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Abstract
Multiple unmanned aerial vehicles (UAVs) are applicable to numerous civil and military scenarios, such as rescue,

surveillance, inspection, mapping, and so on. In fact, there exists lifetime and distance restrictions in UAVs due to the

limited energy and signal attenuation. Therefore, a distributed algorithm is proposed which makes use of cooperative

communication to ensure reliable information transmission of UAVs in communication-limited environments. First, a

system model is developed by jointly considering the achievable rate, delay and energy consumption, which constitute the

utility function of UAVs. Then, in order to study the interactions among UAVs, we present a game framework which

allows the UAVs making decision under the global topology. Via a hybrid of the pure-strategy and the mixed-strategy Nash

network formation algorithm, a multi-hop tree structure network that connects the UAVs and the ground station is

established. Based on our numerical simulation, it demonstrates that the UAVs can adapt to the changing environment.

Finally, some comparisons are provided to illustrate the efficiency of the proposed algorithm.
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1 Introduction

Recently, inexpensive mobile autonomous agents, such as

unmanned aerial vehicles (UAVs), have received increas-

ing interest for remote sensing [1], disaster monitoring [2],

emergency assistance [3], relay connectivity [4] and border

surveilance [5]. Although single-UAV systems have been

used for decades, the overall capability can be extended by

multiple UAVs. In multi-UAV systems, failure of a single

UAV causes the network to reorganize and to maintain

communication through other nodes. This would not be

possible in single-UAV systems [6]. In terms of commu-

nication needs, single-UAV systems are linked and

restricted to the coverage of the ground station. While with

a team of UAVs by establishing an ad hoc network, it

extends the scope of system. In this way, the UAVs can

communicate with each other and only a subset of them

need to connect with the ground station [7]. More impor-

tantly, the missions can be completed faster with

collaboration of multiple UAVs. At the same time, it’s able

to bring increased challenges to coordinate multi-UAV

systems and high requirements to the communication

network.

In multi-UAV systems, the state information and sensor

data of UAVs need to be transmitted to the ground station.

Furthermore, UAVs need to communicate with each other

frequently in order to exchange information about the

coordination and the observations of the world. However,

they are constrained by limited energy ability, storage

capacity and communication bandwidth. UAVs can’t

operate without fuel or battery replacement for a long time.

Recently, some works have been explored to find different

ways to extend the lifetime of network, using optimization

[8] and path planning algorithm [9]. Therefore, there is a

need to design a communication strategy by which the

energy can be used efficiently.

Many works use UAVs as aerial base stations that

provide a high chance of Line-of-Sight (LoS) links to

ground users. The performance analysis of a flying base

station by stochastic geometry is studied [10]. In order to

effectively deploy UAVs, a novel algorithm based on the

machine learning framework is proposed to maximizing

the users’ quality of experience using the minimum total

transmit power [11]. For many applications, some UAVs
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have to collect and disseminate their information to the

ground station that may be located far from the operational

area. Since wireless channels decay with line-of-sight

obstacles or increasing distance, the inability to transmit

sensing data to the ground station in real time may render

the multi-UAV systems ineffective [12]. Furthermore, the

poor communication may generate potentially dangerous

system and prevent agreement in the team. A solution is to

consider using UAVs as relays for failed links which makes

the routing become a crucial problem. Nowadays, there is a

myriad of literature on routing protocols for multi-UAV

systems. For instance, the position-based routing protocols

[13, 14] and the hierarchical routing protocols [15–19].

However, all these research works only care about the

network connectivity without taking into consideration the

mission of UAVs. In fact, the UAVs in general are mission-

based and their mobility models depend on the tasks they

plan to accomplish. Therefore, it needs to design a proper

mission-based scheme to form the links for UAVs which

are far away to the ground station.

Multi-UAV systems, also called flying ad hoc networks

(FANETs) [7], are a special case of mobile ad hoc net-

works (MANETs) with a high degree of mobility. The

topology of these networks can change more frequently

and the UAVs might locate out of the scope of ground

station. This makes the centralized approach [8] that

requires the ground station to run the algorithm at each

time instant become not applicable. In general, by a dis-

tributed algorithm [12, 20], the network could control itself

to support the connections between nodes. Therefore, the

need for developing a distributed solution is desirable.

However, nodes are generally selfish in wireless net-

work. Individuals may have different levels of interest if

they are ‘‘designed, owned, or operated by several organ-

isations that may have different goals’’ [21]. Hence, a

network formation method considering global connectivity

is needed. Game theory, as an important tool, is widely

used in many fields [22]. It can provide a good framework

for modelling and analyzing the interactions among mul-

tiple players that choose their own strategy independently

according to their local information. A network formation

game is formulated to achieve small base stations back-

hauling by designing a UAV-based multi-hop network

[23]. The paths connecting the small base stations and

gateway can be distributed exploited by studying a pair-

wise stability at the expense of negotiation to solve the

network formation game. But this scheme had normal

probability to get trapped in cycle networks.

In this paper, we consider the UAVs execute recon-

naissance tasks where the sensing information needs to be

transmitted to ground station. The UAVs need to autono-

mously learn how to form air-to-air (A2A) and air-to-

ground (A2G) links. The main contributions of this paper

are:

– We propose a system model which adopts a metric that

jointly consider achievable rate, delay and energy

consumption. Due to the wireless channels decay and

limited energy, a self-organizing and multi-hop net-

work is established.

– The game theory is used to study the interactions

among UAVs to get the network structure connecting

the UAVs to their serving ground station. This allows

that every UAV is interested in increasing its individual

utility and making a decision based on the current

network topology.

– A distributed myopic Nash network formation algo-

rithm is proposed which is a hybrid of the pure-strategy

and the mixed-strategy Nash network formation algo-

rithm in order to avoid getting cycle networks.

The rest of this paper is organized as follows: In Sect. II,

preliminaries and system model are given. Section III

details the game and presents the proposed myopic Nash

network formation algorithm. The performance evaluation

is analyzed in Sect. IV. Finally, conclusions are drawn in

Sect. V.

2 Preliminaries and system model

Consider a scenario where a team of N UAVs is given a

mission to be static to survey areas of interest and send the

data back to the ground station. The sensing information

generates from the onboard radar and camera or ground

sensors where the UAVs may be static to collect. However,

the sensing areas are hard to reach by ground vehicles or

located at distant. Along with the communication distance

increases, the received signal quality deteriorates. As a

result, the network that connects the sensing UAVs directly

to the ground station is either unavailable or limited in data

transmission. To address the issue, it’s necessary to extend

the communication range based on a multi-hop aerial

network to sense the areas. Here, cooperative communi-

cation among UAVs is adopted, where the role of UAVs, as

intermediate relays, is used to serve different transceivers.

Therefore, a tree network with the ground station as the

root node is formed. The UAVs in the network transmit the

sensing data packets to the ground station through one or

more hops in the formed tree.

In our model, there are some assumptions. First of all, at

least one UAV has access to the ground station. Due to the

restriction of the camera resolution, UAVs are limited to a

few hundred meters as low-altitude platform (LAP). For

the air-to-ground (A2G) and air-to-air (A2A) links, the

Doppler effect due to the mobility of UAVs is assumed to
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be perfectly compensated. Figure 1 illustrates an example

of our tree model. Every sensing UAV i in the network

senses its own area of interest based on the task allocation.

The information is generated at a constant rate equal to ki
packets per second. Moreover, UAV i also receives the

packets from other UAVs that are connected to it. The role

of UAV i is to relay these packets to the next hop.

2.1 Achievable rate

The wireless channel follows the free-space path loss

model, expressed as [24]:

nðdBÞ ¼ 10a log
4pfcdo;d

c

� �
; ð1Þ

where a� 2 is the path loss exponent, fc is the system

carrier frequency, do;d is the distance between the origin

node o with the destination node d, c is the speed of light.

For modeling the A2G propagation channel, one com-

mon approach is to consider a probabilistic line-of-sight

(LoS) and non-line-of-sight (NLoS) links [24]. Note that

for NLoS links due to the shadowing and diffraction loss,

attenuations is higher than the LoS links. Hence, the

adopted path loss between UAV i and the ground station g

can be given by [23]:

Li;g ¼
ni;g þ wLoS; LoS link;

ni;g þ wNLoS; NLoS link;

(
ð2Þ

where wLoS and wNLoS are the additional attenuation factor

caused by shadow fading. Here, the probability of LoS

connection depends on the environment, the location of the

ground station and the UAV, and the elevation angle

between them. The LoS probability is given by [25]:

PLoS
i;g ¼ 1

1þ C expð�B½h� C�Þ ; ð3Þ

where C and B are constant values which depend on the

environment and h is the elevation angle. Clearly,

h ¼ sin�1 hi;g

di;g

� �
, hi;g and di;g are the height difference and

distance between UAV i and the ground station g. Here, the

probability of NLoS is PNLoS
i;g ¼ 1� PLoS

i;g . Therefore, the

average path loss is [25]:

�Li;g ¼ PLoS
i;g LLoSi;g þ PNLoS

i;g LNLoSi;g : ð4Þ

The average signal-to-noise ratio (SNR) expression

between UAV i and the ground station g is:

ri;g ¼
Pi;g

10
�Li;g=10 � r2

; ð5Þ

where Pi;g is the transmit power of UAV i, r2 is the noise

power. Therefore, the achievable data rate can be defined as:

Ri;g ¼ Bilog2ð1þ ri;gÞ; ð6Þ

where Bi is the transmission bandwidth of UAV i.

For modeling the A2A propagation channel, different

UAVs can communicate through LoS links due to the open

environment. Therefore, the path loss between UAV i and

UAV j can be given by [23]:

Li;j ¼ ni;j þ wLoS: ð7Þ

Consider orthogonal channel among UAVs, the SNR is:

ri;j ¼
Pi;j

10Li;j=10 � r2
; ð8Þ

where Pi;j is the transmit power of UAV i to the destination

UAV j. Therefore, the achievable data rate is:

Ri;j ¼ Bilog2ð1þ ri;jÞ; ð9Þ

Here, a directed graph is defined as GðV; EÞ where V ¼
1; 2; . . .;N þ 1 represents the set of vertices (N UAVs and

the ground station g) and E denotes the set of edges that

connect different nodes. A directed edge ði; jÞ 2 E in graph

G means that the sensing traffic flow from UAV i to j.

Given a network graph GðV; EÞ, the path qi from UAV i to

ground station g is defined as:

Definition 1 The links among a sequence of nodes

i1; . . .; iK (in V) form the path qi, where i1 ¼ i, iK ¼ g and

each directed link ðik; ikþ1Þ 2 G for each k 2 1; . . .;K � 1.

Hence, the achievable end-to-end rate from UAV i to

ground station along a path qi is the minimum of the rates

achievable over K � 1 hops [26]:

Ri;qiðGÞ ¼ min
k¼1;...;K�1

Rik ;ikþ1 ð10Þ

where Rik ;ikþ1
is the rate of link ðik; ikþ1Þ. K is the number of

vertices from UAV i to ground station along path qi.

2.2 Delay cost

Consider a decode-and-forward relaying scheme, each

intermediate UAV decodes and re-encodes the received

signal before sending it. However, it’s a very complicatedFig. 1 An example of the tree model
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work to express the delay exactly. So by the Kleinrock

approximation with each UAV as a M/D/1 queueing sys-

tem, the average delay over the path qi from UAV i to the

ground station [20]:

si;qiðGÞ ¼
X

ðik ;ikþ1Þ2qi

uik ;ikþ1

2lik ;ikþ1
ðlik;ikþ1

� uik ;ikþ1
Þ þ

1

lik ;ikþ1

 !
;

ð11Þ

where uik;ikþ1
¼ kik þ Kik is the total packet arrival rate

(packet/s) traversing link ðik; ikþ1Þ 2 qi between UAV ik
and UAV ikþ1 and generating from the sensing information

of UAV ik and from all other UAVs that have a link with ik.

Kik is defined as Kik ¼
P

j2Aik
kj where Aik is the set of

UAVs that are connected to UAV ik in current network

graph G. lik ;ikþ1
¼ Rik;ikþ1

=m is the service rate where Rik ;ikþ1

is the achievable data rate of the direct transmission

between UAV ik and UAV ikþ1 and m is the packet length.

Here, the link ðik; ikþ1Þ is formed successfully only if the

arrival rate uik ;ikþ1
is less than the service rate lik ;ikþ1

.

Otherwise, the delay will be infinite.

2.3 Energy cost

UAVs are constrained by limited energy, and the energy

consumption is mainly dominated by the communication

cost [8]. In this paper, a commonly energy consumption

model is considered with the sensing, processing and

communication units. The extension to the storage energy

consumption will be left as our future work. The first item

is the sensing energy used to sense environment. The

sensing energy consumed by UAV i within per unit time is:

Es
i ¼ esmki; ð12Þ

where es is the energy to sense one bit of information.

The second energy item is the data processing costs,

which is the energy to decode and re-encode the received

signal. The processing energy consumed for the informa-

tion of UAV i is:

E
p
i ¼

XM
m¼1

epmki; ð13Þ

where ep is the energy to process one bit of information.

Another energy item is the communication costs, which

includes the consumption of transmitting energy and

receiving energy. The communication energy consumed

for the information of UAV i is:

Ec
i ¼

XM
m¼1

ðPtm þ PrmÞTm; ð14Þ

where Tm ¼ Rik ;ikþ1
=ðmkiÞ is the communication time

between UAV ik and UAV ikþ1 for the information of UAV

i. Ptm and Prm is the power of transmitting and receiving

information.

Therefore, the total energy consumed for the informa-

tion of UAV i along path qi by sensing, processing and

communication is denoted by:

Ei;qiðGÞ ¼ Es
i þ E

p
i þ Ec

i ; ð15Þ

To evaluate the performance of the network, it is important

to define proper metrics. Next, the research problem and its

solving algorithm are presented.

2.4 Problem formulation

Each UAV in the tree model shown in Fig. 1 wants to

choose a path to the ground station. So it needs an objective

function to assist making decision that takes into account

the key metrics such as the achievable rate, delay and

energy consumption which can have an impact on the

network performance. A suitable criterion, the utility of

UAV i, is defined as:

UiðGÞ ¼
Rdi
i;qi

sgii;qiE
1�di�gi
i;qi

; ð16Þ

where di and gi are the objective weights. Ui depends on

the sensing traffic and the route to ground station.

3 Network formation game

In this section, the proposed problem is modeled as a

network formation game and a distributed algorithm is

provided to achieve sensing data transmission from UAVs

to ground station through the tree network structure that

results from the interactions among UAVs.

3.1 Game formulation

Refer to [27], we study the analytical framework of net-

work formation games and model our problem as a net-

work formation game GðN; S;UÞ where each UAVs, as

independent decision player, takes action to optimize its

own utility. Here, the main components N; S;U are the

players, their strategies, and their utility functions respec-

tively. The player set for the proposed network formation

game contains N UAVs defined as follows:

N ¼ fUAVi; 8i 2 ð1; 2; . . .;NÞg; ð17Þ

where UAVi represents the UAV with index i.

In this game, each UAV i interacts with others in order

to take an appropriate path that connects it to the ground

station. The action space of UAV i consists of the nodes

(UAVs and ground station) that can use as its next hop.

1784 Wireless Networks (2020) 26:1781–1793

123



UAV i cannot choose the UAVs which is already con-

nected to UAV i in the current network graph. Therefore,

the strategies of UAV i is defined as [20]:

Si ¼ fði; jÞjj 2 Vnðfig [ AiÞg; ð18Þ

where Ai ¼ fj 2 Vnfigjðj; iÞ 2 Gg is the set of UAVs

which already have a link with UAV i. The aim of UAV i is

to select the link si 2 Si that it wants to form. Here, each

UAV has its utility function dependent on its own strategy

and other UAVs’ strategies. UiðGÞ is the utility function of

UAV i which is given in (16).

In the network graph, each UAV is connected to the

ground station through at most one path. This means UAV i

will keep its previous strategy or replace its previous

strategy with the new link si. The replace operation is

highly dependent on the utility function of UAV i. Obvi-

ously, if UAV i has no strategy to choose, there is no path

exists between UAV i and the ground station g, whether

direct or multi-hop. As a result, the UAV i will be dis-

connected from the network and the utility of i will be zero.

Therefore, there is no incentive for the UAVs to disconnect

from the ground station. The network graph will always be

a connected tree structure rooted at the ground station.

3.2 Pure-strategy Nash network formation
algorithm

The main objective is to find an algorithm that can allow

the UAVs to interact to form the tree network structure. It

is desired that a UAV i plays its strategy si 2 Si given other

UAVs’ strategies s�i, which is defined as [28]:

s�i ¼ fs1; . . .; si�1; siþ1; . . .; sNg: ð19Þ

Then the network graph can be expressed as Gsi;s�i
. In game

theory, Nash equilibrium (NE) [22] is a stable state that the

players arrive an agreement. When all the players act

according to their best response (BR), the game will con-

verge to a state of Nash equilibrium. Here, the best

response of UAV i is defined as:

Definition 2 Strategy s�i 2 BRðs�iÞ is a best response of

UAV i if

UiðGs�
i
;s�i

Þ�UiðGs
i
;s�i

Þ ; 8si 2 Si; ð20Þ

where BRðs�iÞ is the set of best response of UAV i. It

means that UAV i selects the link to form that maximizes

its utility given other UAVs’ strategies s�i. A myopic pure-

strategy network formation algorithm is built based on the

best response. In particular, myopic UAVs improve its

utility considering only the current state of the network

without taking into account the future evolution of the

network. At each iterative of the algorithm, the UAVs

make their decisions based on (20) in a random but

sequential order. This iterative process continues until it

converges.

Now, let s ¼ ðs1; . . .; sNÞ be defined as the strategy

profile. When the algorithm converges, NE strategy profile

is achieved, which is defined as:

Definition 3 s is a NE strategy profile if

si 2 BRðs�iÞ; 8i 2 f1; 2; . . .;Ng: ð21Þ

The NE strategy profile guarantees to reach a stable net-

work where there is no UAV has a motive to unilateral

deviate from its strategy. That is to say no UAV can

improve its utility by changing its current link if other

UAVs do not deviate their strategies. Then, a pure-strategy

Nash network is achieved.

3.3 Mixted-strategy Nash network formation
algorithm

Obviously, there are two results during the solution of

pure-strategy Nash network formation algorithm based on

best response. One is the pure strategy for each UAV in

which probability one is assigned to one strategy and zero

to the others. However, the Nash equilibrium (NE) in pure

strategies may not always exist. Another result is that some

UAVs get stuck in cycle networks. An alternative version

of the best response is to exploit the mixed strategies,

which operates on probability distributions over strategies

[20]. Therefore, let every UAV record the network topol-

ogy during its turn. If a UAV finds there exists a network

that has been visited, the mixed-strategy Nash network

formation algorithm will be triggered. In this paper, the

UAVs will use fictitious play to find the mixed Nash

equilibrium based on the observation. The mixed strategy

of UAV i is a distribution that assigns a probability piðsÞ to
each action s and

P
s2Si

piðsÞ ¼ 1.

Refer to [29], a myopic mixed-strategy network for-

mation algorithm is built based on the fictitious play of

UAVs. Similar to the pure-strategy Nash network forma-

tion algorithm, at each iterative of the algorithm, the UAVs

make their decisions in a random but sequential order. The

action of UAV i at time t þ 1 is the best response to the

observed strategies of others [22], can be given by

s ¼ argmaxs2Si giðs; p�iÞ, where

giðs; p�iÞ ¼
X
s12S1

� � �
X

si�12Si�1

X
siþ12Siþ1

� � �
X
sN2SN

p1ðs1Þ; � � � ; pi�1ðsi�1Þ; piþ1ðsiþ1Þ; � � � ; pNðsNÞUtþ1
i ðGs;s�i

Þ

ð22Þ

The UAVs update the probabilities of strategies based on

the value at last time and the current action as follows:
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ptþ1
i ¼ pti þ

1

t þ 1
vtþ1
i � pti

� �
; ð23Þ

where pti ¼ ½ptiðsÞ�s2Si is the empirical probability that UAV

i chooses the action s at the t-th iteration of the algorithm.

vtþ1
i ¼ ½vtþ1

i ðsÞ�s2Si is an Si-dimensional vector with

vtþ1
i ðsÞ ¼ 1 if UAV i chooses the action s at time t þ 1, and

vtþ1
i ðsÞ ¼ 0, otherwise.

Each UAV i selects its best response action according to

the observed decisions of the other UAVs. Hence, at any

given time, it ensures to form a tree architecture. This

iterative process continues until it converges to the mixed

NE which is defined as:

Definition 4 A mixed strategy NE of the game is a mixed

strategy profile p� ¼ ðp�1; p�2; . . .; p�NÞ ¼ ðp�i ; p��iÞ such that

[22]

~Uiðp�i ; p��iÞ� ~Uiðpi; p��iÞ; 8i 2 N; ð24Þ

where

~Uiðpi; p�iÞ ¼ EðUiÞ ¼
X

s2Sð
Q
j2N

pjðsjÞÞUiðGs;s�i
Þ

:
ð25Þ

It’s the expected utility of UAV i when selecting the mixed

strategy pi and S ¼ ðSi; S�iÞ.

Algorithm 1 Nash Network Formation Algorithm
Phase I-Initial State
Consider a star network G where the UAVs are directly connected to the ground
station.
Phase II-Nash Network Formation Algorithm
a) Pure-Strategy Nash Network Formation Algorithm
The strategies Si of every UAV i ∈ N are the links that it could form.
while G has not yet converged to a pure-strategy Nash network, do

for every UAV i ∈ N , the UAVs engage in the game in a random but sequential
order

if during the turn of UAV i, the current network G has not been visited (no
cycle) then
UAV i selects its strategy s∗

i according to (20).
if the strategy of UAV i is not its previous strategy then

UAV i replaces its current connection and establishes a new link
according to its strategy.

end if
UAV i broadcasts its strategy s∗

i to others.
else (cycle networks appear)

The mixed-strategy Nash network formation algorithm is triggered. The
algorithm will leave a) and go to b).

end if
end for

end while
b) Mixed-Strategy Nash Network Formation Algorithm
Only the cycle networks appear, the mixed-strategy Nash network formation al-
gorithm is triggered. The strategy of every UAV i ∈ N becomes the assigned
probability pi to its actions Si which are the links it could form.
while G has not yet converged to a mixed-strategy Nash network, do

for every UAV i ∈ N , the UAVs engage in the game in a random but sequential
order

UAV i selects its action s∗
i according to (22).

if the action of UAV i is not its previous action then
UAV i replaces its current connection and establishes a new link
according to its action.

end if
UAV i broadcasts its action s∗

i to others and all UAVs updates p∗
i , the

strategy of UAV i, according to (23).
end for

end while
Phase III-Information Transmission
The Nash network is formed and each UAV transmits its information.
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It’s difficult to have an analytical proof for the conver-

gence of this algorithm. The unified convergence proofs

have been provided that whenever fictitious play con-

verges, it converges to a Nash equilibrium [30]. However,

it’s common to use fictitious play to find the mixed-strategy

Nash network even though no analytical proof [22].

A summary of the proposed algorithm is given in

Algorithm 1. The algorithm consists three phases: Initial

state, the proposed network formation algorithm, and

information transmission. In the first phase, the starting

network is formed. After that, the network formation

algorithm begins to seek the Nash network among UAVs.

Once the game reaches steady-state, the UAVs start their

transmission.

4 Simulation results and analysis

For simulations, a 5 km � 5 km square area with the

ground station at (0, 0) is considered. The observed areas

are assigned to each UAV located at the altitude of 100 m.

The path loss exponent is set to a ¼ 2, the system carrier

frequency is set to fc ¼ 2 GHz, the additional attenuation

factors are set to wLoS ¼ 5 dB and wNLoS ¼ 20 dB, the

values of C and B are set to 11.9 and 0.13 according to

[23], and the noise variance r2 ¼ � 90 dBm. The UAVs

are considered as having a transmit power of 20 dBm, an

arrival rate of 50 packets/s. All packets are considered of

size 256 bits and the tradeoff parameters di ¼ d ¼ 0:5,

gi ¼ g ¼ 0:3. The energy parameters are es ¼ 50 nJ/bit,

ep ¼ 10 nJ/bit. The power consumption for receiving

information is 15 dBm.

In Fig. 2, we deploy N ¼ 10 UAVs to observe or collect

information to the ground station. The network formation

game starts with the star topology with all the UAVs

connected directly to the ground station. Figure 2 shows

that a tree structure network results from our proposed

algorithm. Most of the UAVs connect to the ground station

by multi-hop. Moreover, not only the distance affects the

decisions of UAVs, but also the number of hops does. For

example, UAV 3 connects to UAV 5 directly, although

UAV 1 is closer. The reason is that the path for UAV 3

along UAV 1 is more congested and thus decreases its

utility. In brief, Fig. 2 shows how the UAVs select their

strategies to form a tree topology.

In Fig. 3, the effect of task change on the network

structure is presented. We consider the network of Fig. 2

and assume the interesting area of UAV 1 is changed. Then

UAV 1 moves along the positive x-axis direction to reach

the new task area while the other UAVs remain static. The

utility variation of relevant UAVs are shown in Fig. 3. At

the beginning of movement, the utility of UAV 7 which

served by UAV 1 decreases, while the utility of UAV 1

increases since the distance between UAV 1 and UAV 5

decreases. After UAV 1 removes 0.4 km, UAV 3 finds its

utility could improve by connecting with UAV 1. As the

movement continues, UAV 7 decides to connect with UAV

5 instead of UAV 1 since this can provide a better utility.

At the same time, the utility of UAV 1 starts to drop as it

away from UAV 5. After moving 1.8 km, UAV 3 maxi-

mizes its utility by replacing its current connection with

UAV 1 and establishing a link with UAV 5. In a word, the

UAVs can make decisions to adapt the changing

environment.

Figure 4 shows that the average number of switch

operations when all UAVs moving with different velocities

in random directions over a period of 5 min. In order to

adapt to the changing environment, the proposed algorithm
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is repeated every 30 s. From Fig. 4, we can see that the

average number of switch operations increases as the

velocity of the UAVs increases. The reason is, as mobility

increases, the possibility of changes in the network struc-

ture increases. As a result, the UAVs take actions more

frequently. The greater the number of UAVs, the more the

chances of replacing the current link, hence the case of

N ¼ 20 has a higher number of switch actions than the case

of N ¼ 10. In this regard, the average number of switch

operations per minute varies from around 5.7 at 10 km/h to

around 22 at 70 km/h for N ¼ 20, while for N ¼ 10, it’s

from 1.6 at 10 km/h to around 9 at 70 km/h. In brief, Fig. 4

provides that the UAVs can adapt the changing network

topology and make appropriate decisions through the pro-

posed algorithm.

Figure 5 shows the minimum, average and maximum

number of iterations needed till convergence of the pro-

posed algorithm for different number of UAVs. Each UAV

decides whether replacing the strategy during its turn in

every iteration. This figure shows that, the total number of

iterations required to get the stable network topology

increases as the number of UAVs increases. The reason

stems from the fact that the choices for every UAV

increase, thus more iterations are required for the conver-

gence. For instance, the maximum, average and minimum

number of iterations vary from 3, 2.4, 2 at N ¼ 5 UAVs up

to 5, 3.6, 3 at N ¼ 25 UAVs. Figure 5 demonstrates that,

after a number of iterations, our proposed algorithm could

converge and a stable topology is achieved. The algorithm

could applicable to relatively large networks from the

convergence speed. Moreover, Table 1 compares the

average number of iterations required resulting from our

proposed algorithm and the two-relay scheme. For the two-

relay scheme, each UAV splits its traffic on average by

choosing two relays to reach the destination. From Table 1,

it can be seen that the proposed algorithm requires a lower

iterations for different number of UAVs. This is due to the

increase in the number of strategies on the two-relay

scheme.

Figure 6 shows the average achieved utility per UAV as

the number of UAVs in the network increases. Here, the

proposed algorithm is compared against the nearest

neighbor algorithm which each UAVs selects its nearest

neighbor to connect to, as well as the direct transmission

scheme. In Fig. 6, as the number of UAVs increases, the

average utility per UAV decreases. This is due to the fact

that, the available bandwidth per UAV depends on the

number of UAVs. The increasing number of UAV will

result to the decreasing bandwidth and average rate of

each. Another factor is the UAVs that having bad channel

conditions with the ground station could form links with

other UAVs to get better communication. The higher

probability of LoS communication among UAVs brings

more resistant to the attenuation. Figure 6 demonstrates

that the proposed algorithm presents a significant perfor-

mance gains over the other two schemes.

In Fig. 7, the average utility per UAV achieved is pre-

sented for a network with N ¼ 10 UAVs as the the tradeoff

parameter d varies. Here, same weight is put on the delay
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Table 1 The average number of iterations till convergence based on

the proposed algorithm and that of the two-relay scheme

# of iterations N ¼ 5 N ¼ 10 N ¼ 15 N ¼ 20 N ¼ 25

Proposed algorithm 2.4 2.8 3.0 3.3 3.6

Two-relay scheme 2.8 3.5 3.8 4.4 4.6
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and energy consumption. The proposed algorithm is com-

pared against the direct transmission and nearest neighbor

algorithm which used frequently. In this figure, as the

tradeoff parameter increases, the performance of all

schemes improves and the proposed algorithm outperforms

others. This is because the proportion of achievable rate in

the utility is growing. For small d, the UAVs are highly

sensitive to delay and energy consumption and tend to form

a link with ground station by small number of hops. As d
increases, the network becomes more delay and energy

consumption tolerant. This leads to the probability of using

multi-hop transmission and the average achievable rate per

UAV increases.

Figure 8 provides the convergence time of mixed-

strategy Nash network formation algorithm based on fic-

titious play. Through a lot simulations, with the pure-

strategy algorithm, cycle networks appear when UAVs are

deployed as Fig. 8a. As a result, the mixed-strategy algo-

rithm is triggered. Some UAVs, not all, will play their

mixed strategies. Figure 8b shows the probabilities of dif-

ferent strategies of UAVs. We can see that the probabilities

vary a lot at the beginning. And the algorithm gradually

converges after several iterations.

In Fig. 9, we show the proposed algorithm may admit

multiple equilibria. The total number of possible network

trees is ðN þ 1ÞðN�1Þ
with a team of N UAVs. Therefore,

for large networks, choosing the most efficient equilibrium

is computationally intractable by finding all possible net-

work trees. To simplify the simulation without losing

generality, we consider N ¼ 3 case and N ¼ 4 case, with

16 and 125 possible network trees respectively. Figure 9a

shows the number of Nash equilibria (only pure strategy),

over about 10,000 random network settings. From the

results, it can be observed that the maximum number of

pure-strategy Nash networks is two, which is much less

than the total number of possible network trees. Moreover,

by assessing the network settings with multiple equilibria

in N ¼ 4 case, the average utility of different equilibria has

been presented in Fig. 9b. The performance of different

equilibria is similar. However, design mechanisms could

improve the efficiency of equilibrium [22]. Thus, a method

is provided in the following simulation.

We consider a mechanism which gives a positive

incentive to UAV by the number of packets it relays. The

performance of incentive case and no incentive case is

further assessed in Fig. 10 as the number of UAVs

increases. From the results, it can be observed that, as the

number of UAVs increases, the average utility of two cases

is similar. However, in no incentive case, the average

maximum and average number of hops vary, respectively,

from 2.8 and 2 at N ¼ 5, up to 4.5 and 2.9 at N ¼ 25.

While in incentive case, they vary from 2.6 and 1.9 at

N ¼ 5, up to 4.3 and 2.8 at N ¼ 25. The number of hops in

incentive case is a little lower than no incentive case.

Consequently, through the incentive mechanism, the effi-

ciency of equilibrium could be improved.

Figure 11 shows the performance assessment achieved

under different selflessness �, which any UAV is willing to

accept a connection to relay the packets that does not

decrease its utility by more than �. From Fig. 11a and b, it

can be observed that the average utility and the number of

hops decrease as the level of selfishness increases. The

performance of the proposed algorithm gets closer to the

selflessness with 5%. Therefore, the utility of UAVs will

not decrease a lot. For instance, the average number of
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hops varies, respectively, from 1.9 at N ¼ 5, up to 3.2 at

N ¼ 25 in our proposed algorithm. While for selfless with

0.1% case, it varies from 1.8 at N ¼ 5, up to 3 at N ¼ 25.

5 Conclusion

Inspired by cooperative communication, considering the

achievable rate, delay and energy consumption, we design

a game framework for UAVs. To solve the game, the Nash

network formation algorithm was proposed which consists

of a pure-strategy Nash network formation algorithm where

each UAV can take the best response to the observed

strategies of others, and a mixed-strategy Nash network

formation algorithm where each UAV assigns the proba-

bility to its actions. In this way, the UAVs can autono-

mously learn to form the A2A and A2G links. By our

simulations, we show that the UAVs can replace their

strategies appropriately. The results also demonstrated that
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the proposed algorithm achieves notable gains compared

with other approach.
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