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Abstract
Cooperative spectrum sensing schemes proposed to solve the hidden terminal problem and mitigate multipath fading and

shadowing effects, which enhance the sensing performance and throughput in cognitive radio (CR) neworks. However,

increasing the number of cooperative SUs leads to more communication overhead, which will increase the energy

consumption of the CR network. In this paper, a new scheme is proposed to solve the joint optimization problem of the

sensing time, the detection threshold and the selection of the sensing and data transmitting secondary users (SUs) for

improvement of the throughput and minimization of the energy consumption of the CR network under the constrains on the

global probability of detection and global probability of false alarm. For these purposes, we find the optimal values of

detection threshold and sensing time such that the detection constraints are satisfied. The convex optimization methods are

used to determine the sensing and data transmitting SUs. The simulation results show that there exists the optimal detection

threshold and sensing time for selected sensing and transmitting SUs that can improve the average throughput and

minimize the energy consumption of the CR network in comparison to other schemes.

Keywords Cognitive radio � Cooperative spectrum sensing � Throughput � Energy � Detection threshold �
Sensing time

1 Introduction

Cognitive radio (CR) has been recently proposed as a

candidate solution to alleviate spectrum shortages by

allowing unlicensed users (secondary users, SUs) to

opportunistically access or share the frequency bands

allocated to the licensed users (primary users, PUs) when

they are detected to be idle [1]. In order to avoid causing

harmful interference to the PU, the CRs need to monitor

the PU’s activities periodically to find a suitable spectrum

band for possible utilization. Thus, effective and efficient

spectrum sensing is an essential component for CR sys-

tems. The spectrum sensing process can be performed via

several methods, but energy detection is still the common

method among them, as it can be simply implemented and

requires no a priori information of PU’s signal. However,

the performance of energy detection in face of multipath

fading, shadowing, and unknown noise power profiles

significantly degrades [2]. Cooperative spectrum sensing

scheme is an effective approach to overcome these prob-

lems by sharing and combining the sensing results of SUs

to make the more accurate decision about the presence of

the PU [3]. There are two metrics to evaluate the perfor-

mance of a sensing algorithm: detection probability (pd)

that indicate the probability of a SU correctly detecting the

presence of the primary signal and false alarm probability
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(pf) which is the probability of a SU mistakenly declaring

the presence of PU when the spectrum is actually free.

Keeping the probability of false alarm below a certain

value enables the SU to higher opportunity to use the

available spectrum in order to maximize the achievable

secondary network throughput. The higher probability of

detection reduces the amount of harmful interference

introduced to the PUs. The probability of detection is

related to the sensing time, the longer sensing time leads to

more accurate sensing and higher probability of detection.

However, for a given frame duration, by inceasing the

sensing time, the available data transmission time of the

SUs decreases, and consequently SUs throughput reduces.

Thus, there exists a fundamental tradeoff between the

sensing accuracy and the achievable throughput for SUs to

find the optimal sensing time that maximizes the SUs’

throughput while provides adequate protection to the PU.

Some researchers have investigated sensing-throughput

tradeoff in several papers. Other researchers have focused

on maximizing the SUs’ throughput through the opti-

mization of different parameters such as sensing time,

detection threshold and transmission power.

A sensing-throughput tradeoff was presented in [4, 5]

for maximization of the opportunistic throughput of the CR

by optimization of the sensing time under the constraint

that the PUs are sufficiently protected. In [6], a sensing-

throughput tradeoff model was proposed, in which the

optimal sensing time varies in different primary channel

conditions. furthermore, in the paper, the effect of PUs’

traffic on the performance of the secondary network was

studied to evaluate the tradeoff between the sensing quality

and the achievable throughput. A throughput-sensing

tradeoff for a fixed transmission rate was studied in [7].

The joint optimization of sensing time and power alloca-

tion for improvement of the throughput of the CR network

was addressed in [8]. The joint optimization of the sensing

time and the sensing threshold was considered in [9, 10]. In

[11], the authors focused on the joint optimization of the

sensing time, the detection thresholds and the vector power

allocation under the power and (deterministic/probabilistic)

interference constraints such that SUs’ throughput was

maximized. In [12], a sensing optimization problem for a

multiband CR network was proposed to obtain the optimal

values for combining weights and decision thresholds of

each sub-band. In [13–15], the authors optimized the

sensing time and power allocation for a wideband cognitive

radio network. The throughput-delay tradeoff problem for

cooperative spectrum sensing was studied in [16] in order

to optimize the sensing bandwidth and the decision

threshold jointly such that the throughput of the SUs was

maximized while their transmission delay was constrained.

In [17], the joint optimization problem of sensing time,

power allocation and sensing-channel selection was

considered under the constraints of average transmit power

budget and average interference power budget to maximize

the achievable throughput of the CR network. In [18], the

maximization of throughput for both primary and sec-

ondary networks was considered. Ref. [19] was investi-

gated the tradeoff between the transmitted data and the

sensing overhead in cooperative CR networks in order to

maximize the secondary throughput. In [20], the sensing

time, detection threshold, and transmit power of a multi-

input multi-output (MIMO) CR network were optimized

for maximization of the network throughput in single-band

and multi-band systems under transmit power, probability

of false alarm, and probability of detection constraints.

The authors in [21] considered the joint optimization of

the local sensing time and the number of the cooperative

CRs for a periodical single band cooperative spectrum

sensing scheme under probabilities of false alarm and

detection constrains in order to maximize the CR

throughput and minimize the channel search time, respec-

tively. They also considered the joint optimization of the

numbers of the sensing time slots and cooperative CRs for

a periodical wideband cooperative spectrum sensing

scheme in order to obtain the maximal throughput of CR.

A multi-modal cooperative spectrum sensing was pre-

sented in [22] to make an accurate decision on the presence

of the PU through combing multi-modal sensing data of the

PU signal, such as energy, power spectrum and signal

waveform from different SUs for getting a global decision.

In this paper, the authors also proposed a multi-modal

Dempster-Shafer (DS) fusion decision to combine the

sensing information according to the basic credibility of

each detector, in order to decrease the sensing uncertainty.

A weight DS fusion is also proposed to improve the

decision performance by resisting the inaccurate detection

of malicious SU while increasing the fusion proportion of

predominant SU. They showed that the proposed methods

improve the sensing performance and detection probability

in fading channels. However, the multi-modal cooperative

sensing has a high complexity and long detection time.

In [23], the authors presented a spectrum handoff

scheme based on recommended channel sensing sequence

for minimization of the sensing delay. In [24], the

throughput enhancement for SUs is provided through

jointly optimizing the number of available channels and

total sensing delay including local spectrum sensing and

idle channel searching. The aim of authors is to obtain the

optimal number of available channels such that the SU

always have opportunities to detect out an idle channel

while achieving the channel searching time as least as

possible. The maximization of SU’s throughput and mini-

mization of the average packet delay encountered by the

SU subject to a constraint on the maximum allowable

average delay of the PU was studied in [25]. The authors in
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[26] presented a SUs throughput maximization approach in

multi-channel CR network under average power, interfer-

ence and packet delay constraints. They considered the

optimal stopping rule and power control problem. The

optimal stopping rule was such that SU senses the channels

sequentially to find an occupied channel by PU and stops

its search to access a channel if it offers a significantly high

throughput. From the above discussion, it becomes obvious

that the performance of cooperative spectrum sensing and

the throughput of SUs is related to sensing time and the

number of cooperative SUs. All the above-mentioned

works focused on either throughput or adequate protection

to the PU as optimization metric.

The performance of spectrum sensing will increase by

increasing the number of cooperative SUs in the environ-

ment but at the cost of increase in the energy consumption

of the SUs and the communication overhead while the

energy consumption should be minimized for the CR net-

works due to resource limitations. Ref. [27] proved that

cooperating all SUs in spectrum sensing does not necessary

to get the optimum performance, instead, selecting SUs

with the highest PU’s signal-to-noise (SNR) ratio can be

enough. The authors in [28] presented an energy efficient

spectrum sensing approach for cognitive sensor networks

based on the combination of censoring and sleeping

schemes in order to reduce the energy consumed under

constraints on the detection performance. They considered

a same SNR for all sensing nodes which is not a practical

assumption. Furthermore, only the number of sensing

nodes was determined without specifying which nodes

could sense the spectrum. In [29], an energy efficient

cooperative spectrum sensing was proposed under the

constraints on the detection performance by determining

the best sensing nodes. They considered a different SNR

for each sensor due to their different distances from the PU

and channel status. An energy-efficient spectrum sensing

scheme has been proposed in [30] to minimize the energy

consumption and the spectrum sensing duration by

employing the diversity of SUs in their received SNR of

the PU’s signal. In fact, the objective of authors was to

determine the sensing duration for each channel and the

SUs which sense it such that the energy consumed was

minimized. However, they didn’t consider the energy

constraints of SUs. The authors in [31] proposed an energy-

based sensor selection algorithm considering their energy

constraints to achieve the energy efficient cooperative

spectrum sensing. They presented an algorithm to obtain

the maximum acceptable error probability on the reporting

channels. Then, an algorithm was proposed to dynamically

select proper sensors for cooperative spectrum sensing. In

[32], a combination of sleeping and censoring methods was

used for energy-efficient cooperative spectrum sensing.

The aim was to minimize the energy consumption of each

sensor, including the sensing and transmission energies

under the constraints on the global probability of detection

and the global probability of false alarm by optimally

choosing the sleeping rate and two thresholds. A number of

sensors sleep during the sensing phase with a specific

sleeping rate. When the sensor is on, will transmit the

sensing results compared with two thresholds to the fusion

center (FC) if they are conclued to be informative.

The problem of joint optimal selection of the sensing

nodes, decision node (DN) and the detection threshold was

considered in [33] for minimization of the energy con-

sumed in distributed sensing under the constraints on the

probability of detection and the probability of false alarm.

The priority of each node for spectrum sensing was

determined by a cost function such that the node with

higher detection probability and lower energy consumption

was selected. In [34], an optimal relay selection

scheme called EAORS was presented for tradeoff between

detection accuracy and energy efficiency. The number of

optimal relays was obtained by a weighted objective

function considering energy consumption in both spectrum

sensing and the cooperative transmission phases subject to

the constraints of the probability of detection and the sec-

ondary cooperative transmission bit error rate (BER).

However, the researchers considered the same missed

detection probabilities for all relays which was not a real

assumption. In [35], the minimization of the average

energy consumption was provided by two algorithms. At

first, a clustering algorithm was presented to determine all

the subsets of sensors having desired detection and false

alarm probabilities. Then, an algorithm called MECEC was

presented to dynamically select appropriate sensors for

spectrum sensing considering energy constraints of its

members. In [36], the problem of optimal selection of the

multi-antenna sensors was considered to minimize the

energy consumption such that the constrains on the global

probability of detection and the probability of false alarm

were satisfied. In [37], the joint optimization of the sensing

time, the detection threshold and the length of the modu-

lated symbol sequence was addressed to maximize the

energy efficiency (EE) defined as the ratio of the average

throughput to the average energy consumption of CSNs.

The main contributions of this paper are as follows.

• First, different from the most previous cooperative

spectrum sensing, which consider either throughput or

energy consumption as optimization metric, we con-

sider both metrics simultaneously. We formulate a

problem of joint throughput improvement of the

network and minimizing energy consumption in coop-

erative spectrum sensing under the constraints on the

detection performance when all SUs have different

SNRs.
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• The proposed scheme called JSTDTSS solves the Joint

optimization problem of the Sensing Time, the Detec-

tion Threshold and the Selection of the sensing and data

transmitting SUs for improvement of the throughput of

SUs and minimization of the energy consumption of the

network under the constrains on the global probability

of detection and global probability of false alarm.

• In this work, two algorithms are used. The first

algorithm achieves the optimum sensing time and the

sensing threshold. Then, an iterative algorithm is

employed to select the appropriate sensing and data

transmitting SUs. In second algorithm, two cost func-

tions are defined in order to determine the priority of

each SU for spectrum sensing as well as data transmit-

ting such that the SUs with higher detection probability

and lower energy consumption are selected.

Simulation results reveal that optimizing the detection

threshold, sensing time and the selection of the sensing and

data transmitting SUs together increases the throughput

and significantly decreases the energy consumption of the

CR network in comparison to other schemes. In addition,

the influence of the detection threshold and sensing time on

the probability of detection, average throughput and energy

consumption of the CR network is shown.

The rest of the paper is organized as follows. In Sect. 2,

the system model and the assumptions are presented in

details. Expressions of the total average throughput and the

user selection problem is also formulated in this section. In

addition, the joint optimization algorithm of the sensing

threshold, the sensing time and the selection of the sensing

and data transmitting users is developed in Sect. 2. The

simulation result and discussion are presented in Sect. 3.

Finally, we conclude the paper in Sect. 4.

2 System model and assumptions

Consider a CR including one FC and M SUs that monitor a

frequency band allocated to one PU. The network model is

indicated in Fig. 1.

The sensing problem is formulated as a binary hypoth-

esis testing. H0 and H1 represent the absence and presence

of the PU in the channel, respectively.

The SUs use an energy detector and measure their

received powers during the sensing slot. Therefore, the

received sampling signal by jth SU is defined as:

yj lð Þ ¼
wj lð Þ H0 :PU isabsent

hj lð Þs lð Þþwj lð Þ H1 :PU ispresent
l ¼ 1;2; . . .;sfs

�

ð1Þ

where s lð Þ and wj lð Þ represent the received primary lth

sample and the independent identically distributed (i.i.d.)

Gaussian random process with zero mean and the variance

r2w, respectively.
hj lð Þ is the channel coefficient between jth SU and PU

and is modeled as follows [36]:

hj ¼ 10�
Lj
20 � gj ð2Þ

where gj denotes a complex Gaussian random process with

zero mean and unit variance considering for Raleigh fad-

ing. Lj is consist of two parts: the first part expresses the

path loss based on free-space path loss model and the

second part denotes a real Gaussian random variable with

zero mean and standard deviation of 3 according to large

scale log-normal shadowing and is expressed as follows:

Lj ¼ 20 log
dPSj4pfc

C

� �
þ nj ð3Þ

where fc and C are the carrier frequency and the speed of

light, respectively. dPSj denotes the distance of jth SU from

PU. The test statistic for the jth SU is expressed as follows:

Vj ¼
1

sfs

Xsfs
l¼1

yj lð Þ
�� ��2 ð4Þ

sfs is the number of samples. s and fs denoting the

sensing time and the sampling frequency, respectively.

Each SU at the beginning of each frame, having duration T,

senses the status of the spectrum for s units of time,

whereas it transmits the data during the remaining time, T-

s.The test decision is considered as follows:

Decide ¼ H0 if Vj\�
H1 if Vj [ �

�
ð5Þ

where e is a specified threshold value. Two probabilities of

interest in the jth SU are [28]:

Fig. 1 The network model
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Pfj ¼ P Vj � �jH0

� �
¼

C sfs; �2
� �
C sfsð Þ ð6Þ

Pdj ¼ P Vj � �jH1

� �
¼ Qsfs

ffiffiffiffiffiffi
2cj

q
;
ffiffi
�

p	 

ð7Þ

where Qm(a,b) and C a � bð Þ denote the generalized Marcum

Q-function and the incomplete gamma function, respec-

tively and C að Þ is the gamma function. cj is the received

signal to noise ratio in jth SU. Under the logical-OR fusion

rule at the FC, the probability of false alarm,Qf , and the

global detection probability, Qd, will be as:

Qf ¼ 1�
YM
j¼1

1� Pfj

� �
ð8Þ

Qd ¼ 1�
YM
j¼1

1� Pdj

� �
ð9Þ

As mentioned in the introduction, we can choose some

SUs having better probabilities of detection for spectrum

sensing while some others are selected to send their data to

the FC and the rest will be idle in order to improve the

energy consumption and throughput. Therefore, the

Eqs. (88) and (99) can be modified as follows:

Qf ¼ 1�
YM
j¼1

1� qjPfj

� �
ð10Þ

Qd ¼ 1�
YM
j¼1

1� qjPdj

� �
ð11Þ

where qj 2 0; 1f g is the assignment index. The value ‘1’

indicates that the SU participates for sensing the spectrum

while ‘0’ indicates that the SU is not a sensing user. We

consider a and b as the thresholds for Qf and Qd such that

Qf � a and Qd � b in order to protect the PU from the

interference and for enhancing the throughput of the SUs.

According to Eqs. (6), (8) and (10), since,Qf is an

increasing function of qj and it is not dependent on the

received signal to noise ratio in jth SU,cj. Furthermore,

according to Eq. (66), the local probability of false alarm is

the same for all SUs. Therefore, using (10) and Qf � a, the
maximum number of SUs for sensing is determined as:

n� ln 1� að Þ

ln 1� C sfs;�2ð Þ
C sfsð Þ

� � ¼ K ð12Þ

where K is the maximum number of SUs which can be

selected for spectrum sensing and n ¼
PM

j¼1 qj is the

number of the SUs participating in sensing.

We employ the considered model in [36] to calculate the

total energy consumption of CR network. In this model, the

total energy consumption of CR network consists of the

two main components where the first component is the

energy consumption denoted by ESj for sensing the chan-

nel, decision about the channel and signal processing like

modulation type, signal shaping, etc. The second compo-

nent is the energy consumption for sending one decision bit

or data from each SU to the FC denoted by Etj and Etdj .

Therefore, the total energy consumption is expressed as

follows:

ET ¼
XM
j¼1

qj ESj þ Etj

� �
þ #jEtdj ð13Þ

where #j 2 0; 1f g is the assignment index to specify the

SUs is sending their data to FC and Etj is used to derive the

radio electronics and the power amplification and it is

given by:

Etj ¼ Et�elec þ eampd
2
FSj

ð14Þ

where Et�elec is the transmitter electronics energy. eamp
denotes the required amplification to satisfy a given

receiver sensitivity level. dFSj is the distance of jth SU from

FC. ET can be rewritten as:

ET ¼
XM
j¼1

qj Psjsj þ Etj

� �
þ #jðTf � sjÞPtj ð15Þ

where Psj and sj are sensing power and sensing time of jth

SU, respectively. We assume sj and ESj are the same for all

SUs and are denoted by s and ES , respectively. Tf is the

frame duration and Ptj denotes the data transmitting power

of jth SU. In this work, the IEEE 802.15.4/ZigBee radios

are employed as the communication technology between

SUs for cooperating with each other to sense the spectrum.

Therefore, the communication parameters to satisfy a

receiver sensitivity of - 90 dBm are considered as Es ¼
190 nJ: Et�elec ¼ 80 nJ and eamp ¼ 40.4 pJ

�
m2 [28, 29].

The average throughput of the jth SU when the PU is

absence and the CR network succeeds in detecting the

absence of the PU, c0j , and for the case of the PU is active

but the CR network fails to detect the active state of PU, c1j ,

are given by:

c0j ¼ P H0ð Þlog 1þ
pSjh

2
FSj

r2w

 !
ð16Þ

c1j ¼ P H1ð Þlog 1þ
pSjh

2
FSj

pPh
2
FP þ r2w

 !
ð17Þ

where pP and pSj denote the PU and jth SU transmit power,

respectively. hFSj is the channel gain between the jth SU

and the FC while hFP is the channel gain between the PU

and the FC. P(H0) and P(H1) express the probability of
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state that the PU is absent, and the probability for which the

PU is present, respectively. Therefore, the total average

throughput of CR is:

C ¼
XM
j¼1

#j

Tf � sj
Tf

� �
1� Qf

� �
c0j þ 1� Qdð Þc1j

	 

ð18Þ

Therefore, we formulate the optimization problem as

follows:

min
qj;#j;s;�

ET

s:t: Qd � b ð19-1Þ
Qf � a ð19-2Þ

C�Cth ð19-3Þ
qj 2 0; 1f g8j ð19-4Þ

#j 2 0; 1f g8j ð19-5Þ

qj#j ¼ 0 ð19-6Þ

where Cth is the minimum required total throughput of the

CR. The last constraint indicates that one SU cannot be

selected for sensing and transmitting, simultaneously.

Since the parameters qj and #j have the discrete nature, the

problem is NP-complete.

The optimum solution for problem (19) is gained

through the exhaustive search algorithm, in which, all

possible n candidates for sensing and M–n candidates for

data transmitting are examined and the state that leads to

minimum energy consumption while satisfies the con-

straints is selected as the optimum solution. Therefore, we

should examine all
PK

j¼1

M

j

� �
states to find the best

answer. However, for large values of M, this approach has

a high complexity with the order of O(M!), which has an

exponential complexity of M and is not practical and

usable. Therefore, we search for the solutions with less

complexity. It can be said, the complexity of the problem

(19) comes from the integer nature of the assignment

indices, qj and #j. In order to simplify the problem (19), we

assume qj and #j are continuous parameters so that qj� 0; 1½ �
and #j� 0; 1½ �. After solving our problem,qj and #j is map-

ped to discrete space again.

Before to solve the optimization problem, we evaluate

the effect of detection threshold and sensing time on Qd,

Qf, throughput and energy consumption. Thus, we consider

an environment with M = 10 SUs and s = 6.25 ls sensing
time. Figures 2 and 3 show the probability of detection and

the probability of false alarm versus the different detection

threshold for 20,000 runs. It is clear that the probability of

detection and the probability of false alarm are reduced

with the increasing of the detection threshold. For small

values of detection threshold, it is possible to achieve the

better probability of detection but the desired probability of

false alarm is not acheived.

Figures 4 and 5 show the average throughput and the

energy consumption of the CR network as the detection

threshold increases. It can be seen that when the threshold

is less than 9e-15 the average throughput can attain almost

the maximum and constant value while the more threshold

leads to less throughput. Figure 6 shows that as the

threshold increases, the energy consumption increa-

ses.That’s due to the fact that as the threshold increases, the

probability of detection for each SU,Pdj , decreases and the
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selection of more SUs is required to satisfy detection per-

formances. It can be concluded that the best threshold level

for this case is approximately 8e-15 to 9e-15 because

these values leads to less energy consumption and more

average throughput while the desired detection perfor-

mance is satisfied. On the other hand, the longer sensing

time leads to shorter available data transmission time and

reducing the throughput. Figures 6, 7 and 8 show the

influence of the sensing time on the probability of detec-

tion, the average throughput and energy consumption,

respectively, where the number of SU is set to M = 10 and

the detection threshold is fixed to 8.62e-15. The results

have been achieved in 30,000 runs. We can see, the

probability of detection increases with the increasing of the

sensing time until it reaches to 1.

In Fig. 7, the average achievable throughput is less at a

small or large sensing time, that’s due to the fact that the

small sensing time decreases the detection performance,

whereas large sensing time reduces the data transmitting

time and therefore, we see the tradeoff between the sensing

time and achievable throughput of the CR network. It can

be seen, in sensing time of almost 6.5 ls, the maximum

throughput is obtained.

Form Fig. 8, we can clearly see that there exist an

optimal sensing time for minimizing the energy con-

sumption. It can be seen that at the sensing time of about
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Fig. 4 The average throughput versus the detection threshold
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Fig. 6 The probability of detection versus sensing time
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Fig. 7 The impact of the sensing time on the average throughput of

the CR network
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6.5 ls, the energy consumption can attain almost the

minimum value while the more or less sensing times leads

to more energy consumption because it gets more times for

sensing and data transmitting, respectively.

Therefore, according to Figs. 2, 3, 4, 5, 6, 7 and 8, the

minimum threshold and sensing time should be achieved in

feasible set, the set of all feasible points [38], such that the

throughput of the secondary network is maximized and the

total energy consumption is minimized while detection

constraints can be satisfied. Thus,We can see that Pdj and Pfj

increase by the increasing the sensing time and by the

decreasing the threshold. In result, the fewer number of SUs

participating in the spectrum sensing is required to satisfy the

detection constrains and reduce the total energy consump-

tion. Now, in the first step to solve the problem, an algroithm

is proposed to find the optimum values of sensing time and

detection threshold. Based on the proposed algorithm, first,

for any pair of time sensing and threshold, the probability of

detection for all SUs is calcluated and sorted in descending

order. Then, the SUs having the higher probability of

detection are selected such thatthe maximum number of

sensing SUs and Qd � b constraints can be maintained.

Finally,The following rule by using Bisection searchmethod

[38] is employed to update the values s and e: If the global
probability of detection becomes greater than b, e will

decrease; otherwise, will increase. In result, the optimum e is
achieved. The same algorithm is used simultaneously to find

the optimum s. The algorithm 1 shows the pseodo code to

find the minimum detection threshold and sensing time. The

complexity of proposed approach is in the order of

O(M) because in each iteration, cost functions for all SUs are

computed.

In the second step, the obtained values of minimum e
and s are employed in the problem of the sensing SUs

selection and the data transmiting SUs selection. In result,
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Fig. 8 The impact of the sensing time on the energy consumption
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for obtained e and s in the previous step, the problem can

be reformulated as follows:

min
qj;#j

ET

s:t: Qd � b ð20-1Þ
Qf � a ð20-2Þ

C�Cth ð20-3Þ
qj 2 0; 1½ �8j ð20-4Þ

#j 2 0; 1½ �8j ð20-5Þ

qj#j ¼ 0 ð20-6Þ

The problem (20) is not a standard convex optimization

problem. The priority of SUs for sensing and transmitting

can be determined by the Lagrangian function and Karush–

Kuhn–Tucker (KKT) conditions. Therefore, the Lagran-

gian function is written as:

L ¼
XM
j¼1

qj ES þ Etj

� �
þ #jEtj � l C � Cthð Þ

� k Qd � bð Þ þ g
XM
J¼1

qj � K

 ! ð21Þ

Where l, k and g are the Lagrangian multipliers. By using

KKT condition, we have:

oL

oqj
¼ ES þ Etj

� �
� kPdj

Y
k 6¼j

1� qkPdkð Þ þ g

¼ 0 8j� 0; 1; 2; . . .;Mf g ð22Þ

oL

o#j

¼ �l
Tf � s
Tf

� �
1� Qf

� �
c0j þ 1� Qdð Þc1j

	 

þ Etj

¼ 0 8j� 0; 1; 2; . . .;Mf g
ð23Þ

The objective is to determine the priority of the SUs for

sensing and transmitting. Therefore, the quantity of #js and

qjs is not very important. Thus, the ratios of qj / qi and #j /

#i for any pair of SUs should be computed and the SUs

having the higher priority are selected. Hence,

oL

oqi
¼ ES þ Etið Þ � kPdi

Y
k 6¼i

1� qkPdkð Þ þ g

¼ 08i� 0; 1; 2; . . .;Mf g ð24Þ

oL

o#i

¼ �l
Tf � s
Tf

� �
1� Qf

� �
c0i þ 1� Qdð Þc1i

� �
þ Eti

¼ 0 8i� 0; 1; 2; . . .;Mf g
ð25Þ

By using (22) and (24), we have

ES þ Etið Þ þ gQ
k 6¼i;j 1� qkPdkð Þ � kPdi 1� qjPdj

� �
¼ 0 ð26Þ

ES þ Etj

� �
þ gQ

k 6¼i;j 1� qkPdkð Þ � kPdj 1� qiPdið Þ ¼ 0 ð27Þ

Then, we obtain

ES þ Etið Þ þ gQ
k 6¼i;j 1� qkPdkð Þ � kPdi ¼ �kPdiqjPdj ð28Þ

ES þ Etj

� �
þ gQ

k 6¼i;j 1� qkPdkð Þ � kPdj ¼ �kPdjqiPdi ð29Þ

In result, the ratio of qj/qi is calcluated as:

qj
�
qi ¼

ES þ Etið Þ þ g� kPdi

QM
k 6¼i;j 1� qkPdkð Þ

ES þ Etj

� �
þ g� kPdj

QM
k 6¼i;j 1� qkPdkð Þ

¼ cost ið Þ
cost jð Þ

ð30Þ

Therefore, the priority of SUs for being selected as the

sensing SUs is related to the inverse ratio of the following cost

function.

cost ið Þ ¼ ES þ Etið Þ þ g� kPdi

YM
k 6¼i;j

1� qkPdkð Þ ð31Þ

The cost function (31) is calculated for all SUs and

sorted in ascending order. Then, the first K SUs with the

highest priority are selected as spectrum sensing candi-

dates. We assume that g is the same for all SUs and it can

be omitted from the cost function. Also, we consider qj/qi
for only two SUs (i.e., the other SUs are not selected yet).

Therefore (31) is simplified as follows:

cost ið Þ ¼ ES þ Etið Þ � kPdi ð32Þ

By same way, the priority of SUs for transmitting is

determined. By using (23) and (25), we have

#i �l
Tf � s
Tf

� �
1� Qf

� �
c0i þ 1� Qdð Þc1i

� �
þ Eti

� �

¼ #j �l
Tf � s
Tf

� �
1� Qf

� �
c0j þ 1� Qdð Þc1j

	 

þ Etj

� �

ð33Þ

Therefore, the priority of SUs for data transmitting is

determined as follows:

#j

#i

¼
�l Tf�s

Tf

	 

1� Qf

� �
c0i þ 1� Qdð Þc1i

� �
þ Eti

	 


�l Tf�s
Tf

	 

1� Qf

� �
c0j þ 1� Qdð Þc1j

	 

þ Etj

	 


¼ cost ið Þ
cost jð Þ ð34Þ

Therefore, the ratio
#j

#i
is related to the inverse ratio of the

following cost function.
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In result, the cost function for each SU is defined as:

cost ið Þ ¼ �l
Tf � s
Tf

� �
1� Qf

� �
c0i þ 1� Qdð Þc1i

� �
þ Eti

� �

ð35Þ

As a result, SUs having the smaller cost function are

selected for transmitting its data to the FC. -Now, the

complimentary slackness conditions are analyzed to

determine the optimum k and l.
We have:

k Qd � bð Þ ¼ 0 !
k ¼ 0;Qd [ b 36-1ð Þ
k 6¼ 0;Qd ¼ b 36-2ð Þ

�

gð
P

qj � KÞ ¼ 0 !
g ¼ 0;

P
qj\K ð36-3Þ

g 6¼ 0;
P

qj ¼ K 36-4ð Þ

(

l C � Cthð Þ ¼ 0 !
l ¼ 0;C[Cth 36-5ð Þ
l 6¼ 0;C ¼ Cth 36-6ð Þ

�

8>>>>>>>>><
>>>>>>>>>:
We know Qd, Qf and ET are the increasing functions of

qj s. If (36-1) is considered as the optimum condition, qj s
can be reduced so that Qd ¼ b is satisfied. Also Qf and ET

will decrease which the more desirable answer is achieved.

Therefore, k 6¼ 0 is considered as the true condition in (36-

2). If the number of selected sensing SUs satisfying the

detection performance becomes fewer than K then (36-3) is

considered, otherwise, (36-4) is desirable. In addition, C ¼
Cth is considered as the optimal condition because ET is an

increasing function of #j s. Therefore, By reducing #j, the

energy consumption is minimized while the minimum

required throughput constraint is satisfied.

In final step, the sensing SUs and data transmitting SUs

are determined with helping ellipsoid search method. The

ellipsoid search method [38] is used in order to update the

values k and l. This method is a simple iterative algorithm

to find query points in multi-dimensional search. The

complexity order of this method is proportional to O(M).

Therefore, according to the considered algorithm for

selecting the sensing and transmitting SUs, in each iteration

which k and l are updated, the cost function in (32) is

computed for each SU and sorted in ascending order and

then the SUs with the lower cost function are selected for

sensing so that the maximum number of sensing SUs and

Qd � b constraints can be maintained. Then, the cost

function (35) is computed for remaining SUs and sorted in

ascending order. The SUs with higher priority are selected

for data transmitting so that the constraint on throughput is

satisfied.

The algorithm 2 shows the pseodo code to select the

sensing and data transmitting SUs.

It should be noted that, Lagrangian function (21) is

convex and convergence to the global optimum can be

guaranteed by using a gradient search. However, L(l; k; gÞ
is not necessarily differentiable. Thus, it does not always

have a gradient and it is possible to search based on sub-

gradient. The vector g is the subgradient of L(l; k; gÞ, if the
following condition is provided.

Lðl; k0; g½ �; L l0; k; gð Þ � Lðl; k; g½ Þ; L l; k; gð Þ� �
þ gT k0 � kð Þ; l0 � lð Þ½ �8k0; l0 ð37Þ
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3 Simulations and discussion

To evaluate the performance of the proposed approach,

numerical results are presented and compared with several

other schemes. The simulations have been executed via

MATLAB 2015a and the results are obtaned through the

average of 10,000–30,000 independent simulation runs.

We consider a CR network in which the number of the SUs

varies from 10 to 100. The SUs and PU are uniformly and

randomly distributed in a square field with the determined

length for each experiment. FC is located in the center of

the field. The channel model between every SU and FC as

well as between PU and FC is considered as (22). The list

of the simulation parameters is presented in Table 1.

In order to indicate the superiority of the proposed

approach, we compare it with the following four schemes.

1. SS: In first scheme, only the problem of the Selection

of the sensing SUs and data transmitting SUs selection

(SS) is considered. In SS method, the SUs are sorted in

descending order based on their probability of detec-

tion. Then, SUs with the higher Pdj s are selected for

sensing so that the maximum number of sensing SUs

and Qd � b constraints can be satisfied. In next step,

the remaining SUs are sorted in ascending order

according to their distances from FC and then, SUs

with minimum distances are selected for data trans-

mitting so that the constraint on throughput is satisfied.

2. RS: Random Selection (RS) is the algorithm in which,

SUs are randomly selected for spectrum sensing and

transmitting data. In this method, none of the sensing

time and detection threshold are optimized.

3. JSTSS: This method considers the Joint optimization

problem of the Sensing Time and the Selection of the

sensing and the transmitting SUs (JSTSS). Optimiza-

tion of the detection threshold is not considered in

JSTSS. The sensing and transmitting SUs are deter-

mined similar to JSTDTSS method.

4. JDTSS: The Joint optimization problem of the Detec-

tion Threshold and sensing SUs Selection and the data

transmitting SUs (JDTSS) is addressed in this scheme.

The selection of the sensing and data transmitting SUs

is similar to JSTDTSS method.

Figure 9 shows the influence of dimensions of the net-

work on average throughput, where the number of SU is

equal to 10 and the simulations are executed in 10,000

iterations. As can be observed, all schemes maintain the

throughput threshold constraint for all dimensions. In

addition, for dimensions less than 6700 m2, the average

achievable throughput of the SS is superior in comparision

with other schemes. By the increase of the dimensions of

the network, the difference between the average throughput

of JSTDTSS and other methods increases and the average

throughput of the JSTDTSS is maximized. We can also see

that RS has the minimum throughput due to the random

selection of the SUs.

Figure 10 shows the influence of different dimensions

on energy consumption. The energy consumption for all

schemes increases by increasing the dimensions of the

network. This can be explained by the fact that as the

dimensions of the network increases, the more SUs must

sense the spectrum and more SUs need for transmitting

their data to the FC to satisfy the constraint (20-3).

Moreover, as the dimensions of the network increases,

distance between SUs and PU as well as between SUs and

FC increases so that more energy must be consumed to

satisfy of the minimum sensitivity of the receivers. We can

also see that JSTDTSS achieves the less energy con-

sumption compared to other methods. The difference

between the energy consumption of JSTDTSS and other

schemes increases when the dimensions of the network

increases.

The influence of changing the dimensions of the net-

work on the probability of detection using all expressed

methods is shown in Fig. 11. It can be observed that the

probability of detection decreases with the increase of the

dimensions for RS, SS and JSTSS methods while it is fixed

for JDTSS and JSTDTSS methods. In addition, JDTSTSS

achieves the maximum probability of detection. It can be

seen that RS and SS have the same results and are matched

with each other.

Table 1 Parameters used in simulations

Parameter Value

The number of SU (M) 10–100

The number of PU (N) 1

a 0.1

b 0.9

fc 2.4 MHz

P(H0) 0.6

P(H1) 0.4

Tf 100 ms

fs 1 MHz

C 3 9 108 m/s

Es 190 nJ

Et-elec 80 nJ

eamp 40.4 pJ/m2

pp 2 mW

Cth 2 bits/s

Data rate 250 Kb/s

Receiver sensitivity - 90 dBm
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Figure 12 compares the average throughput under dif-

ferent quantities of SUs. The dimensions of the environ-

ment 100 m 9 100 m and the number of iteration 10,000

are assumed in simulation. Observations in Fig. 13 show

that the average throughput increases with the increase of

number of SU until in almost 40 SUs is fixed and maxi-

mum its value is obtained. We also see that for the less

number than 20 SUs, JSTDTSS has the maximum average

throughput.

The influence of the number of SUs on energy con-

sumption for 10,000 iterations is shown in Fig. 13. The

dimensions of the environment are considered

100 m 9 100 m. It can be seen that by increasing the

number of the SUs in the CR system, the energy con-

sumption decreases. It should be noted that when the

number of SUs increases, it is possible that more SUs are

located near the PU and FC and therefore the global

probability of detection and the total throughput are

improved, respectively. The located SUs near to FC also

lead to less energy consumption. By considering the

Figs. 11 and 12, it can be concluded that JSTDTSS can

lead to a minimum energy consumption for CR network

while satisfying the throughput of the network and the

probability of detection constraints. Because of the random

selection of the SUs, RS consumes more energy to satisfy

the probability of detection constraint. JDTSS and JSTSS

consume less energy than SS due to the optimization of the

detection threshold and sensing time, respectively. It

should be noted that by increasing the number of the SUs

for data transmitting in the CR network, the energy con-

sumption and the total throughput are increased. However,

our optimization problem is to minimize the energy con-

sumption of the CR network such that the minimum

required total throughput of the CR is satisfied. In other

words, our goal is to find the number of nodes and specify

the nodes that minimizes the energy consumption accord-

ing to Eq. (33), and also satisfies the minimum required

total throughput of the CR. Therefore, all SUs do not need

to cooperate for data transmitting. Thus, the selection of the

data transmitting SUs is considered for minimization of the

energy consumption of the network and satisfaction of the

required throughput of SUs.

For the final analysis, the probability of detection of all

schemes versus different number of SUs in an environment

with dimensions 100 m 9 100 m is compared as shown in

Fig. 14. The probability of detection increases with the
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increase of number of SU for JSTSS, JDTSS and JSTDTSS

methods until in almost 40 SUs is fixed and maximum its

value is achieved.

We can see that, for less than 40 SUs, the best proba-

bility of detection is obtained by JSTDTSS method. By

increasing the number of SUs, the probabilities of detection

of JSTSS and JSTDTSS are equal. The Fig. 14 shows that,

SS and RS methods have approximately the same proba-

bility of detection. We also see that the constraint on the

probability of detection can be satisfied for all schemes. In

all simulations, the schemes are compared when all of them

have an answer in feasible set.

4 Conclusion

Cooperative spectrum sensing schemes mitigate the multi-

path fading and shadowing effects, which improve the

probability of detection in heavily shadowed environments.

While cooperative approaches provide more accurate

sensing performance, they also cause adverse effects on the

energy consumption of the CR network due to the addi-

tional operations and communication overhead. Cooperat-

ing all SUs in spectrum sensing does not necessary to get

the optimum performance. In this paper, we proposed a

new scheme to solve the joint optimization problem of the

sensing time, the detection threshold and the selection of

the sensing and data transmitting SUs for improvement of

the throughput of CR network and minimization of the

energy consumption of the network under the constrains on

the global probability of detection and global probability of

false alarm. We obtained the optimal values of detection

threshold and sensing time such that the detection con-

straints are satisfied. We used the convex optimization

methods to determine the priority of SU for sensing and

data transmitting. Furthermore, we have provided simula-

tion results, which revealed that the proposed sensing

approach can achieve higher average throughput and less

energy consumption compared to the others schemes.
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