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Abstract
This paper proposes a novel dynamic, distributive, and self-organizing entropy based clustering scheme that benefits from

the local information of sensor nodes measured in terms of entropy and use that as criteria for cluster head election and

cluster formation. It divides the WSN into two-levels of hierarchy and three-levels of energy heterogeneity of sensor nodes.

The simulation results reveal that the proposed approach outperforms existing baseline algorithms in terms of energy

consumption, stability period, and the network lifetime.
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1 Introduction

A wireless sensor network (WSN) consists of spatially

distributed autonomous devices known as sensors. Each

senor is capable of performing some basic processing,

gathering sensory information and communicating with

other connected sensor nodes in the network [1, 2].

Cluster topology is a WSN topology architecture where

sensor nodes are grouped into various sets called clusters.

Each cluster has a cluster head (CH) with one or more

cluster member (CM) sensor nodes. This topology uses

multihop routing to transmit data from the source sensors

to the base station (BS). Clustering approach reduces

communication overheads and due to effective allocations

of resource as a result, decrease the overall energy con-

sumption and reduce the interference among sensor nodes

[3]. Clustering approach reduces the size of collected data

by keeping only significant information by applying data

aggregation techniques at CHs [4]. The aggregated data

from CHs will be transmitted to the BS. Figure 1 shows the

functionality of a cluster based WSN.

Information entropy theory such as administration

entropy, environment entropy, and economy entropy [5]

have been employed in many discrete areas. Entropy in

information theory uses the discrete probability distribution

to represent the amount of uncertainty. Let X be a discrete

random variable with alphabet X and probability mass

function pðxÞ ¼ PrfX ¼ xg; x 2 X. The entropy H(X) of a

discrete random variable X is defined by [6] as follows:

HðXÞ ¼ �
X

x2X
pðxÞlog2pðxÞ ð1Þ

The minimum entropy is 0 and it occurs when one of the

probabilities is 1 and the rest are 0s, while the entropy

achieves the maximum value ðHmax ¼ log2ðnÞÞ when all

the probabilities have equal values of 1
n
, where n is the

number of outcomes.

Entropy indicates the valuable information produced by

the data, as a result it can be used to determine the weights.

The entropy value becomes smaller when the analyzed

objects have fairly big difference between each others on a
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given specific criterion. However, the weight of the crite-

rion should be smaller when the difference between objects

is smaller (larger entropy value). Consequently, the entropy

coefficient method is a target empowering method to

determine the weight by calculating the entropy weights of

each criterion based on determining variation degree with

respect to every criterion value [5, 7–9].

Using the local information of the sensor nodes such as

residual energy, a clustering algorithm can be adopted in terms

of entropy as the election criterion. Such a new algorithm is

energyefficient,moreover,weconsider selectionofCHnodeas

a decision problem based on multiple criteria such as residual

energy, sensor node density, and distance from the BS. Hence,

we have multiple alternatives (set of sensor nodes) where each

alternative consists of multiple criteria (i.e., sensor node’s

information) and we need to make selection decision. For that,

one of multi-criteria decision analysis (MCDA) methods is

used to solve the decision problemwithmultiple criteria. In our

proposed algorithm, the weighted product model (WPM) [10]

is utilized for addressing the decision problem and the entropy

weight coefficient [5, 7, 9, 11] is used to assess the weight of

different criteria. Our simulation results reveal that the pro-

posed strategy can manage power consumption better than

existing algorithms and achieves the desired results for WSNs.

The main contribution of this paper can be summarized as

follows:

1. A new dynamic, distributive, self-organizing, and

energy-efficient clustering algorithm that uses sensor

nodes’ local information (e.g., residual energy) in

terms of entropy as the election criterion is proposed.

The new algorithm does the following:

• Organizes the WSN into two-levels of the hierar-

chical network and consider three-levels of energy

heterogeneity of sensor nodes.

• Considers the selection of CH as a decision

problem with multiple criteria such as residual

energy, node density, and distance from the BS.

2. We provide a solution to the decision problem through

Weighted Product Model (WPM) where sensor nodes

represent the multiple alternatives and each alternative

consists of multiple criteria (sensor nodes information).

3. We introduce the concept of entropy weight coefficient

to assess the weight of different criteria which reflects

the current status of node information in the network.

4. Provide extensive simulation results to prove that the

proposed strategy can manage power consumption and

substantially outperforms the baseline algorithms in

terms of energy consumption, stability period, and the

network lifetime.

The remainder of this paper is structured as follows: the

discussion of the related research is given in Sect. 2. The

considered models description is presented in Sect. 3.

Section 4 describes the proposed algorithm. In Sect. 5, the

performance analysis and results are presented. Evaluations

indicate that the proposed approach efficiently solves the

Base Station

Normal Node

Intermediate node

Advanced Nodes

Fig. 1 A heterogeneous WSN model with three types of sensor nodes

Table 1 Table of notations

Notation Description

CH Cluster head

CM Cluster member

WPM Weighted product model

EWC Entropy weight coefficient method

eCH Total energy consumption by CH

Econsumedðs; rÞ Total energy consumption by node s at round r

w List of nominated nodes to be CHs

E0 Initial energy of normal node

Eint Initial energy for intermediate node

Eadv Initial energy for advanced node

ERx Energy consumed in reception of data

ETx Energy consumed in transmission of data

�mp Amplification energy expended to overcome the

multi-path

�fs Amplification energy expended to overcome the free

space

Eelec Electronics energy

D Distance to BS

E Residual energy

DN Sum of distances to neighbor nodes

Nsupport Number of nodes that can be supported

n Total number of sensors

m Ratio of advanced sensor nodes

k Number of clusters

b Ratio of intermediate sensor nodes

AL alternative number L

aij Performance value of the alternative Ai and criteria

number j

Hi Entropy of criteria i

wi Entropy coefficient weight of criterion i
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problem and exceeds other existing algorithms. The con-

clusion of the proposed work is given in Sect. 6. Used

notations through the paper are given in Table 1.

2 Related research

Several recent works address the problem of clustering in a

WSN. LEACH [12], was the first most routing protocol that

used clustering concept in a WSN. LEACH collects data in

rounds. Each round is split into twomain phases: setup phase

where a specific ratio of sensor nodes are selected as CHs

according to their probability in particular round. Each non-

CH joins the nearest CH as a cluster member (CM). Then in

the second phase, each CH determines a schedule for its CM

to transmit its data without any collision. In the steady state

phase, each CM transmits its data in assigned time slot.

LEACH has many variant versions such as [3, 13–27].

In [13], a centralized cluster formation algorithm (LEACH-

C) is designed such that there are a certain number of

clusters, k, during each round. In [14], to enhance LEACH-

C and LEACH, the authors proposed a technique to opti-

mize LEACH (O-LEACH) by dynamically selecting CH

according to the residual energy of sensor nodes.

Deterministic energy efficient clustering protocol (DEC)

is presented in [16]. DEC is three-level energy sensor nodes

and autonomously select CHs according to their energy

levels. Only the set-up phase in LEACH is modified and the

BS takes part in the election of the CHs in the first round. As

in LEACH, when the steady phase begins, each sensor node

transmits its data to the nearest CH that performs data

aggregation. However, in DEC, before the end of steady

phase, each CH checks the piggybacked of received cluster

member data to decide whether it will remain CH or will

relinquish its role by choosing another sensor node among

its members with the highest energy as the new CH. In the

next round, the new selected CHs broadcast their role then

the non CHs will select their CH and the steady phase

begins again. This process continues in each round until the

last sensor node dies. In [19], the authors proposed intra-

balanced LEACH protocol to extend LEACH by balancing

the energy consumption in WSN. In [27], the authors pro-

posed a protocol that improves the CH election, the special

node processing and inter cluster routing problem, and then

an improved protocol called LEACH-Impt was proposed.

In [21], the authors proposed LEACH with two level CH

(LEACH-TLCH) protocol that deploys a secondary CH

(2CH) to relieve the CH burden in these circumstances.

However, in LEACH-TLCH the optimal distance of CH to

BS, and the choicest CH energy level for the 2CH to be

deployed for achieving an optimal network lifetime was

not considered. In [22], the authors improved LEACH-

TLCH by investigating the conditions set to deploy the

2CH for an optimal network lifetime. In [23], a hybrid

unequal energy efficient clustering is proposed to increase

lifetime of the network. In the proposed protocol, a new

mechanism based on arrangement of nodes in a network to

determine whether nodes should use information of their

neighbors or should not use this information.

In [24], a protocol in form of cluster-head restricted

energy efficient protocol (CREEP) has been proposed to

overcome high system complexity due to computation and

selection of large number of CHs and improve the network

lifetime by modifying the CH selection thresholds in a two

level heterogeneous WSN. The work in [25] focuses on

reducing the energy dissipation thereby improving the net-

work lifetime of the randomly deployed senor nodes in a

WSN and also improving the rate of data packets forwarded

to the BS at the same time. This is achieved by dividing the

deployment region into various sectors and then selecting

the CHs from each sector based on highest remaining energy

of the sensors. The work in [26] reviews the routing concepts

for diverse heterogeneous WSNs scenarios and covers the

state of the art in the area. It also discusses the effects and

inter-dependencies of different heterogeneities in routing

decisions and unveils new research directions in the area.

The authors in [17] presented stability period protocol

(SEP) which is based on weighted election probabilities

using the remaining energy of each sensor node to be

selected as CH. The energy heterogeneity problem in the

network is characterized using two-node power classifica-

tion (nodes are labeled with ’’normal’’ and ‘‘advanced’’). A

variant of LEACH called extended heterogeneous LEACH

(EHE-LEACH) is proposed in [18]. EHE-LEACH uses

same model as in SEP. M-SEP [28] is a modified version of

SEP. M-SEP enhances the network lifetime by considering

the energy of nodes in a current ongoing round and an

average energy of the whole network.

In [29], the authors proposed distance incorporated

modified stable election protocol (D-MSEP) which is an

improved version of modified stable election protocol (M-

SEP) as it incorporates the distance factor in probabilistic

formula of CH selection in each cluster. The inclusion of

distance factor helps in avoidance of CH selection farther

from the BS. This leads to saving of huge amount of energy

leading to the escalated stability period.

A heterogeneity-aware energy efficient clustering

(HEC) algorithm is suggested in [20]. HEC selects CHs

based on the three network lifetime phases: only advanced

sensor nodes are allowed to become CHs in the initial

phase; in the second active phase, all the sensor nodes are

allowed to participate in CH selection process with equal

probability, and in the last dying out phase, clustering is

relaxed by allowing direct transmission. A distributed

energy-efficient clustering scheme for heterogeneous

WSNs (DEEC) is presented in [30]. DEEC follows the
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same rules of energy-heterogeneity of SEP. An Enhanced

Distributed Energy Efficient Clustering scheme (E-DEEC)

is proposed in [31] by expanding the DEEC to three-level

heterogeneity. However, CHs selection probabilities are

not adapted as per the sensor nodes energy levels [32].

A three level heterogeneous network model for WSNs is

proposed in [33]. The proposed heterogeneous WSN model

selects CHs and their respective CMs by using weighted

election probability and a threshold function. The proposed

model is implemented based on DEEC. An enhanced

developed distributed energy-efficient clustering (EDDEEC)

with heterogeneous network model is proposed in [32, 34]

that is established on three energy levels of sensor nodes.

EDDEEC uses clustering mechanism which dynamically

modifies the CH election probability. Modified enhanced

developed distributed energy-efficient clustering (MED-

DEEC) algorithm has been presented in [35]. MED-DEEC

employs an energy-aware protocol similarity in [32, 34].

However, the decision of electing CHs in MED-DEEC is

based on the remaining and initial energy of the sensor node,

average distance and average energy of the network. A dis-

tributed unequal cluster-based routing (DUCR) proposed in

[36] is a distributed multi-objective-based clustering algo-

rithm. DUCR uses multi-objective optimization technique to

assign CMs to an appropriate CH so that the load is balanced.

The work in [37] proposed a distributed energy-efficient

clustering protocol (DCE) for heterogeneous WSNs. DCE is

based on a Double-phase CHElection schemewhere, the CH

election process is divided into two phases. In the first phase,

tentativeCHs are selected based on initial and residual energy

of sensor nodes. In the second phase, tentative CHs are

replaced by their CMs to form the final set of CHs if any CM

in their cluster has more residual energy.

All previous works consider special attributes of sensor

nodes, e.g., remaining energy, distance to base station, …
etc. as criteria for selecting CHs, ignoring the cluster load,

i.e., the number of cluster members that can be served by

CH or the number of sensor nodes that can be supported by

the CH. In our proposed work, we consider cluster load as a

criterion for selecting CHs combined with the remaining

energy, distance to base station and degree of neighboring

sensor nodes. Moreover, during the operation of the net-

work the CH could not have enough energy to complete its

task for that we introduce a new method to predict the

remaining energy of each sensor node at the end of the next

round before the round starts and selects the most appro-

priate sensor node that can continue its work till the end of

the round to be the CH. Also, in the proposed algorithm,

three-level energy heterogeneity of sensor nodes are used

as in [16, 31, 32, 38] and entropy weight coefficient as in

[5, 7, 9, 11] is used in order to come up with optimal CHs.

Several works [5, 7–9, 11] use entropy method to take a

decision. Entropy weighted multi criteria routing (EMCR)

[11] is a routing scheme in which the next hop decision is

based on MCDA method along with entropy method of

information theory. The work in [7] uses fuzzy compre-

hensive evaluation based entropy weight coefficient to

analyze the intrusion detection systems (IDSs). Also,

entropy weight coefficient method is used in [9] for soil

quality assessment. In [8], optimization for objective

weights and subjective weights is proposed based on the

fuzzy multiple attributes decision making routing

(MADMR) algorithm that selects next hop in a WSN. The

entropy coefficient model is used in [8] to avoid excessive

deviation from the objective weights. In [5], an index

system for capacity assessment is developed by employing

the entropy weight coefficient method.

3 Models description

In this section, the different used models in our proposed

algorithm such as energy model, radio energy dissipation

model, network model are described.

3.1 Energy model

Energy heterogeneity is the most significant characteristic

of a WSN which includes: computational heterogeneity,

link heterogeneity, and energy heterogeneity. In this paper,

we address three heterogeneity energy levels as in, DEC

and EDDEEC where, we have three types of sensor nodes:

normal, intermediate, and advanced. The initial energy of

intermediate is between the initial energy of normal and

advanced. If E0 is the initial energy of normal sensor nodes,

then the initial energy of intermediate sensor nodes will be

Eint ¼ ð1þ lÞE0 and of advanced sensor nodes will be

Eadv ¼ ð1þ aÞE0, here a and l are the energy weight factor

of advanced and intermediate sensor nodes respectively.

Therefore, the total initial energy will be:

Etotal ¼ nE0ð1þ maþ blÞ: ð2Þ

Here, n is the total number of sensors in the network, m is

the ratio of advanced sensor nodes, and b represents the

ratio of intermediate sensor nodes.

3.2 Radio energy dissipation model

Receiving and sending messages are the two main opera-

tions that consume energy in a WSN. The consumed

energy of sending a message is greater than the consumed

energy of receiving a message due to the additional energy

that is required to expand the signal between the distance

and the destination. Here, we use the same models (radio,

data aggregation, and energy parameters ) as in many

previous works [12, 16, 17, 30, 32, 38]. As per previous
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works, the consumed radio power to transmit l-bits mes-

sage to a distance d is given by:

ETxðl; dÞ ¼ lEelecþl�fsd
2 if d\d0;

lEelecþl�mpd4 otherwise:

n
ð3Þ

and the consumed radio power to receive this message is:

ERxðlÞ ¼ lEelec ð4Þ

Here, the electronics energy consumed is Eelec and con-

sumed energy by the transmitter amplifier for distance

greater than d is �mp and for distance less than d is �fs, the

consumed energy for aggregating data is EDA, and the

threshold distance is given as d0 ¼
ffiffiffiffiffi
�fs
�mp

q
.

3.3 Network model

We assume that n sensor nodes are randomly deployed in a

field R of size M �M, the sensor nodes are static and each

sensor node has a unique ID. It is also assumed that each

sensor node knows its communicating neighbors, including

their identifications and coordinates, which can be gathered

statically via hello message, or periodically if frequent

changes occur in the topology.

4 Entropy based clustering algorithm (EBCS)

In this section, we discuss our proposed entropy based

clustering algorithm (EBCS). The main goal of EBCS is in

designing a dynamic distributed and self-organizing clus-

tering algorithm that prolongs the lifetime of the network

and minimizes the consumed energy in the network.

The EBCS includes three phases: cluster heads election,

cluster formation, and data transmission. A flow-graph of

the proposed algorithm is shown in Fig. 2, and the detailed

flow-graph is shown in Fig. 3. In cluster heads election

phase, weighted product model (WPM) along with entropy

weighted coefficient method (EWC) are used for resolving

the election decision problem based on different criteria. In

cluster formation phase, each non-CH node selects the CH

that uses minimum communication cost, based on the

signal strength of received advertisement. In data trans-

mission phase, the data will be collected by CH and will be

sent to BS.

The Pseudocodes that will be executed by BS, CH, and

non-CH nodes are presented respectively in Algorithms 2,

3, and 4.

4.1 Cluster heads election phase

WPM along with EWC are used for resolving the election

decision problem based on different criteria: residual

energy ðEðsjÞÞ, number of supported sensor nodes

ðNsupportðsjÞÞ, distance to BS ðDðsjÞÞ, and sum of distance to

all neighbor sensor nodes sjs ðDNðsjÞÞ. These criteria can

be described as follows:

• Residual energy (E) Residual energy is the most

important feature for every sensor node and the network

lifetime mainly depends on the residual energy among

the sensor nodes.

• Distance to BS (D) Distance to BS is important to be

considered as more distance to BS implies more energy

will be consumed in transmitting a packet.

• Sum of distances to neighbor sensor nodes (DN) As the

CH supports its members, therefore, the number of

packets transmitted over long distance between mem-

bers and CHs may deplete the battery power relatively

faster.

• Number of sensor nodes that can be supported (Nsupport)

Since there are three-level energy heterogeneity of

sensor nodes, we may have three types of CHs based on

the initial energy used, CH0, CHint, and CHadv with

initial energy E0, Eint, and Eadv, respectively. The

energy consumption percentage of each CH type will be

c0 ¼ eCH=E0, cint ¼ eCH=Eint, and cadv ¼ eCH=Eadv for

CH0, CHint, and CHadv, respectively, where eCH is given

by Equation 11. It is clear that c0 [ cint [ cadvasEadv

[Eint [E0, which will result in uneven energy

consumption among these CHs. Therefore, it is required

to determine the number of sensor nodes that can be

assisted by each type of CHs such that c0 ffi cint ffi cadv.

Fig. 2 Diagram of EBCS algorithm
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The number of sensor nodes that can be assisted by

each sensor node Nsupport can be estimated as follows:

Nsupport ¼
Eremaining � ðn� kÞ
k
3
ðE0 þ Eint þ EadvÞ

& ’
: ð5Þ

Based on sensor nodes local information a decision has to

be taken to select the CHs. This type of information is

considered as the criteria for the election decision making

(e.g., multi-criteria decision-making problem). In our pro-

posed approach, we adapt the weighted product model

(WPM) which is one of the Multi-criteria decision analysis

method (MCDA) [10] and then we use entropy weight

coefficient method to elect the CHs.

4.1.1 Weighted product model (WPM)

In WPM, given is a finite set of decision alternatives

ðA1;A2; . . .;AnÞ described in terms of a number of decision

criteria. Each decision alternative is compared with the

others by multiplying a number of ratios, one for each

decision criterion. Each ratio is raised to the power

equivalent of the relative weight (w) of the corresponding

criterion. In order to compare two alternatives AK and AL

using WPM; the following product (P) has to be calculated

for m number of criteria and n number of alternatives:

P
AK

AL

� �
¼

Ym

j¼1

aKj

aLj

� �wj

: ð6Þ

Here, K 6¼ L;K; L ¼ 1; 2; . . .; n and aij is the performance

value of the alternative Ai. If the ratio PðAK

AL
Þ� 1, then it

implies that the alternative AK is more useful than the

alternative AL. The best alternative is the one that is better

than or at least equal to all others.

The alternative approach of WPM is the decision maker

where we use only products without ratios as follows [10]:

PðAKÞ ¼
Ym

j¼1

ðaKjÞwj : ð7Þ

Fig. 3 Flow-graph of the proposed algorithm
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In this formula, the term PðAKÞ indicates the performance

value of alternative AK when all the criteria are evaluated

under the WPM model. The weights wj of different criteria

are calculated using entropy coefficient method that will be

described in the next subsection.

4.1.2 Entropy weight coefficient method (EWC)

The entropy coefficient method is applied to determine the

weights for the criteria. The main steps of calculating the

weights of m criteria and n alternatives are as follows:

• Calculate the entropy of each criterion i ¼ 1; . . .;m that

can be derived from Eq. 1.

Hi ¼ � 1

log2n

Xn

j

pijlog2pij ð8Þ

Here, pij ¼ ciðsjÞPm

j
ciðsjÞ

, j ¼ 1; . . .; n, ciðsjÞ is the perfor-

mance value of alternative sj and if pij ¼ 0 then

pijlog2pij ¼ 0.

• Calculate the entropy coefficient weight ðwiÞ of each

criterion i :

wi ¼
ð1� HiÞ

m�
Pm

i Hi
ð9Þ

Here, 0�wi � 1 ,
Pm

i¼1 wi ¼ 1 .

4.1.3 Cluster head election decision

The election decision of CH is made by executing the

following steps (The pseudocode of this procedure is pre-

sented in Algorithm 1):

• Using EWC, compute the weight of each criterion.

• Using WPM, compute the product value P of each

sensor node ðsjÞ considering m criteria as:

sj:P ¼ ðsj:c1Þw1 � ðsj:c2Þw2 � � � � � ðsj:ciÞwi : ð10Þ

Here, w1, w2, . . ., wi are the weights for the criteria c1,

c2, ..., ci respectively.

• Sensor nodes with highest P values will be elected as

CHs.

4.1.4 Cluster heads election procedure

1. Initial step In EBCS, the BS finds the optimal number k

of CHs in the first round ðr ¼ 1Þ for the WSN. BS

participates in selection of CHs only in the first

round. The election process will be performed by

executing the selection procedure (Algorithm 1) con-

sidering the criteria, E, Nsupport, D, and DN, i.e., BS call

EP(S, k) procedure where S is the set of sensor nodes

in WSN.

BS sends BECH message to k sensor nodes that have

highest P values. After the sensor node receiving the

BECH message, the selected CHs announce their role

using CSMA [12, 16, 38] and then each CH forms its

cluster by the cluster formation step below.

2. CH election step The consumed energy by the CH

involves the consumed energy of receiving data from

all the CMs, aggregating data, and forwarding data to

the BS. As a result, we employ energy prediction

technique to predict the CH failure due to energy

depletion. If we assume that n sensor nodes are

uniformly dispersed and there sensor exist k clusters

in the topology. Thus, on average, there are n / k sensor

nodes per cluster (one CH and (n / k)-1 CMs).

Consequently, the total energy consumption by the

CH (eCH) for single round can be calculated as follows

[12]:

eCH ¼ n

k
� 1

� �
:ERxðlÞ þ

n

k
:l:EDA þ ETxðl; dtoBSÞ:

ð11Þ

The CM nodes only need to transmit data to its cor-

responding CH. Thus, the total energy consumption by

the CM node (eCM) during one single frame can be

calculated as follows:

eCM ¼ ETxðl; dtoCHÞ: ð12Þ

Here, dtoBS is the mean distance between the CH and

the BS, and dtoCH is the average distance between CMs

and the CH. In an area with size M �M, dtoBS and

dtoCH can be estimated as:

Wireless Networks (2020) 26:1869–1886 1875

123



dtoBS ¼
Mffiffiffiffiffiffiffiffi
2pk

p ; dtoCH ¼ 0:765
M

2
: ð13Þ

If each sensor node s takes tcm times to work as CM

node and tCH times to work as CH node, then, the total

energy consumption for sensor node s at round r can be

calculated as follows:

Econsumedðs; rÞ ¼ tcheCH þ tcmeCM ð14Þ

According to the current energy of sensor node s and

Eq. 14, the remaining energy of sensor node s at the

start of round r þ 1 can be used to predict when r round

ends as follows:

Epredictionðs; r þ 1Þ ¼ Eresidualðs; rÞ � Econsumedðs; rÞ:
ð15Þ

Sensor node s will decide if its current residual energy

is close to the predicted energy value at the end of the

round by using the following equation:

t ¼ j1� Epredictionðs; rÞ
Eresidualðs; rÞ

j: ð16Þ

The error of energy prediction can be tolerated if t is

less than a constant �.

At the end of each round r and based on the received

members’ information (id, Eprediction, Eresidual, Nsupport),

CH executes Algorithm 1 in order to take a decision for

the next round. CH has three cases (Algorithm 3, steps

26-38):

(a) The list of sensor nodes to be nominated as CHs

(w) is empty that means none of CMs or current

CHs can be CH for the next round because the

energy needed to act as CH eCH is larger than the

predicted energy Eprediction. In this case, the

current CHs inform their CMs to send their data

directly to the BS.

In such a case, we avoid unreliable and

unpredicted behavior of the network by avoid-

ing forming clusters. However, the positive

aspect is that with the remaining energy of a

sensor node, it may succeed if data is sent

directly to the BS.

(b) If w contains only one CH, then the CH will

remain working as CH for the next round.

(c) If w contains more than one CH (jwj[ 1),

as a result CH has to execute the election

procedure EP with the set w (EPðw; 1Þ) to make

a decision.

If the cardinality of w is larger than one, then the CH

sensor node has a set of alternatives. The first alter-

native is to stay working as CH sensor node, and the

second alternative is to select one of its CMs to work as

CH.

CH executes the election procedure EP considering

w members and the four criteria Nsupport, E, D, and DN,

then the product value of each member node is com-

puted and compared, then the sensor node with the

highest product value P will be selected as the next CH

(Algorithm 3, Step 34).

4.2 Cluster formation phase

Each CH sends BECH message to the elected CHs. The

elected CHs announce their role using CSMA. The adver-

tising short messageCHAnnounce contains the ID of CH. Then,

cluster formation step is executed (Algorithm 4).

To ensure that the concise information will be sent to

BS, each non-CH node selects the CH that uses minimum

communication cost, based on the signal strength of

received advertisement and then transmits JOINRequest

message to the selected CH.

The CHs build a TDMA schedule or transmission plan

that decides the time for each CM to send its collected data.

This guarantees collisions avoidance between data

messages and permits radio components of CMs to be

turned on only during their transmission time [12, 38].

Creating and transmitting TDMA schedule will be the last

step in setup phase.

4.3 Data transmission phase

Normally, each CM sends only its collected data to the

corresponding CH in its allocated time slot (Algorithm 4,
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Step 8–11). However, in our proposed EBCS, the data

message includes the ID of CM, residual energy, Nsupport

and Eprediction data, i.e., the local information of the CMs

can be employed to localize the CH rotation in the subse-

quent rounds.

Once all data is received by the CH, it executes some

signal processing function such as data aggregation. Then,

the aggregated result is sent to the BS. At the end of this

phase, using piggybacked CM information, each present

CH decides whether it would continue as CH or give up its

role (Algorithm 3, Steps 17–38).
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4.4 Entropy based clustering algorithm analysis

Each CH gathers and aggregates the data from its CMs, and

then forward the aggregated data to BS. As a result, the

consumed energy by CH is more than the consumed energy

by CM. In EBCS, the sensor nodes CHAnnounce with greater

product value of the sensor node with greater remaining

energy, greater number of neighbors, and the nearest to BS

will more plausible to be elected as a CH. Moreover, every

non-CM that receives CHAnnounce adopts the CH that needs

minimum communication cost based on the distance

between it and the CH candidates. This will balance the

network load during the CH rotation in successive rounds.

Lemma 1 The proposed EBCS has O(n) exchanged mes-

sages as an overhead, where n is the number of sensor

nodes.

Proof If k is the average number of CHs per round. In

each round we will have the following overhead messages:

• k messages for broadcasting CHAnnounce by all CHs.

• n� k messages for JOINRequest by non-CMs.

• k messages for broadcasting TDMA schedule by all CHs.

• n� k messages for sending data to CHs by CMs.

• k messages for sending data to BS by CHs.

• Finally, in the worst case, k messages for the rotation of

CHs (it will take place where each CH determines to

stay as CH or select one of its members to be the

successive CH).

Therefore, the EBCS overhead will be O(n) as k 	 n. h

5 Simulation results

Our algorithm is simulated using MATLAB R2015a. 100

sensors are randomly deployed in our simulations in the

following regions 100� 100; 150� 150; 200� 200; 250�
250; 300� 300; 350� 350m2 on a two-dimensional plane

with BS placed at the center. The radio model and energy

parameters are used as previously described in Sect. 3. The

main parameters and their values of the simulation are

provided in Table 2. The performance metrics we pursue

here are as follows:

1. Stability period It is the duration from the start of a

network simulation till the time first sensor node dies

(FND).

2. Half-life Time from the beginning of WSN deployment

to a time when a sensor node consumes up to half of its

energy.

3. Consumed energy Shows how much energy has been

consumed by the network with increasing number of

rounds.

4. Number of alive sensor nodes per round The number of

alive sensor nodes in the WSN after each round.

The algorithm has been tested using different random

topologies and it is compared with DEC, SEP-E, EDDEEC

[32], MEDDEEC[35], CREEP [24] and DMSEP [29] algo-

rithms. The optimal parameters of EBCS with DEC, SEP-E,

EDDEEC, MEDDEEC, CREEP, DMSEP are utilized to

achieve the best performance.We assume that the total energy

of the network is 102.5 J for all algorithms. Table 3 shows the

ratio of sensor nodes and their corresponding energies.

In the next sections, we explore the performance metrics

and compare the results of the proposed algorithm with

many existing baseline algorithms.

5.1 Analysis of optimum cluster heads

In EBCS, the clustering algorithm was created to guarantee

that the expected number of CHs per round is fixed, which

can be set a prior. we use a probabilistic-based model such

as EDDEEC, MEDDEEC, CREEP, DMSEP and SEP-E

and non-probabilistic-based such as DEC to analyze the

number of elected CHs per round. A number of experi-

ments have been conducted by varying the number of CHs
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per round for each Algorithm. Figure 4 shows the number

of CHs for the first 2500 rounds in EBCS, DEC, EDDEEC,

MEDDEEC, SEP-E, CREEP, and DMSEP algorithms. We

notice that the number of CHs per round for EDDEEC,

MEDDEEC, CREEP, DMSEP and SEP-E fluctuate which

indicates that the optimal number of elected CHs cannot be

guaranteed in each round as they depend on probability

function for CH selection). Due to this, in some rounds

very few CHs are elected, and the cluster-members will

need to transmit at a much longer distances to reach their

CHs. Likewise, if the number of elected CHs is higher, not

much data aggregation will be done, since the cluster size

is smaller. Thus, more energy will be used for transmitting.

This is one of the major drawback of the probabilistic-

based model. Another disadvantage of this model is that,

the energy consumption across nodes become increasingly

uneven as the network progresses. While this is not the case

for DEC and EBCS. This ensures that for any network size,

once the optimal number of CHs is defined in the beginning

of the network operation, the number of elected CHs will

remain fixed that evenly distributes energy dissemination

as the network evolves.

5.2 Stability period

The stability period is defined as the duration from the start

of the network simulation till the time first sensor node

dies. Figures 5 and 6 show the following points:

1. The stability period of the proposed algorithm exceeds

other algorithms as the remaining energy is predicated

and cluster load is considered during CH selection

process. Moreover, using entropy enhances the stability

period of the network by selecting the nodes with more

weight according to their energy level, etc.

2. The stability period of all algorithms degrades as the

network size increases, where the distance between

Table 2 Simulated parameters

Parameter Value

Network area size 100� 100, 150� 150, 200� 200,

250� 250, 300� 300, and 350� 350

Nodes 100

Initial energy 0.5 J, 1.25 J, 2.0 J

Eelec 50 nJ/bit

�fs 10 pJ/bit/m2

�mp 0.00013 pJ/bit/m4

d0 87 m

EDA 5 nJ/bit/signal

Packet size 4000 bits

Percentage of CHs Pop. 0.1

Table 3 Energy setting of

sensor nodes
% of nodes Energy (J)

20% of the nodes 2

30% of the nodes 1.25

50% of the nodes 0.5
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Fig. 4 Number of clusters per round in DEC, SEP-E, EDDEEC, EBCS, MEDDEEC, DMSEP, and CREEP algorithms
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sensor nodes increases and so the consumed energy for

sending and aggregating data increases.

3. The stability period of DEC exceeds the stability

period of SEP-E by 35% for the network size of

100� 100. But, as the network size increases from

200� 200 to 350� 350, stability period of SEP-E

exceeds the stability period of DEC by 25%, 31%,

37%, 29% respectively, because the DEC depends on

the sensor node energy as selection parameter for CHs

as network size expands the distance between sensor

nodes increases and so the consumed energy increases

while the selection processes in SEP-E is probabilistic.

4. The stability period of MEDDEEC, DMSEP and

EDDEEC significantly degrades as the network size

increases to 350� 350 because MEDDEEC and

EDDEEC depend on the absolute threshold value (T

absolute) that is calculated in each round, and the

energy of all sensor nodes are compared with the

threshold value. Only if the energy of a sensor node is

less than the threshold, it will be treated independently.

The value of the absolute threshold does not depend on

the network size which affects the network lifetime as

the network size increases. While, DMSEP considers

distance threshold value that is calculated as the

average distance between nodes and BS. However,

the threshold value is calculated at the network start up

and fixed in all rounds which affects the network

lifetime too. As the network size increases to

350� 350, the proposed algorithm enhances the

stability period compared with DEC, EDDEEC and

MEDDEEC up to of 32%, 74% , 73%, respectively.

5. EDDEEC calculates the probability for CH selection

based on the initial energy and remaining energy level

of sensor nodes and average energy of the network

while MEDDEEC considers average distance and the

distance from BS as parameters to compute the

probability function that allows MEDDEEC to select

a sensor node to be CH only if it is closer to the base

station and hence minimizing the energy consumption

is reduced. As a result the performance of MEDDEEC
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Fig. 5 Stability period for DEC, SEP-E, EDDEEC, EBCS, MEDDEEC, DMSEP, and CREEP algorithms for different network sizes
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is better than EDDEEC in terms of energy

consumption.

6. As the network size increases to 250� 250 and

300� 300, the stability period of SEP-E increases

slightly by 1% over EBCS for network size. However,

as the network size increases to 350� 350 the stability

period of EBCS is increased by 5% over SEP-E.

In SEP-E, there are three reasons that lead to a reduction

in network lifetime

• In SEP-E, CHs selection depends on the probability of

each type of sensor node without considering the

remaining energy of each sensor node so that the sensor

nodes with comparatively small remaining energy can

be CHs.

• As we discussed in previous Sect. 5.1, SEP-E does not

have stable number of CHs, i.e., the optimal number of

CHs is not guaranteed in many rounds.

• In case of increasing network size, at the edge of the

network or in low density regions, the number of CHs

increases and so many cluster members inefficiently

utilize energy while communicating with the CHs.

For the above reasons, stability period of SEP-E becomes

very close to EBCS as the network size increases to

specific size (300 � 300), then after this specific size, the

EBCS will start to exceed SEP-E.

5.3 Half-life time

Our algorithm enhances the Half-life of WSN better than

DEC, SEP-E, EDDEEC, MEDDEEC, CREEP and DMSEP

for different network sizes as the weights are updated in

each round for the criteria and are calculated based on the

current status of sensor nodes. Moreover, we try not to

overload the sensor node that becomes CH by considering

cluster load as the selection criteria and assuming if it can

continue its task until the end of the round. This leads to

Fig. 6 Number of alive sensor nodes per round of DEC, SEP-E, EDDEEC, EBCS, MEDDEEC, DMSEP, and CREEP algorithms for different

network sizes
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energy saving for sensor nodes that have low energy levels

as they work as normal sensor nodes and do not handle the

CH tasks. Figure 7 shows that the proposed algorithm

enhances the WSN Half-life compared with DEC, SEP-E,

EDDEEC, MEDDEEC, CREEP, and DMSEP up to a

magnitude of 47%, 45%, 48% , 88%, 128% and 47%

respectively for network size of 100� 100.

The results show that the network lifetime of SEP-E

increases slightly by 1% over EBCS for network size

250� 250 and 300� 300. However, as the network size

increases to 350� 350, the stability period of EBCS

increases by 5% over SEP-E. This is because the number of

CHs in each round is not fixed due to its randomized

behavior in SEP-E; so the chance of selecting fewer

number of CHs than the required and near to the BS

increases. This leads to some indirect energy saving.

Overall, our proposed EBCS increases the WSN lifetime as

compared with DEC, SEP-E, EDDEEC, MEDDEEC,

CREEP, DMSEP up to a magnitude of 7%, 43%, 60%,

47%, 61%, 50%, respectively for network size of

100� 100.

5.4 Average remaining energy

We compute the average standard deviation of the residual

energy of sensor nodes per round with different network

sizes. Figure 8 shows the average of remaining energy per

round for DEC, SEP-E, EDDEEC, EBCS, MEDDEEC,
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CREEP, DMSEP algorithms. Notice that as the network

size expands the consumed energy for SEP-E and EBCS

slightly raises, while there is a remarkable increase in the

case of DEC, EDDEEC, and MEDDEEC.

Figures 8 and 9 show the average and standard devia-

tion of residual energy of sensor nodes as the number of

rounds increase. The standard deviation of residual energy

of sensor nodes refers to the distribution rate of residual

energy of sensor nodes. A small standard deviation rep-

resents that the residual energy of each sensor node is

almost uniform and is similar to the average value. The

standard deviations for the residual energy among the

sensor nodes of each protocol is computed as shown in

Fig. 9. The rapid decrease in both of DEC and EBCS

curves indicates that DEC and EBCS balance the energy

consumption in the network better than the other proto-

cols. This is due to even distribution of consumed energy

among the sensor nodes.

6 Conclusion

In this paper, we have proposed a new entropy based

clustering algorithm (EBCS) which divides a WSN into

two-levels of the hierarchical network and deals with three-

levels of energy heterogeneity of sensor nodes. The

Fig. 8 Average residual energy per round versus network size for DEC, SEP-E, EDDEEC, EBCS, MEDDEEC, DMSEP, and CREEP algorithms
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dynamic, distributive, and self-organizing EBCS benefits

from the advantage of the local information of sensor nodes

that can be measured in terms of entropy as criteria for

cluster head election and cluster formation. Our simulation

results show that the proposed EBCS exceeds the baseline

algorithms DEC, EDDEEC, MEDDEEC, SEP-E, CREEP

and DMSEP in terms of energy consumption, lifetime, and

stability period.
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