, Blockchain functionality can

be adapted to any distributed business environment. Bit-

coin established the building blocks for a new era of

computing. However, Bitcoin is a public blockchain and

works on a PoW consensus algorithm. The PoW is a highly

scalable algorithm, but the provision is suboptimal because

of inefficient transaction execution. According to the cur-

rent state of Bitcoin, the system executes 7–8 transactions

in a second, which is not acceptable in general purpose

business transactions [4]. Due to such inefficiency, many

IT and financial enterprises as well as other organizations

are looking into a new blockchain model that is suitable for

general-purpose business applications.

In 2015, IBM started Hyperledger, which is an umbrella

project hosted by The Linux Foundation [5]. It serves as a

hub for open industrial blockchain development. Currently,

there are five projects running under Hyperledger, includ-

ing Hyperledger Fabric, Swatooh, Iroha, Burrow, and Indy.

In this research work, the author adopts the Hyperledger

Fabric, which is a modular and expendable open source

& Megat F. Zuhairi

megatfarez@unikl.edu.my

1 Universiti Kuala Lumpur, Kuala Lumpur, Malaysia

2 Islamic University of Madinah, Medina, Saudi Arabia

3 Panamerican University, Mexico City, Mexico

123

Wireless Networks (2020) 26:4943–4954
https://doi.org/10.1007/s11276-019-01968-x(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0003-4418-8562
http://crossmark.crossref.org/dialog/?doi=10.1007/s11276-019-01968-x&domain=pdf
https://doi.org/10.1007/s11276-019-01968-x

system for utilizing permissioned blockchain. It is currently

used in many proofs-of-concepts of distributed ledger

technology, production systems, and prototypes in different

industries. Blockchain offers a new layer known by smart

contract or chaincode to deploy an organizational business

transaction policy. Smart contracts allow a programmable

method facilitating, verifying, or enforcing the negotiation

of business transactions. Additionally, Hyperledger Fabric

is a modular, decentralized operating system and it support

multiple pluggible scalable consensus algorithms.

Hyperledger Fabric, uses Role Based Access Control

(RBAC) [5, 6] as its permission model. This model governs

user access to a system’s resources (assets), based on roles.

RBAC does not focus on the ongoing access and attribute

aspect of permissions. In such model, continual access and

attribute updates are required in many business scenarios.

For example, RBAC enables a user U of role A to access a

specific object. However, the approach does not have a

mechanism to monitor an object continuously or to revoke

access. In a distributed environment, a finer control over

the usage of digital objects as compared to the conventional

access control such as RBAC, is required.

2 Related work

This section presents previous research studies related to

the Blockchain security and privacy.

Ronghua Xu et al. [7] conducted a survey on the security

and privacy of blockchain in the field of Internet-of-Things

(IoT). It is deemed that the existing centralized authentica-

tion system is not feasible for blockchain architecture. The

research work proposed a security model called BledCAC,

which recommend capability delegation process to propa-

gate permission in IoT, using blockchain infrastructure.

To address the aforementioned problems, a Federated

Capability-based Access Control model (FedCAC) [8] is

proposed. This research identifies the important aspects of

the Access policy but fails to address any solution with

regards to resources dynamic usage and prevention of its

excessive use.

Jason Paul Cruz et al. [9] proposed a model called Role-

Based Access Control using Smart Contracts (RBAC-SC).

In this model, the author makes use of Ethereum’s smart

contract technology to realize a trans-organizational uti-

lization of an organization’s roles. In this model, the trans-

organizational behavior of the user’s roles is presented. For

instance, a student of university A is allowed to buy books

from a shop S. Both are different organizations, but the

shops accept each other’s role up to some certain extent.

The research work provides the cross-organization role

usability concept, which is very unique but lacks the per-

spective of role invocations, which is the inherent problem

in any RBAC based model. In short, it is not possible to

restrict usage access of a role unless it is manually revoked.

Aissam Outchakoucht et al. [10]. explain the importance

of the user data on the blockchain network. It emphases

strongly on the importance of data privacy as it may con-

tain very confidential data. The author proposed Machine

Learning (ML) techniques to the blockchain network

which will ensure optimized self- adjusted security policy.

The proposed model is profound but handling access

decision to a central authority eliminates the end-to-end

security mechanism, which is the core of blockchain con-

cept. The second problem in the proposed scheme is it does

not impose rule restriction to the user and allows ML

algorithms to decide access to the resources. In short, it

does not allow resource access customization according to

the need of an organization but rather using an automatic

algorithm.

3 Background

Most blockchain projects emphasize transactions and

consensus algorithms. Minimal work is done on user access

policies in terms of obligations and usage alerts. Currently,

most blockchains entertain authorization policies only

when an explicit request is made regarding an resources.

Smart contracts address organizational business policies;

however, the developer would not fully cover every usage

control aspects of the resources within the model. The

inherent problem of blockchain access control is summa-

rized below.

Existing access control models in permissioned block-

chains only authorizes one-time access. However, after

access is granted, no mechanism exists to subsequently

control resource’s access, for example, to continuously

monitor and revoke permission.

In this research work, an improved model is proposed,

which contributes to the usage (continual access) and

access control of the resources as defined in the Hyper-

ledger Fabric architecture. The work proposes a fine-

grained security model to the blockchain infrastructure,

which covers all traditional access controls, such as dis-

cretionary access control (DAC), mandatory access control

[11] (MAC), and (RBAC). It also extends to digital rights

management and other method of modern access control

management required for businesses.

4 Blockchain

A blockchain can be defined as an immutable ledger for

recording transactions, maintained within a distributed

network of mutually untrusting nodes/peers. Every node in

4944 Wireless Networks (2020) 26:4943–4954

123

the network maintains a copy of the ledger. When a new

transaction is generated, each node first verifies its validity

using a consensus protocol, and then it is grouped with

multiple transactions to a block and builds a hash chain

over the blocks and broadcasts to the entire network. Such

process forms the ledger by ordering the transactions,

which is necessary for consistency. Blockchain emerged

with Bitcoin and is generally viewed as a promising tech-

nology to run trusted trades in the digital world.

In a distributed system, various autonomous components

work together to form a single system. Such distributed

systems enhance the performance, reliability, scalability,

and availability of resources in the network. These com-

ponents can be of different processing capabilities and can

be located at any geographical location. In a distributed

system, information is shared or replicated to each node of

the network. Any node can generate a new transaction that

changes the state of data. A distributed system uses con-

sensus algorithms to register any new transaction in a

specific order to the network. Two popular consensus

algorithms are used, namely Raft and Paxos. In both

algorithms, the system selects a leader through leader

election, which is responsible for committing a transaction

and keeps track of its order. In distributed network algo-

rithm, some limitations are that all members should be

trusted, they must rely on the selected leader, network

scalability is very hard and its architecture is very fixed to

be customized.

Blockchain is a linked-list of data blocks, which contain

a pointer to the previous block hash. Blockchain uses a

hashing technique to maintain the integrity of the data

blocks. Hashing is a mathematical function that transforms

arbitrary input data to a fixed-size digest value. It is com-

putationally complex to reverse a hash function value. In

other words, if a hash function f for an input i produces

hash value f (x), then it should be very difficult to find any

other input value j, such that f (i) = f (j). Figure 1 shows

blockchain ledger structure.

Blockchain are mainly of two types i.e. Public/Permis-

sionless and Private/Permissioned blockchain.

• Permissionless blockchain In Public blockchain any

anonymous user can join the network. This model is

best suited for Business-to-Consumer (B2C) and Con-

sumer-to-Consumer (C2C) model’s use cases. Most of

these systems use cryptocurrency to simplify the

exchange of values among members of the network.

• Permissioned blockchain A permissioned blockchain is

a closed ecosystem in that each member provides the

credential to become the part of the network. This type

of blockchain is built to allow an organization or a

consortium of organizations to efficiently exchange

information and record operations. Permissioned block-

chain follows Business-to-Business (B2B) model.

Hyperledger Fabric is type of permissioned blockchain.

Ensuring trust of processing operations in public and

private blockchain is very different. As compared to public

blockchain private blockchain needs more control our its

shared resources or data. In this paper we highlight existing

security structure of the Permissioned blockchain and also

proposed a new security model that incorporate all the

required security constraints for a business solution. We

opt Hyperledger Fabric permission model for our proposed

architecture.

5 IBM hyperledger fabric

Hyperledger Fabric is an open source permissioned

blockchain framework. Similar to other blockchain tech-

nology, it works in a distributed peer-to-peer network

topology. Fabric intends to provide a modular and scalable

architecture that can be deployed in many industries e.g.

Fig. 1 Blockchain ledger structure [12]

Wireless Networks (2020) 26:4943–4954 4945

123

from banking to healthcare and supply chains [3]. lan-

guage. In contrast to other blockchain, Fabric introduced

novel concept of execute-order architecture instead of

order-execute model [4]. By using this model, transaction

throughput is increased significantly. Bitcoin and Ethereum

(public blockchain) runs 8–20 transactions per second (tps)

while Fabric can run 3500 ? tps.

In Fabric, multiple peers combine to form a private com-

municationnetworkcalled channel.Each channelmaintains its

own distributed-network, organizations, distributed-ledger,

members, chaincode(s) and orderer service(s). A single node

can join multiple channels, keeping each channel information

isolated from other. Each peer in the network is considered as

Node. Below is the list of Hyperledger Fabric main compo-

nents. Fig. 2 shows overall fabric network structure:

• Channel Hyperledger Fabric works on channel, channel

combine set member to a network. One channel data is

confidential from another channel. If a scenario is need

to secure communication of two or more member in the

same channel, fabric allow us to create sub-channel or

to create a private data section within a channel. Using

MSP fabric can issue identity certificates for n-level of

channel network.

• Membership service provider (MSP) In Hyperledger

Fabric members are assigned unique id which is used in

X.509 digital certificate. Fabric issued different set of

certificates for different members which are linked to

different roles in the network. Through MSP we can

defines Intermediate CAs (in case of large network),

Organizational Units, Revoked Certificates, Node Iden-

tity, KeyStore for Private Key,TLS Root CA and TLS

Intermediate CA.

• Chaincode Chaincode is a piece of code that defines a

business logic of an application. chaincode are install and

initiated on peer level of a channel. Chaincode are used to

update state of the resource in the DSL [14]. Hyperledger

fabric uses Shim API layer to protect DSL from unautho-

rized access. Chaincode functionality extends Shim init()

and invoke() interfaces to perform get or put operation on

the ledger. Chaincode are mainly used in two scenarios i.e.

to define business contracts or to manage digital resources

on a network. Chaincode are further divided into two types

system chaincode and user chaincode i.e.

– System chaincode System chaincode are used to

monitor user chaincode life cycle it also ensure validity

of the transaction proposal. system chaincode can be

customized and build for different business purposes.

By default we have some system chaincodes enabled

on a pper i.e. Endorsement System Chaincode (ESCC)

handles endorsement of a transaction, Validation

System Chaincode (VSCC) is responsible for checking

the validity of the transaction and (LSCC) and Query

System Chaincode (QSCC). system chaincode runs as

part of the peer process and has the authority to

ACCEPT or DENY a transaction proposal.

– User chaincode User chaincode are defined by

application developers. User chaincode runs in a

separate docker container and linked with the

channel network. User chaincode initiate transaction

proposal proposal.

• Consensus algorithms Consensus defines rules of the

game, it make sure of how an ecosystem will arrive at a

single view of the ledger. Generally consensus are used

to ensure the right order of the transaction occurring.

Hyperledger fabric along with the correct order of the

transaction also ensure validity of the transaction and

also perform other custom endorsement policy before

committing it to the DSL.

• Endorsement policy Hyperledger Fabric introduced a

new concept of Endorsement Policy (EP) that is defined

Fig. 2 Hyperledger fabric architecture [13]

4946 Wireless Networks (2020) 26:4943–4954

123

over the execution of the chaincode. EP support the

execute-order Fabric architecture and check validity of

the proposed transaction before it is committed. For a

transaction to be accepted in the ledger it must be

executed and validated on the mentioned endorser node

and upon their approval it would be added to the ledger.

EP make use of the roles specified by the MSP in the

network. e.g. Org1.admin defines administrator of the

network, Org2.member defines any member, Org3.-

client defines the client or organization and Org4.peer

defines the peer of the organization 4, Endorsement

policy are further divided into two types.

– Chaincode level endorsement Chaincode level

endorsement are defined with a -P switch while

installing a chanicode on a channel. Command use for

EP specify list of the organization that will be needed

to execute and validate propose transaction. EP allow

us to define different combination of the organization

using AND and OR operators e.g. AND(‘Org2.peer’,

‘Org3.peer’) or OutOf(1, ‘Org2.peer’, ‘Org3.peer’)

or OR(‘Org2.peer’, ‘Org3.peer’).

– Key level endorsement Key level endorsement are

applied at the function level within a chaincode. Upon

arrival of the new transaction Fabric First check for the

key level endorsement policy associated with a

function and if there is no policy then it looks for

the chaincode level policy. Key level endorsement

allow us to select different set of the organization or

members from the chaincode level endorser.

• Ordering peer or orderer Create Blockchains blocks

(by defined size etc.), determine the order and broadcast

to all nodes (in a channel) for an update in the local

database. Generally, a Fabric contains two types of

databases on each peer which is shown below.

• World state It is a version key-value pair database such

as CouchDB/LevelDB which stores the current state of

the resources. It also shows the state of the system at

any point in time. The world-state is used to reduce

traffic on the actual ledger.

• Ledger It is the immutable chain of the hashable blocks

(World-state database can be restored from this ledger

at any time, as it contains all the transaction of

resources from start to final state).

6 UCON adoption for hyperledger fabric

The most popular model of usage control is termed as

Usage Control (UCON), which was proposed by Park and

Sandhu [15] and later formalized by Zhang et al. [16]. The

model is based on two core concepts:

• Decision continuity

• Attribute mutability

Decision continuity refers to the concept described in

previous section, i.e. decision to grant access is not a sin-

gular operation. It is a continuous action that is carried out

in parallel to the subject’s access. After access has been

granted, the UCON models reference monitor keeps track

of usage and can perform several tasks based on the usage.

Attribute mutability is the second aspect of UCON that

enables changes to a subject or objects attributes as a result

of the attempt to access an object or actually accessing an

object. The UCON model allows policy writers to define

certain types of attribute Mutability. Mutability of attri-

butes and continuity of decisions is illustrated by Fig. 3.

There are various states in UCON i.e.‘initial’, ‘re-

questing’, ‘denied’, ‘accessing’, ‘revoked’ and ‘end’. The

model puts each s, o, r triplet variable in one of the states

where s is the subject, o is the object and r is the right.

Therefore, if

t1 = (s1, o1, r1)state(t1) = accessing

Based on the code, it can be deduced that the subject s1

is currently exercising right r1 on object o1 and the refer-

ence monitor is keeping track of this usage.

In addition, the reference monitor is operational when s1

attempts to access o1. This is the non-bypass ability feature

of the reference monitor and such method ensures that each

access is mediated by the security policy enforced by the

reference monitor. Immediately after access to o1, the state

of the triplet is changed to ‘requesting’. The reference

monitor can perform several things at this stage.

• permitAccess It can allow s1 to access o1. In this case,

the state changes to accessing.

• denyAccess It can decide to prevent access thus

resulting in the state changing to denied. One of these

two decisions have to be made by the reference monitor

which are mutually exclusive.

• preUpdate The reference monitor can also optionally

update some attributes of the subject or the object. This

is termed as a pre-update operation and is highly useful

in keeping track of, for example, how many times a

subject has tried to access a subject. Hence, repeated

attempts by a subject to access a restricted object can be

detected by the reference monitor and later the subject

can be penalized.

If the subject is denied access, the session finishes and

the triplet have to return to the initial state before per-

forming any restricted action. On the other hand, if the state

changes to accessing, the subject is free to access the

object. However, at any point in time during access, the

Wireless Networks (2020) 26:4943–4954 4947

123

reference monitor might revoke the granted permission.

There are four operations that can potentially happen.

• endAccess The first one is that the subject voluntarily

gives up the object i.e. finishes accessing it. In such

case, the reference monitor does not have to perform

any task in the accessing state.

• revokeAccess The second, it may be possible that as a

result of the usage (or due to changing of the operating

environment), the reference monitor decides to revoke

the access decision previously made. Subsequently, the

subject is no longer able to access the object and the

state of the system changes to ‘revoked’.

• onUpdates During access, the reference monitor may

update some attributes to keep track of system usage.

This is a clean method of gauging usage.

• postUpdates Optionally, the reference monitor can

perform different updates to subject or object attributes

based on whether the subject voluntarily gave up the

object or if it was forcefully revoked.

In the following section the UCON model is defined for

fabric normal access control as well as usage control.

7 DistU: extended permissions model
for hyperledger fabric

Usage control enhances the access control systems by

introducing the idea that an access control must not only be

limited to granting access to an object and exercise the

right. In addition, it should also consistently keep track of

the usage of objects and determine whether to continue

allowing the subject’s access over objects. If a subject

exceeds the allowed quota or if another constraint is vio-

lated during the use of the object, the allowed right must be

revoked from the subject at runtime.

The idea is simple in nature and enables different policy

specifications and thus extends the expressiveness of access

control systems. With such features, it is possible for an

organization to specify a policy that decides whether an

object can be accessed only within the premises and within

a certain time frame. It also allows specification of con-

straints such as the permitted usage time per session and

revocation of usage after the specified limit has reached.

7.1 Model definition

Hyperledger Fabric architecture is based on the concept of

Resources, Members, Operations, and Conditions.

According to the proposed usage control for Fabric, models

are defined based on the new requirements. The models are

an extension to the core Hyperledger Fabric and can assist

development of new future business applications based on

blockchain.

a. Definition 1. (Members and Assets) This denote the set

of member in an active business network with M and set

of all resources within a transaction A. Resource in a

specific operation can be accessed by the member asso-

ciation function f: R ? M. Each resource is associated

with a unique member.

b. Definition 2. (Operations) A set of all permission, is

denoted with ‘O’, while M is labeled for members. Both

are specified as a collection of labels for accessing a

resource. Operation requires function Ms: R ? R to

provide the access o [O that m [M.

Fig. 3 UCON model states

4948 Wireless Networks (2020) 26:4943–4954

123

c. Definition 3. (Access association on resources) An

access association function w: M ? 2s returns the set of

permissions belongs to or given to member m [M at

runtime.

In order to define the extended usage control operation

over resources, the concept of member state, update

operation, condition, and policies are introduced. The

member state is defined by the set of attributes.

Typically, the attributes is a string of arbitrary charac-

teristics about members operations.

d. Definition 4. (Member State) A member state t:

c(M) ? com(c(M)) is a function that maps a member’s

attributes to their values. This is a dictionary of attributes

associated with each member. c is a function that

provides a set of attributes associated to a member, and a

set of all possible values for an attribute a is denoted as

com(a). The attributes can be updated via attribute

update function.

8 Bef-authorization models

Prior to access to a resource by a member in the Fabric

extension, the decision function is added in the proposed

model.

e. Definition 5. Previously stated additional usage

functions the proposed model has the following

components.

M,R,O, STATUS(O), STATUS(R) and befA(Member,

Resources, Operation, Member Attribute, Resource Sta-

tus (Attribute) and before authorization respectively);

granted (m,r,o) = befA((STATUS(m)), STATUS(r), O)

Similarly, an additional before-update is also needed,

which can be defined below.

f. Definition 6. befUpdate(STATUS(M)), befUp-

date(STATUS(R)), that is an optional operation to

update on attribute of members and resources.

8.1 Ongoing-authorization models

In Ongoing-Authorization model the Fabric will request a

resource usage with the absence of pre-decision making.

However, continuous authorization of the resources is

constantly monitored. When the model is enabled, a

member that is currently allowed to use a resource will be

prevented to access the resource if certain requirements are

not adhered. In Hyperledger Fabric, such model is very

useful when resource are accessed for a long duration of

time. This functionality can be further extended into four

different models shown below.

• A0 model with no bef-updates

• A1 model with bef-updates

• A2 model with continues-updates

• A3 model with after-updates

g. Definition 7. A0 model has the following components:

M,R,O, STATUS(O) and STATUS(R) are not changed

from Bef-authorization Model.

onA(Continues-authorization)

allowed(m,r,o)) True

stopped(m,r,o) (conA(STATUS(m),STATUS(r),O)

h. Definition 8. A1 model is similar to A0 model except

it updates following pre-updates processes: befUp-

date(STATUS(M)), onUpdate(STATUS(r)), and optional

procedure to perform update operations on STATUS(m)

and STATUS(r), respectively.

i. Definition 9. A2 model is also similar to A0 model

except it adds following continues-update processes:

onUpdate(STATUS(m)),onUpdate(STATUS(r)), an

optional procedure to perform update operations on

STATUS(m) and STATUS(r), respectively.

j. Definition 10. A3 model adds post-update processes to

A0 model: afterUpdate(STATUS(o)), afterUp-

date(STATUS(o)), an optional procedure to perform

update operations onSTATUS(o), respectively.

8.2 Bef-obligation models

Hyperledger Fabric introduces new obligation feature in its

architecture. Using this feature, it allows a member to

access a resource, if and only if, the member provide

information in the authentication process. Fabric can sup-

port only for first-time authentication. On the contrary, the

proposed model will check such obligation continuously.

k. Definition 11. Bef-obligation model has the compo-

nents M, R, O, STATUS(M), and STATUS(R) which are

not changed from pre-authorization model; OBS, OBO,

and OB, (obligation subjects, obligation objects, and

obligation actions, respectively);

befB, and befOBL, (bef-obligation predicates and bef-

obligation elements, respectively);

befOBL (OBS x OBO x OB;

preFulfilled: OBS x OBO x OB ? true, false;

getBefOBL:M x R x O ? 2befOBL; //a function to select

bef-obligations for a requested usage

preB(m,r,o) = K (obs i,obo i,ob i) [getBefOBL(m,r,o)

preFulfilled(obs i,obo i,ob i);

preB(m,r,o) = true by definition if getBefOBL(m,r,o) = u;

allowed(m,r,o)) preB(m,r,o).

Wireless Networks (2020) 26:4943–4954 4949

123

l. Definition 12. The preB1 model is identical to befBO

except it adds the following bef- update processes:

befUpdate(STATUS(M)), befUpdate(STATUS(R)): an

optional procedure to change certain attributes as a

consequence of bef-obligations.

m. Definition 13. The preB3 model is identical to befBO

except it adds following post-update processes:

afterUpdate(STATUS(m)), afterUpdate(STATUS(r)):an

optional procedure to change certain attributes as a

consequence of bef-obligations.

8.3 Continues-obligations models

Continues obligation model is similar to bef-obligation

model except it requires obligation model to be verified

periodically. To achieve this model, Time parameter T is

introduced as part of the continues obligation model. The

time factor depends on either a time-based period or it can

be an event based e.g. a member in the Fabric can be

requested to submit partial information after an hour or

after a specific amount of resource utilization. Based on

mutability issues, continuous obligation model can be

extended to four models i.e. B0 model includes continues-

obligations predicate instead of bef-obligations predicate.

B1, B2 and B3 are same as B0 except that the models

include the bef-updates, continues-updates and after-up-

dates, respectively.

n. Definition 14. The B0 model has the components

M,R,O, STATUS(O), STATUS(R), OBS, OBO, and OB,

which are not changed from befB; where T is a set of

time or event elements.

onB and onOBL, (continues-obligations predicates and

continues-obligation elements, respectively);

onOBL (OBS x OBO x OB x T;

getOnOBL: M R O? 2OnBL; //a function to select

continues-obligations for a requested usage

onFulfilled: OBS x OBO x OB x T ? true, false;

onB(m,r,o) = K (obs i,obo i,obi,ti) [getOnOBL(m,r,o)

onFulfilled (obs i,obo i,ob i,ti);

onB(m,r,o) = true by definition if getOnOBL(m,r,o) = h;

allowed(m,r,o)) true;

stopped(m,r,o) (:onB(m,r,o)

o. Definition 15. The B1 model is identical to B0 except

it adds following bef-update processes.

befUpdate(STATUS(m)), befUpdate(STATUS(r)): an

optional procedure to change certain attributes as a

consequence of bef-obligations.

p. Definition 16. The B2 model is identical to B0 except

it adds following continues-update processes.

onUpdate(STATUS(m)), onUpdate(STATUS(r)): an

optional procedure to change certain attributes as a

consequence of bef-obligations.

q. Definition 17. The B3 model is identical to B0 except

it adds following post-update processes.

afterUpdate(STATUS(m)), afterUpdate(STATUS(r)): an

optional procedure to change certain attributes as a

consequence of bef-obligations.

8.4 Bef-conditions model

Conditions define some environmental variables through

which certain policies can be enforced. e.g. an organiza-

tion’s employees are allowed to use its resources only

when they are within the premises of organization. Such

restriction is not directly associated with any resources

defined in the Fabric. In a bef-condition model such con-

ditions are checked each time when the resources are

accessed. Bef-condition model introduces bef-conditions

predicate (preC) that has to be evaluated before request

rights are exercised.

The following definitions formalize the preC model.

r. Definition 18. bef-condition model has the following

components:

M,R,O, STATUS(O), and STATUS(R) are not changed

from preA

befCON;//a set of bef-conditions elements

getBefCON: M x R x O ? 2 befCON;

preConChecked: befCON ? true, false;

preC(m,r,o) =KpreConi[getBefCON(m,r,o)preConCh-

ecked (preConi)

allowed(m,r,o)) preC(m,r,o)

9 Continues-conditions model

In many cases, environmental restrictions have to be sat-

isfied while rights are in active use. This could be sup-

ported by the onC model. In onC, usages are allowed

without any decision process at the time of requests.

However, there is a continuous condition predicate to

check a particular environmental status repeatedly

throughout the usages. As mentioned earlier, the onC0

model is intrinsically immutable.

The following definitions formalize the on C model.

s. Definition 19. The onC0 model has the following

components: M,R,O, STATUS(O), and STATUS(R) are

not changed from preA;

onCON;//a set of continues-conditions elements

getOnCON: M x R x O ? 2 onCON;

4950 Wireless Networks (2020) 26:4943–4954

123

onConChecked: onCON ? true, false;

onC(m,r,o) = onConi[getOnCON (m,r,o)onConChecke-

d(onCon i) allowed(m,r,o)) true;

stopped(m,r,o) (:onC(m,r,o)

Based on the study, the core Hyperledger Fabric model

is extended with the above extra models. Such method will

enrich future application with variety of applications based

on their business needs.

10 Traditional access control adoption
with ucon

The proposed DistU model can be incorporated in tradi-

tional MAC, DAC, and RBAC. Most traditional access

controls and trust management can be realized by the A0

model while some extension requires the A1 model. In

literature, continues-authorization and variable mutability

are rarely discussed, therefore only slightly new features

are available to the traditional models.

10.1 Mandatory access control (MAC)

The DistU, A0 model supports traditional MAC.

Mandatory access control operates on policy based and

as well as the traditional DAC access control. The well-

known targeted policy can be implemented on the new

model for Fabric. The subject and objects are the members

and resources. The targeted policy is defined and invoked

via the A0 model. Once the policy/label is matched the

permission will be granted, otherwise, the owner of the

resources will not have the access.

MAC in DistU Example:

L is a lattice of security labels with dominance relation C

clearance: M ? L

maxClearance: M ? L

classification R ? L

STATUS(P) = {clearance, maxClearance}

STATUS(A) = {classification}

10.2 Role-based access control (RBAC)

DistU A0 model also can support RBAC in the authorization

process. In RBAC model, a role is a collection of users and

operations on resources. Therefore, in the proposed model

user-role assignment can be viewed as subject attributes

while the permission-role assignment as attributes of object

and rights. The following example shows the method in

which RBAC can be viewed in the DistU models.

RBAC in DistU Example:

M = (R, O)

ROLE is a partially ordered set of roles with dominance

relation C

actRole: M ? 2 ROLE

M role: M ? 2 ROLE

STATUS(M) = actRole

STATUS(R) = P role

allowed(m,r,o)) Arole[actRole(m), Arole0[M role(r,

o), role C role 0

10.3 Discretionary access control (DAC)

DistU A0 model also can support DAC, where policies

govern the access of users to an object based on individual

or group identities of users and objects. The access modes

such as read, write, or execute are granted to a user if the

user has the privilege to use a specific access mode on an

object. In DistU A0 Model, DAC can be expressed by

using either ACLs or capability lists.

DAC in DistU Example:

G is a set of groups of subject p

groupId: M ? 2 G; many to many mapping

ACL: R ? 2 G x R; g is authorized to do s to a

STATUS(m): {groupId};

STATUS(R): {ACL};

allowed(m,r,o)) {(g, r)| g [groupId(p)} \
ACL(r) 6 = h;

11 Implementation of extended permission
model

Hyperledger Fabric uses chaincode or smart-contracts to

execute business logic. Different members join a fabric net-

work to share valuable private data. Chaincode updates or

query the states of the resources in the distributed shared

ledger. A user or a system can interact with the Hyperledger

Fabric at three levels i.e. at peer level using system chaincode,

chaincode level using user chaincode transactions and channel

level using events stream source. All three levels are consid-

ered resources because the shared ledgers are accessed at these

levels. Hyperledger Fabric allows to define the Access Control

List (ACL) policy for these resources and introduces a dif-

ferent type of roles that are defined in each channel configu-

ration. These roles are named as Reader, Writer, and Admin.

The peers that are identified by the MSP service and assigned

the Writer role can participate in the endorsement policy and

can submit a transaction proposal. After endorsement, the peer

updates the state of DSL, while the peer with the role reader

cannot take part in endorsement policy and is unable to alter

the state of the distributed ledger. However, such security can

also be implemented on the user-defined chaincode level

Wireless Networks (2020) 26:4943–4954 4951

123

where developers are responsible to create and develop all

these policy constraint. Different channel chanincode can also

call each other but only in read-only mode.

Hyperledger Fabric architecture supports two types of

endorsement policies, chaincode level, and key-level

endorsement policy. The proposed model introduces a new

system chaincode called DistU Chaincode. This new

chaincode works as a reference monitor and respond

against the violation of the defined resource policy. In key-

level endorsement policy, a new DistU policy configuration

is introduced whose key attributes set the usage limit (e.g.

the number of attempts to read or write) and the conditions

(e.g. IP, time, location etc.) along with the restriction level

(Allow, Deny, Revoke, Alert).

DistU chaincode monitors the ongoing transaction for the

mentioned key-value. When the access of a peer exceeds the

limit, the monitor responds to the user chaincode with an

appropriate action mentioned in the policy. With each

endorsement request, DistU chaincode traverse the ledger

against the required policy attributes and verify them with the

requested values. Other environment attributes like IP, time

and location are provided with each transaction request which

are also checked against the policy. The sequence diagram in

Fig. 4 demonstrates the working of the system. The end user

will generate a transaction request through the invoke func-

tion of the application chaincode. That request is signed by

the committer peer and sends it to all the endorser nodes that

are defined in the core configuration file of the channel.

Fig. 4 DistU model sequence diagram

4952 Wireless Networks (2020) 26:4943–4954

123

Endorser receives the request and calls for the system

chaincode to check it against the ACL (check if the role of

the committer reader, writer or admin) and signature key.

Transaction proposal has all the attributes like chaincode

arguments, read set and write set values of the resource

(key-value) are verified. The proposed DistU chaincode

plugin is also initiated at this point and locates the key level

enforcement policy. Whenever the DistU chaincode finds a

key value, it traverses the ledger against it. The traversed

data is compared with the requested transaction. Once the

policies are rigorously verified it returns the response to the

user chaincode. Based on the defined policy the DistU can

accept or deny a transaction proposal.

11.1 Use case

A detailed permission model is described that enables the

members of a business network and the owners of the

resources to specify usage-based constraints while per-

forming a transaction. The new permission model is tai-

lored explicitly for Hyperledger Fabric.

As previously stated, attribute mutability has three states

in the UCON engine, which are pre-update, on-update, and

post-update. Bef-update attributes are set before accessing

the resource. In a particular use-case example, the start time

is initially set to 0 and after 24 h the resource will be

revoked. Once the resource is moved to the accessing state,

the mutable attribute will update the time and warnings

accordingly. The warnings will be set to 0 to ensure that

once the number of warnings reaches the allotted time for

the resource, the access to the resource will be revoked.

Consequently, each state change of UCON will be stored in

transparent ledger, in case of a dispute or if the owner would

like to verify for further deduction from the renter. In con-

trast to attribute states, the second condition will be con-

stantly monitoring the defined zone, such as the distance in

which a rented vehicle may travel. The current location

coordinates of the car will be defined as a pre-update attri-

bute and that will be used to constantly monitor the car

location. The warning attribute will be set to 0 along the

location. As soon as the car location is identified as beyond

the designated range or if the user receives 5 warnings,

access to the car will be revoked unless the owner maintains

contact with the renter. In such case, all those transactions

will also be locked in the trusted network peers (Fig. 4).

12 Conclusion

A number of distributed solutions are provided for the

establishment of trust and imposing transparency. How-

ever, these solutions have problems associated with them.

This research study provides a comprehensive study on the

various mechanism for access control mechanism and

extends the permissioned blockchain access control model

that can perform continuous monitoring of the object over

the member’s acess. Initially, the formal model of the

extended permissions is discussed, and finally, the Hyper-

ledger Fabric is selected to incorporate the newly designed

formal access control model. There are many business use-

cases that may not be feasible to be implemented on the

basic role-based access control. However, it is deemed that

usage control model is always difficult to implement. In

fact, this is also necessary for the variety of business

application in the future and even the existing one requires

this extended permission model.

Funding This research work is a collaboration of Universiti of Kuala

Lumpur (UniKL/CoRI/str15101) and Islamic University of Madinah.

Special thanks to Deanship of research of its support in every aspect.

References

1. Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash

system. Retrieved from https://bitcoin.org/bitcoin.pdf.

2. Fabric, H. (2018). Key concepts: Identitty. 2018. https://hyperl

edger-fabric.readthedocs.io/en/latest/identity/identity.html. Vis-

ited on 10/06/2018. Cit. on p. 25.

3. Vukolić, M. (2016). The quest for scalable blockchain fabric:

Proof-of-work vs. BFT replication. In Lecture Notes in Computer

Science (LNCS) (Vol. 9591, pp. 112–125). Berlin: Springer.

4. Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis,

K., & De Caro, A. (2018). Hyperledger fabric: A distributed

operating system for permissioned blockchains. In EuroSys ‘18
proceedings of the thirteenth eurosys conference. Porto, Portugal:
ACM.

5. Dhillon, V., Metcalf, D., & Hooper, M. (2017). The hyperledger

project. In Blockchain enabled applications (pp. 139–149). Ber-

lin: Springer.

6. Ali, T. (2018). Z notation formalization of blockchain healthcare

document sharing based on CRBAC. Journal of Information
Communication Technologies and Robotics Applications (JIC-
TRA), 9, 16–29. Retrieved from http://nicerjcs.com/index.php/cs/

article/view/179

7. Xu, R., Chen, Y., Blasch, E., & Chen, G. (2018). BlendCAC: A

blockchain-enabled decentralized capability-based access control

for IoTs. Computers, 7(3), 39. https://doi.org/10.3390/

computers7030039.

8. Xu, R., Chen, Y., Blasch, E., & Chen, G. (n.d.). A federated

capability-based access control mechanism for internet of things

(IoTs). Paper presented at SPIE defense and commercial sensing

2018 (DCS) conference, Florida, USA.

9. Cruz, J. P. (2018). RBAC-SC: Role-based access control using

smart contract. IEEE Access, 6, 12240–12251. https://doi.org/10.
1109/ACCESS.2018.2812844.

10. Outchakoucht, A., Hamza, E.-S., & Leroy, J. P. (2017). Dynamic

access control policy based on blockchain and machine learning

for the internet of things. International Journal of Advanced
Computer Science and Applications, 8(7), 417–424. https://doi.
org/10.14569/issn.2156-5570.

Wireless Networks (2020) 26:4943–4954 4953

123

https://bitcoin.org/bitcoin.pdf
https://hyperledger-fabric.readthedocs.io/en/latest/identity/identity.html
https://hyperledger-fabric.readthedocs.io/en/latest/identity/identity.html
http://nicerjcs.com/index.php/cs/article/view/179
http://nicerjcs.com/index.php/cs/article/view/179
https://doi.org/10.3390/computers7030039
https://doi.org/10.3390/computers7030039
https://doi.org/10.1109/ACCESS.2018.2812844
https://doi.org/10.1109/ACCESS.2018.2812844
https://doi.org/10.14569/issn.2156-5570
https://doi.org/10.14569/issn.2156-5570

11. Lindqvist, H. (2006). Mandatory access control. (Unpublished

master’s dissertation). Umea University, Department of Com-

puting Science. Sweden.

12. Fabric, H. (2018). Hyperledger fabric ledgers. 2018. https://

hyperledger-fabric.readthedocs.io/en/latest/ledger/ledger.html?

highlight=LEDGER. Visited on 10/06/2018. Cit. on pp. 31–33,

48.

13. Fabric, H. (2018). Key concepts: Membership. 2018. https://

hyperledger-fabric.readthedocs.io/en/latest/membership/member

ship.html. Visited on 10/06/2018. cit. on pp. 25–27, 30.

14. Ali, J., Ali, T., Musa, S., & Zahrani, A. (2018). Towards secure

IoT communication with smart contracts in a blockchain infras-

tructure. International Journal of Advanced Computer Science
and Applications (IJACSA). https://doi.org/10.14569/IJACSA.

2018.091070.

15. Park, J., & Sandhu, R. (2004). The UCON ABC usage control

model. ACM Transactions on Information and System Security
(TISSEC), 7(1), 128–174.

16. Zhang, X., Parisi-Presicce, F., Sandhu, R., & Park, J. (2005).

Formal model and policy specification of usage control. ACM
Transactions on Information System Security, 8(4), 351–387.

Muhammad Yasar Khan re-

ceived the M.S. degree in

Computer Sciences from the

Institute of Management Sci-

ences, Peshawar, Pakistan, in

2016. After completion of his

Master Degree in Computer

Sciences in 2008, he joined

Security Engineering Research

Group, Institute of Management

Sciences, Peshawar in 2009 as

Android System and Architec-

ture Developer, where he

worked on many areas of

Security Engineering such as

Integrity Measurement Architecture, Android Permission Extension,

Usage Control Engine and on Cross Domain Access Control Man-

agement. He is currently doing his Ph.D. in Information Technology

at Universiti of Kuala Lumpur, Malaysia. His current research

interests include Blockchain, IoT, malware analysis, machine learning

and Cross Domain Access Control Management.

Megat F. Zuhairi is a Senior

Lecturer within the System and

Network Section in Malaysian

Institute of Information Tech-

nology, Universiti Kuala Lum-

pur. He received his Ph.D. in

Electronics and Electrical

Engineering from the University

of Strathclyde in 2012 and

M.Sc. in Communication Net-

works and Software from the

University of Surrey, UK in

2002. He is currently an active

researcher and a certified Cisco

Network Academy Instructor at

the institute. His research interests include computer data networking,

wireless mobile ad hoc communications, and Blockchain.

Toqeer Ali is an Assistant Pro-

fessor at Islamic University of

Madinah. He received his Ph.D.

in Information Technology in

2014 from Universiti Kuala

Lumpur, Malaysian Institute of

Information Technology. His

research interests are Block-

chain, System Security, Operat-

ing System, Deep Learning.

Turki Alghamdi is currently

working as an Assistant Profes-

sor, the Dean, and the Founder

of he Faculty of Computer and

Information Systems at Islamic

University in Madinah, KSA.

He received a B.Sc. in Com-

puter Science from Taif

University, KSA in 2005, and

M.Sc. in Software Engineering

from University of Bradford,

UK in 2008. He received a

Ph.D. in Software Engineering

from De Montfort University,

UK in 2012.

Jose Antonio Marmolejo-Sau-
cedo is a Professor at Panamer-

ican University, Mexico. His

research is on operations

research, larges-scale optimisa-

tion techniques, computational

techniques and analytical meth-

ods for planning, operations,

and control of electric energy

and logistic systems. He

received his Doctorate in Oper-

ations Research (Hons) at

National Autonomous Univer-

sity of Mexico. At present, he

has the second highest country-

wide distinction granted by the Mexican National System of Research

Scientist for scientific merit (SNI Fellow, Level 2). He is a member of

the Network for Decision Support and Intelligent Optimisation of

Complex and Large Scale Systems, Mexican Society for Operations

Research and System Dynamics Society. He has research articles in

science citation index journals, books, conference proceedings, pre-

sentations and book chapters.

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

4954 Wireless Networks (2020) 26:4943–4954

123

https://hyperledger-fabric.readthedocs.io/en/latest/ledger/ledger.html%3fhighlight%3dLEDGER
https://hyperledger-fabric.readthedocs.io/en/latest/ledger/ledger.html%3fhighlight%3dLEDGER
https://hyperledger-fabric.readthedocs.io/en/latest/ledger/ledger.html%3fhighlight%3dLEDGER
https://hyperledger-fabric.readthedocs.io/en/latest/membership/membership.html
https://hyperledger-fabric.readthedocs.io/en/latest/membership/membership.html
https://hyperledger-fabric.readthedocs.io/en/latest/membership/membership.html
https://doi.org/10.14569/IJACSA.2018.091070
https://doi.org/10.14569/IJACSA.2018.091070

	An extended access control model for permissioned blockchain frameworks
	Abstract
	Introduction
	Related work
	Background
	Blockchain
	IBM hyperledger fabric
	UCON adoption for hyperledger fabric
	DistU: extended permissions model for hyperledger fabric
	Model definition

	Bef-authorization models
	Ongoing-authorization models
	Bef-obligation models
	Continues-obligations models
	Bef-conditions model

	Continues-conditions model
	Traditional access control adoption with ucon
	Mandatory access control (MAC)
	Role-based access control (RBAC)
	Discretionary access control (DAC)

	Implementation of extended permission model
	Use case

	Conclusion
	Funding
	References

