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Abstract
Present wireless generation is now evolving from 4G to 5G with a large number of clients. Researchers across the globe are

working to sustain the quality of service level, while meeting the increasing demand of the clients. Since, the number of

clients are increasing, which give arise to a lot of problems like increased interference, complexity and significant amount

of power consumption in the processing and transmission. This paper investigates potential improvements in power

optimization by modifying the classical macro-cell with massive multiple input multiple output at the mobile tower, which

is overlaid with small cell access points. The main aim of the paper is to optimize the utilization of energy, while

maintaining the quality of service at the client end and power optimization at the small cell access point, and base station.

But along with power optimization, complexity is also a prime objective of concern. Hence for optimizing or minimizing

the power, while maintaining low complexity, a new low complexity algorithm is proposed and is compared with a

classical relaxed zero-forcing beam forming algorithm and the optimal solution cases. The complexity analysis of this

proposed approach has been done on the basis of change in the base stations and the number of UEs surrounding it. The

potential merits of this proposed approach for different deployment scenarios, such as an urban macro heterogeneous

deployment scenario in the 3GPP LTE Standard and an urban macro, sub-urban macro, and rural macro deployment

scenario in the ITU-R M.2135 standard are analyzed by numerical calculations.

Keywords 5G � Beam forming � Scaled beam forming � Low complexity

1 Introduction

In the present age of gadgets, like smartphones and tablets,

the requirement of high data rates in a wireless networks

has increased tremendously. But phenomenon like fading

and shadowing are rigorously effecting the wireless trans-

missions. So for increasing the capacity and data rates with

no or little fading, Multiple input multiple output (MIMO)

technology comes into existence. Installation of large

number of transmitter and receiver antennas offers higher

data rates due to spatial multiplexing, and robustness

against fading due to spatial diversity with the similar time

and frequency resources. But when the transmitter side has

full information of the channel conditions i.e. channel state

information, then it will be very easy for the transmitter to

optimize the transmission according to certain different

criteria [1].

In [2], eigen-beamforming is used for calculation of the

capacity under a sum radiated power constraint of the

MIMO channels over all the antennas. Power allocation in

different eigen modes is done by having the full informa-

tion of channel, using water filling algorithm at the trans-

mitter. This very method is not accurate because of the

extreme output restraint of every single power amplifier,

which is not taken into consideration. But [3] is more

accurate as it first considered the each antenna power

restraints. Though the power that is consumed in the

wireless communication comprises of both the power los-

ses in the hardware as well as the output power. But in the
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process of optimizing capacity for power constraints per-

antenna, there is no information available regarding the

allocation of power to the antennas given a specific chan-

nel. Also, there is no information regarding the overall

energy conservation for all the antennas and the total power

consumption in each power amplifier. But in [4], an algo-

rithm has been derived which will help in obtaining the

ideal input delivery of power constraints in each antenna

for a particular channel. It is essential to consider power

amplifier while designing the transmitters at the base sta-

tion (BS) because it is clear in [5, Fig. 12] that power

amplifiers are consuming 57% of the energy in the macro

BSs, while cooling contributes 10%. Thus total power

consumed can be decreased, if dissipating energy from the

power amplifier is decreased. This conclusion has recently

been set forth by others in [6] and [7]. In spite of the

importance, the work done in [8] still supports the concept

of optimizing MIMO along with the net consumption of

energy conserved in a diagonal input covariance matrix

using sub-optimal pseudo code. But the work in [9] and

[10], based on net power consumption per-antenna, still

meets the conclusion of considering the power amplifier

while designing the transmitters at the BSs.

The above issue can be solved using the massive MIMO

(MM) [11, 12] and small cell (SC) [13, 14] scenario of 5G.

Developing a MM network involves deployment of large

number of antenna group at the existing macro BSs [11]

which will helps in focusing power emission for definite

UEs. This correspond to an increased energy efficiency.

But in case the base stations/mobile towers increase, then

there will be no role of channel estimation, as it will create

large overheads. But to satisfy the need of MM of channel

acquirement in regard with misuse of path reversibility,

Time division duplexing (TDD) will come into play

[15, 16]. But the foremost requisite is of power optimiza-

tion which will be achieved by deploying small cell access

(SCA) points in the network and offload the data traffic of

low-mobility clients. This method also helps in increasing

the energy efficiency and reducing the propagation losses

because of the decrease in the total distance between the

clients and transmitters [14]. But deployment of SCA’s will

form an extremely diverse network topology, which will be

tough to control and coordinate and this results in increased

inter-client interference. Thus researchers and academi-

cians around the globe have now shifted their focus from

client-deployed femto-cells to operator-deployed SCA

points [17, 18]. The basic motto for shifting is that the

SCA’s are dependent on the BS for consistent backhaul

connectivity and joint control and coordination among

them. But the work on complexity has been identified in

[19], the signal processing complexity has been specifically

mentioned and it interpreted that it is increasing with the

increasing number of antennas. The complexity that has

been increased during channel estimation, can be mini-

mized using pilot power allocation scheme that has been

proposed in [20]. While minimizing the complexity, the

energy efficiency and spectral efficiency of the system

should be maintained by optimally designing the system, as

described in [21] and [22], respectively. Apart from the

research related to complexity, there is a lot work that has

been going on, involving both massive MIMO and small

cell. In [23], the designing of an energy efficient wireless

backhaul network has been done, which is solving the

bandwidth allocation and power allocation problem in a

heterogeneous small cell [23]. In [24], the resource allo-

cation and power optimization has been done in a hetero-

geneous small cell network, while having the incomplete

channel state information using a non-cooperative game

theoretic approach. In [25], the designing of an energy

efficient cognitive small cell optimization framework has

been done for optimizing the sensing time and power

control using imperfect hybrid spectrum sensing. In [26],

the designing of an energy efficient mm Wave based ultra-

dense network optimization framework has been done,

while solving the user association and power allocation

problem using a load-aware scheme. This work has been

done while considering the load-balancing constraints, QoS

requirements, energy efficiency, energy harvesting by base

stations, and cross-tier interference limits. In [27], the

designing of an energy efficient software defined hetero-

geneous VLC and RF small-cell network optimization

framework has been done, while solving the sub channel

allocation and power control problem. This work has been

done while considering the backhaul constraints, QoS

requirements, energy efficiency, and inter-cell interference

limits.

Contribution of the paper The study of literature showed

that the work for optimizing the power has been done but

without thinking about the role of complexity. This paper

investigates the potential improvements in power opti-

mization by modifying the classical macro-cell with MM at

the BS and overlaying it with SCA points, while main-

taining the low complexity. In order to achieve low com-

plexity, a lot of researchers are using classical relaxed zero-

forcing (RZF) beam forming in which the orthodox zero-

forcing interference leakage constrictions are in undis-

turbed mode waiting for some preset interference leakages

that are allowed to unwanted receivers for increasing the

beam design space to achieve larger rates as compared to

the orthodox zero-forcing scheme for making beam policy

possible, when zero-forcing is impossible. The paper pro-

posed a less complex scaled beamforming approach and

compared it with a classical relaxed zero-forcing (RZF)

beam forming and optimal solution cases. The complexity

analysis of this proposed approach has been done on the

basis of varying client number and transmitting antenna
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number at BSs. The possible merits of this proposed

strategy on the diverse deployment scenarios like urban

macro (UM) heterogeneous deployment scenario in the

3GPP LTE Standard (Case 1) and urban macro (UM), sub-

urban macro (SUM), and rural macro (RM) deployment

scenario in the ITU-R M.2135 standard (Case 2) are ana-

lyzed also by numerical calculations.

Organization of the paper The remaining paper is

organized as follow. The system model and problem

description has been elaborated in Sect. 2. The algorithm

for power optimization with low complexity is given in

Sect. 3. The simulation parameters has been given in

Sect. 4. Section 5 demonstrates the simulation results. The

paper finally concludes in Sect. 6.

2 System model and problem depiction

Main objective of the paper is of optimizing the power and

reducing the complexity using different approaches given

in Sect. 3. In order to achieve this, let us assume a model

consisting of a macro BS having NBS � K antennas, where

K is the number of antennas on clients, and is ranging from

8 to 100 [47]. These macro BS antennas are having a

capability of attending K clients and S C 0 total of arbi-

trarily positioned SCAs to form a heterogeneous network.

For optimizing the power, SCAs should be fixed with

1 B NSCA B 2 transmitting antennas each and follows the

firm energy restraints that leads to the covering of a narrow

region. But for high quality of service (QoS) in a vast

coverage region, BS should support significant power

restraints [47].

In the organization model, there is no need of channel

estimation because of the use of TDD, thus aids in opti-

mizing the power. For client k, block fading path is used,

while single flat fading path denoted in the baseband as

hHk;0 2 C1�NBS and hHk;j 2 C1�NSCA , for BS and SCA, in the

respective order. Hence, the received signal at client k is

yk ¼ hHk;0x0 þ
XS

j¼1

hHk;jxj þ nk ð1Þ

where x0 and xj represents the communicated signals at the

BS and jth SCA point. Here, nk � CN 0; r2k
� �

is the circu-

larly symmetric complex Gaussian received unwanted

signal with zero-mean and alteration r2k , calculated in

milliwatt (mW) [47].

For obtaining the communicated signals

xj ¼
XK

k¼1

wk;jxk;j; j ¼ 0; . . .; S ð2Þ

The data symbols to UE k, represented as xk,0 and xk,j,

from the Base Station and the jth SCA respectively, taken

from the independent Gaussian codebooks as

xk;j � CN 0; 1ð Þ, for j = 0,…,S with unit energy (in mW).

Now multiply it with the beam-forming vectors wk;0 2
C1�NBS and wk;j 2 C1�NSCA . These vectors helps in resolving

the problem of optimization. As wk;j 6¼ 0, the task of

allocating the transmitter is completed on its own and in

the best way of reducing the problem for j transmitters that

are aiding k number of clients [47].

The key objective of the paper is to achieve power

optimization and at the same time maintaining the QoS.

The QoS is represented as data rate in bits/s/Hz and is

achieved in parallel by each client. These are defined as

log2 1þ SINRkð Þ� ck, where ck is the static QoS target and

SINR is the signal to interference noise ratio of the kth

client, which is represented as

SINRk ¼
hHk;0wk;0

���
���
2

þ
PS

j¼1 hHk;jwk;j

���
���
2

PK
i¼1
i 6¼k

hHk;0wi;0

���
���
2

þ
PS

j¼1 hHk;jwi;j

���
���
2

� �
þ r2k

ð3Þ

Here log2(1 ? SINRk) is the depiction of the informa-

tion rate which is achieved when the interference is suc-

cessively cancelled from the own data symbols, whereas

the co-client symbols are treated as unwanted signal [28].

The total energy consumed by each subcarrier can be

represented as Pdynamic ? Pstatic [30–32] where

Pdynamic ¼ q0
XK

k¼1

w2
k;0 þ

XS

j¼1

qj
XK

k¼1

w2
k;j; ð4Þ

Pstatic ¼
g0
C
NBS þ

XS

j¼1

gj
C
NSCA; ð5Þ

where, the dynamic power consumption comprehend the

emission of energy as,
PK

k¼1 w
2
k;j; after multiplication with

a constant qj � 1 demonstrating the less effectiveness of the

power amplifier at the definite transmitter [47]. While, the

fixed energy/power consumption is proportional to NBS and

NSCA both. Here, gj � 0 in the equation denotes the power

dissipation in the baseband processing and in the circuits of

each antenna comprises of filters, mixers, and converters.

The total number of subcarriers C C 1 are also have an

impact on the equation given above. Thus, each BS and

SCA is susceptible to Lj power restraints

XK

k¼1

wH
k;jQj;lwk;j � qj;l; l ¼ 1; . . .; Lj: ð6Þ

The weighting matrices Q0;l 2 CNBS�NBS , Qj;l 2
CNSCA�NSCA for j = 1,…,S, are positive semi-definite having
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a boundary condition of qj,l C 0. The variables Qj,l, qj,l are

fixed and represents per-antenna, per-array, and soft

shaping restraints [29]. Generally, the BS provides the

coverage, so we have q0,l � qj,l for 1 B j B S. The

mathematical calculation considers per-antenna restraints

of qj [mW] at the jth transmitter, given by L0 ¼ NBS; Lj ¼
NSCA; qj;l ¼ qj8l; and Qj,l with one at lth diagonal element

and zero, elsewhere.

Hence, for optimization of energy, total power con-

sumption is decreased keeping the QoS limitations and

energy limitations for [47]

minimize
wk;j8k;j

Pdynamic þ Pstatic

Subject to log2 1þ SINRkð Þ� ck 8k;
XK

k¼1

wH
k;jQj;lwk;j � qj;l; 8j; l:

ð7Þ

The single cell scenario in Fig. 1 depicts the three

possibilities of case study 2 as described in Sect. 3 for

optimizing the power.

3 Algorithm for power optimization
with low complexity

The QoS constraints as given in (7) makes the problem

non-convex in its original design because they are complex

functions of the beam forming vectors. So (7) can be

redesigned as a convex optimization problem which can be

solvable in polynomial time with the help of standard

algorithms. Additionally, a self-organizing solution for the

optimal power-minimization has also been given in which

every client will be served by one or a few transmitters.

But, it has a fundamental convex structure that can be taken

out by making use of semi-definite relaxation. Along with

this, the unique method as given in [33] to spatial multiflow

transmission is also being generalized. For achieving the

convex reformulation of (7), the notation Wk;j ¼
wk;jw

H
k;j 8k; j is used. This matrix denoted as Wk,j C 0,

should be positive semi-definite with rank Wk;j

� �
� 1.

But the position can be zero, which infers that Wk,j = 0.

We can redraft (7) efficiently by involving the BS and SCA

points in the same sum expressions, as

Fig. 1 The single cell scenario for the three possibilities of case study described in Sect. 3
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minimize
Wk;j � 08k;j

XS

j¼0

qj
XK

k¼1

tr Wk;j

� �
þ Pstatic

Subject to rank Wk;j

� �
� 1 8k; j;

XS

j¼0

hHk;j 1þ 1

~ck

� �
Wk;j �

XK

i¼1

Wi;j

 !
hk;j � r2k 8k;

XK

k¼1

tr Qj;lWk;j

� �
� qj;l 8j; l;

ð8Þ

Here, the aim that is QoS is converted into SINR targets

of ~ck ¼ 2ck � 1 8k.
Now the problem in (8) is convex except for the limi-

tation of position. But optimality can be achieved by

relaxing these constraints. To achieve this, two case studies

has been explained. Case Study 1 provides the complete

analysis of complexity problem while the analysis of power

optimization problem is provided in the Case Study 2.

Case Study 1 For achieving a convex semi-definite

optimization problem, consider a semi-definite relaxation

of (8) in which the limitation of position rank Wk;j

� �
� 1 are

vanished. Additionally, it will always have an optimal

solution {W	
k;j8k; j} where all matrices satisfy rank

W	
k;j

� �
� 1:

Analysis According to the standard in [34], the relaxed

problem is a semi definite optimization problem. But there

might exist high-rank solutions, as given in [32, Example

1]. Yet, there always exist a solution with

rank Wk;j

� �
� 18k; j;. To verify this:

Let us assume that there exist an optimal solution

fW		
k;j8k; jg with rank W		

k;j

� �
[ 1 for some k, j.

So W		
k;j can be replaced by any V C 0 such that it

maximizes hHk;jVhk;j

subject to tr Vð Þ� tr W		
k;j

� �
; tr Qj;lV
� �

� tr Qj;lW
		
k;j

� �
8l

which means that, it is not using more power than W		
k;j and

for not causing more interference than W		
k;j

hHi;jVhi;j � hHi;jW
		
k;j hi;j 8i 6¼ k

So one solution will be V ¼ W		
k;j , but according to [33,

Lemma 3] these types of problems always have rank-one

solutions

Hence this case study reveals that the original problem

given in (7) can be solved as a convex optimization

problem and the optimal solution is certain in polynomial

time [34].

Case Study 2. For achieving the optimality, consider

W	
k;j8k; j

n o
as the optimal solution to (8) and for each

client k there are three options:

1. W	
k;j ¼ 0; 1� j� S; (Only served by the BS)

2. W	
k;o ¼ 0 andW	

k;i ¼ 0 for i 6¼ j; (Only served by the jth

SCA point)

3.
PK

k¼1 tr Qj;lW
	
k;j

� �
¼ qj;l; (Served by a combination of

BS and SCA points, such that at least one transmitter j

has an active power constraint l)

Analysis Let Ak ¼ 1
r2
k

diag 1
q0
hk;0h

H
k;0; . . .;

1
qs
hk;sh

H
k;s

� �
be a

block-diagonal matrix and wk ¼
ffiffiffiffiffi
q0

p
wT
k;0. . .

ffiffiffiffiffi
qs

p
wT
k;s

h iT
be

the aggregate beam forming vectors. Also, let ~Qj;l be the

block diagonal matrix that makes wH
k
~Qj;lwk ¼ wH

k;jQj;lwk;j

and w	
k ¼

ffiffiffiffiffi
pk

p
uk is the optimal solution to (7), where uk is

unit-norm.

According to the uplink-downlink duality as given in

[32, Lemma 4], is given as

~ck ¼
pku

H
k AkukP

i6¼k piu
H
i Akui þ 1

¼ kkuHk Akuk

uHk Bkuk
ð9Þ

where Bk ¼
P
i 6¼k

kiAi þ
P
j;l

lj;l ~Qj;l þ I

 !
and kk; lj;l are the

ideal Lagrange multipliers for the QoS and energy limita-

tions, respectively.

Hence it is clear from the expression given in (9) that the

uplink SINR targets or QoS targets will achieve their lar-

gest value when uk will be the dominating eigenvector of

B
�1=2
k AkB

�1=2
k . Since Bk and Ak are block diagonal with

each block belongs to either the BS or one of the SCA

points. So the dominating eigenvalue that arises from one

of the blocks with the only non-zero element for this block

is the eigenvector, interprets that there must be preferably a

UE k by only one transmitter. There also exists another

case in which there is diversity in the dominating eigen-

value and at least one energy limitation is active i.e. power

constraints are not supporting the single transmitter solu-

tions, then only another uk is used. This statement now

proves the above three cases specified in the case study 2.

The exact interpretation of the case study 2 reveals that

though UEs can be served by multiflow transmission, but,

in order to achieving optimality at least one transmitter for

each UE is allotted. The clients that are close to a SCA

point are solely served by it, while most of the other clients

are served by the BS. Since the SCA is not capable of

fulfilling the QoS targets, so there will be change in the

coverage part surrounding every SCA in which multiflow

transmission is applied. Hence case study 2 has come up

with a positive outcome of reduced transmission/reception

complexity.

Proposed approach Case study 1 is used for computing

the optimal beam forming for spatial soft-cell coordination.
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The level of complexity related to optimal beam forming is

relatively modest, but when NBS and S grow large i.e. for

real-time implementation, the algorithm becomes infeasi-

ble. Case Study 1 also provides a centralized code that

needs the knowledge of path to be collected at the Base

Station antenna irrespective of the circulated code that can

definitely be obtained using primal or dual decomposition

techniques as given in [35]. Circulation of codes are also

not suited for real-time implementations because they need

iterative backhaul signaling of coupling variables.

Hence case study 1 is considered as the standard for

calculating less complex codes for non-coherent coordi-

nation. To validate this, a less complex non-iterative

multiflow relaxed zero forcing (RZF) beam forming is

explained as:

Each transmitter j = 0, …, S computes

uk;j ¼
PK

i¼1
1
r2
i

hi;jh
H
i;j þ K

~ckqj
I

� ��1

hk;j

PK
i¼1

1
r2
i

hi;jh
H
i;j þ K

~ckqj
I

� ��1

hk;j

8k;

gi;k;j ¼ hHi;juk;j

���
���
2

8i; k; Qj;l;k ¼ uHk;jQj;luk;j 8l; k:

The jth SCA sends the scalars gi;k;j;Qj;l;k8k; i; l to the

BS. The BS solves the convex optimization problem

minimize
pk;j � 08k;j

XS

j¼0

qj
XK

k¼1

pk;j þ Pstatic

subject to
XK

k¼1

Qj;l;kpk;j � qj;l 8j; l;

XS

j¼0

pk;jgk;k;j 1þ 1

~ck

� �
�
XK

i¼1

pi;jgk;i;j � r2k 8k

ð10Þ

The allotment of energy p	k;j 8k, which gives solution

for (10) is given to the jth SCA, which computes

wk;j ¼
ffiffiffiffiffiffiffi
p	k;j

q
uk;j 8k

The heuristic RZF beam forming as shown in [12, 36] is

applied in this algorithm which transforms the problem

given in (7) into the power allocation problem given in

(10), while keeping it less complex irrespective of the

antenna number. Code in this case is does not give any

iteration but for maintaining coordination some scalar

variables are interchanged among the BS and SCA points.

This change between BS and SCA points will effect only to

those clients who are in the vicinity of a SCA point. Hence

only few variables are interchanged for each SCA point,

while all other variables are set to zero.

Relaxed zero forcing (RZF) beam forming approach is

briefly explained in [37]. Based on an observation the

traditional zero forcing (ZF) method tries to nullify the

inter-cell interference of the mobile clients that are at the

cell edges. But in order to achieve this, the complexity of

the system is increased. But, if the inter-cell interference

vanishes, even then thermal noise is there. Hence, there is

no need to remove the inter-cell interference, but it is

bounded to a certain level analogous to that of the thermal

noise. Hence by relaxing the ZF interference limitations,

the level of complexity is decreased and now the antenna

number is increased for giving a larger rate than that of the

ZF scheme.

But along with low complexity, power optimization is

also an important concern. So for optimizing or minimizing

the power while maintaining the low complexity, a new

approach is proposed in which the optimal beam former is

obtained by scaling the noise power by a factor of ui,j. Case

Study 1 and the low-complexity non-iterative multiflow

RZF beam forming are considered as the standard for the

scaled beam forming (SBF) approach in which power

optimization is provided with the low complexity. In this

approach, the interference noise power in the unit norm

factor is scaled by a factor of ui,j as given in (11), for the

optimal and low complex solution and is represented as

uk;j ¼
PK

i¼1
1
r2
i

hi;jh
H
i;j þ ui;j

� �
K
~ckqj

I
� ��1

hk;j
PK

i¼1
1
r2
i

hi;jh
H
i;j þ ðui;j

� �
K
~ckqj

IÞ�1
hk;j

8k; ð11Þ

where ui;j ¼ NBS � 1ð Þ þ i� jð Þ, i ¼ 1; . . .;K and j ¼
1; . . .; S.

The scaling factor will scale the interference noise

power while maintain the original signal power. Thus,

Scaled Beam forming approach will maintain the low

complexity, while optimizing the power.

The results and interpretations that have come by

applying the proposed low complexity scaled beam form-

ing approach on the MM and SC scenario for optimizing

energy on different deployment scenarios are presented in

Sect. 5.

4 Numerical Parameters

Scenario parameters are shown in this section of the paper,

which are used for implementing the scenario shown in

Fig. 1. It comprises of a circular macro cell having 4 SC

access points deployed in a manner to maintain the low

power consumption as proved in [47]. This scenario com-

prises of ten active clients inside the macro cell. Among

these active clients, 6 clients are evenly spread in the entire

cell, while one client is evenly spread within 40 m range of

each SC access point. While the base station transmitting

antenna number be NBS = 50 and the transmitting antenna

number at the SCA be NSCA = 2. The overall performance

on client locations and the information of channels are
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calculated in this paper. Table 1 displays the variables that

are used in the numerical calculations. It contains carrier

frequency (Fc), iterations (NI), subcarriers (NS), bandwidth

(B), subcarrier bandwidth (Bs), noise figure (NF), noise

floor (NF), transmitter number (NT), Client number (NU),

QoS constraint (QoSconstraint), SINR constraints per client

(SINRconstraints), power amplifiers Efficiency (EPA), circuit

power per antenna (PC), per-antenna constraints (Per-an-

tennaconstraints), UM cell radius (RUM), SUM cell radius

(RSUM), RM cell radius (RRM), least distance between the

clients and the BS (Dmin
BS�U), least distance between the

clients and the SCA point (Dmin
SCA�U) and Standard deviation

(SD). It also contains the path loss models for deployment

scenarios like UM heterogeneous deployment scenarios in

the Case 1 and UM, SUM, and RM deployment scenario in

the Case 2 as Penetration loss (PL), Cluster size (C), Path

and penetration loss at distance d (km) (PPLd), Path and

penetration loss within 40 m from SCA point (PPLSCA-40),

Path loss for UM at distance d (km) (PLUMd ), Path loss for

SUM at distance d (km) (PLSUMd ), Path loss for RM at

space/distance d (km) (PLRMd ), which has already been

standardized in [38–44] and the hardware parameters [31]

that characterize the power consumption.

5 Numerical results

This part of paper explains the effect of applying the low

complexity scaled beam forming approach on the MM and

SC scenario in terms of energy/power conservation for

many deployment scenarios has been incorporated. The

complexity analysis has been performed on the basis of

varying the UE number and transmitter antenna number on

mobile towers. The optimization of this problem has been

done using convex optimization [46] and algorithmic

toolbox SeDuMi [45].

5.1 UM heterogeneous deployment scenario
in the Case 1

For the UM heterogeneous deployment scenario in the

Case 1, the numerical calculations are performed on the

MM and SC scenario. The numerical result shown in Fig. 2

clearly depicts the effect of adding more transmitting

antennas in number on both the mobile towers and SC

entree point. Addition of extra hardware is decreasing the

total power consumption (Pstatic ? Pdynamic), because if

there is a decrease in the dynamic part, Pdynamic, then an

rise in the fixed part, Pstatic, from the additional electric

circuit systems will equate it for maintaining the energy

efficiency and decreasing the propagation losses.

The prime aim of maintaining the energy efficiency has

already been achieved by applying the MM approach. This

Table 1 Numerical parameters for the scenario

Values

Fc 2 GHz

NI 5

NS 600

B 10 MHz

Bs 30 kHz

NF 5 dB

NF (dBm) - 174 ? 10 log10(Bs) ? NF

NT 01 BS ? 04 SCA

NU 10

QoSConstraint 2 bits/s/Hz per client

SINRconstraints ð2QoSConstraint�1Þ 	 ones NU ; 1ð Þ
EPA

1
q0
¼ 0:388; 1qj

¼ 0:0528j

PC g0 = 189 mW, gj = 5.6 mW V j

Per-antennaconstraints q0,l = 66, qj,l = 0.08 mW V j, l

RUM 0.5 km

RSUM 1.299 km

RRM 1.732 km

Dmin
BS�U

0.035 km

Dmin
SCA�U

0.003 km

SD 7 dB

PL 20 dB

C 0.04 km

PPLd 148.1 ? 37.6 log10(d) dB

PPLSCA-40 127 ? 30 log10(d) dB

PLUMd 199.5653 ? 39.0864 log10(d) dB

PLSUMd
180.4953 ? 38.64 log10(d) dB

PLRMd 177.8878 ? 38.64 log10(d) dB
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can further be enhanced by deploying single antenna SCs

in the areas where the density of the active clients, having

half the base station transmitting antennas, is very high.

This will reduce the power consumption and maintain the

energy efficiency. The energy efficiency is further

improved by combining and deploying the MM and multi-

antenna SCs topology. This combination topology has been

implemented in [47] and is also mentioned in Fig. 2. It

clearly depicts that, with the increase in the transmitting

antenna number on the SCs, the improvement shown is

approximately tenfold. But the improvement is having

certain saturation points where the increased number of

antennas will not further reduce the overall energy.

[16, 43].

With a probability of 0–3% of aiding a client by number

of transmitters, this system also supports multiflow trans-

mission. Which also satisfies case study 2. The main idea

behind increasing the NSCA to allocate more than one client

to each SCA for serving completely. It is clear from Fig. 2

that the probability is 20–45% for NSCA = 3 but it decrea-

ses, if the NBS increases.

Now in Fig. 3 for different QoS constraints, consider

NBS = 50 and NSCA = 2. In this figure, comparison of four

beamforming codes is done:

1. Optimal beamforming using only the BS antennas

2. Multiflow-RZF beamforming having low complexity

3. Scaled Beamforming explained in Sect. 3 (A)

4. Optimal spatial soft-cell coordination from Case Study

1.

According to [32, Fig. 4], it is clear that by offloading

clients to the SCA, power optimization can be achieved.

Further improvement in power optimization can be

achieved by using sensible low-complexity beam forming

techniques. Figure 3 shows the comparison of low com-

plexity techniques in terms of power optimization. The

proposed Scaled beam forming approach gives promising

results for practical applications as compared to traditional

multiflow-RZF beam forming technique.

5.2 Deployment scenarios in the Case 2

Figure 3 demonstrates the comparison of low complexity

techniques in terms of power optimization for Case 1. But

for different deployment scenarios in the Case 2, the low

complexity techniques are not optimizing the power and

consumes power equals to 1st possibility of case study 2

i.e. optimal beam forming using only the mobile tower

antennas. Figure 4 shows that the total power for each

subcarrier in the RM scenario, which consumes less power

as compared to the SUM and UM, respectively for the 3rd

possibility of case study 2 i.e. optimal spatial soft-cell

coordination. It is because of the reason that the density of

the users according to the area is very less and the inter-

ferers in the RM area are very few as compared to the SUM

and UM. Hence, the total power per subcarrier in the RM

area is less as compared to the SUM and UM.

5.3 Complexity analysis of the proposed
approach

The complexity analysis among the four beamforming

algorithms has been done on the basis of the varying UE

number in the scenario and by varying the transmitting

antennas at the mobile tower.

Figure 5 depicts the complexity analysis on the basis of

total clients in the scenario. Obviously when the total cli-

ents in the network increases, it will correspondingly

increases the complexity in the scenario, which further

results in the increased power consumption. But our pro-

posed Scaled beamforming approach will helps in achiev-

ing low complexity with optimized power, and is

performing better than the other used approaches.
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In case the antenna number on the BS increase, it will

add extra complexity to the network which will result in the

increased power consumption. But, different beamforming

techniques are applied to the scenario for reducing the

complexity. It is clear from the Fig. 6 that proposed Scaled

beamforming approach gives promising results in terms of

optimized power for practical applications as compared to

traditional RZF beam forming technique.

Complexity analysis on the basis of the client number

(Nusers) is done using the relation,

C ¼ Nusers log10ðPavÞ ð12Þ

While, on the basis of transmitting antenna number at

the mobile towers (NBS) is done using the relation,

C ¼ NBS log10ðPavÞ ð13Þ

where C is the complexity, Pav is the average total power

consumption.

From Figs. 5 and 6, it is clear that, with the addition in

total number of client and base station antennas, the

average total power consumption increases, which makes

the system more complex. Hence the complexity has a

direct relation with the increase in the client number and

antenna number at the base station, which will further

effect the average total power consumption.

Existence of these Eqs. (12) and (13) are being validated

with the existence of Shannon capacity theorem, where, the

capacity has a direct relation with the bandwidth, which

will further effect the SNR. The numerical results can be

seen in Figs. 7 and 8 are depicting the complexity analysis
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on the basis of the number of clients and number of

antennas on the base station in a specific area.

It is clear from the Figs. 7 and 8 that if the number of

clients in the network and number of antennas at the base

station increases, it will correspondingly increase the

complexity in the scenario. Since, different beamforming

techniques are applied to the scenario for reducing the

complexity, but the proposed Scaled beamforming

approach is achieving low complexity with optimized

power, and is performing better than the other used

approaches.

6 Conclusion

Present day researchers are finding ways to meet the

increasing demand of the clients, but are ending up con-

suming more power and increased complexity. In this

paper, work has been done on optimization the power while

maintaining low complexity. Power optimization has been

achieved by modifying the classical macro-cell with MM at

the BS and overlaying it with SCA points. But for main-

taining the low complexity, Scaled Beamforming approach

has been proposed and compared it with a classical relaxed

zero-forcing beamforming, and the optimal solution cases.

This paper also analyzes the potential merits of this pro-

posed approach on the different deployment scenarios like

UM heterogeneous deployment scenario in the Case 1 and

UM, SUM, and RM deployment scenario in the Case 2.

This paper concludes that the new proposed low com-

plexity algorithm using scaled beamforming approach

gives auspicious results for applied applications, because a

bulk of the power optimization improvements are possible

by sensible low complexity beamforming techniques for

Case 1. But for different deployment scenarios in the Case

2, the low complexity techniques are not optimizing the

power. This paper has also done the complexity analysis

using the proposed Scaled Beamforming approach on the

basis of varying number of clients and number of BS

antennas. It is clear from the numerical calculations that the

proposed Scaled beamforming approach gives promising

results for practical applications as compared to traditional

RZF beamforming technique.
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