
Dynamic clustering approach with ACO-based mobile sink for data
collection in WSNs

Muralitharan Krishnan1 • Sangwoon Yun2 • Yoon Mo Jung3

Published online: 23 June 2018
� Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
Enhancing the network lifetime of wireless sensor networks is an essential task. It involves sensor deployment, cluster

formation, routing, and effective utilization of battery units. Clustering and routing are important techniques for adequate

enhancement of the network lifetime. Since the existing clustering and routing approaches have high message overhead due

to forwarding collected data to sinks or the base station, it creates premature death of sensors and hot-spot issues. The

objective of this study is to design a dynamic clustering and optimal routing mechanism for data collection in order to

enhance the network lifetime. A new dynamic clustering approach is proposed to prevent premature sensor death and avoid

the hot spot problem. In addition, an Ant Colony Optimization (ACO) technique is adopted for effective path selection of

mobile sinks. The proposed algorithm is compared with existing routing methodologies, such as LEACH, GA, and PSO.

The simulation results show that the proposed cluster head selection algorithm with ACO-based MDC enhances the sensor

network lifetime significantly.

Keywords Wireless sensor networks � Dynamic clustering � Network lifetime � Optimization techniques

1 Introduction

A sensor is a small electronic device that combines

microelectronics and computers with advanced digital

communication technologies. In general, sensors are low-

power and low-energy devices that involve low operating

costs. They have attracted considerable attention in recent

decades owing to their useful functionalities, such as

sensing environmental conditions, processing the sensed

information, and providing effective wireless

communication between the source and the destination

[1, 2]. Wireless Sensor Networks (WSNs) consist of a

number of sensors deployed in a particular region to

monitor the environment. If any change occurs in the

environment, the sensors automatically sense the change,

process the data, and send the collected information to the

destination. Once deployed, the sensors operate indepen-

dently by using their own energy. Placement, routing, and

energy scheduling of the sensors are the most crucial tasks

for enhancing the network lifetime. WSNs have many

medical, scientific, and military applications, including

environmental monitoring, agricultural monitoring, wild-

life tracking, smart home automation, security, transport,

and vehicular networking [3–9].

Sensor deployment can be broadly classified into two

types: statistical and random [10–12]. In general, the type

of deployment depends on the environment to be moni-

tored and the sensor application. The sensed information is

passed through neighboring nodes, cluster heads, sinks, and

the base station, and it finally reaches the server for further

processing. This approach is inefficient when a large region

is to be monitored or when the sensors are randomly

deployed. The nodes close to sinks often consume more
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energy than other nodes because of their high data for-

warding activities [13, 14]. However, most battery units

can neither be recharged nor be replaced after sensor

deployment in the environment. As a result, the energy

hole problem or the premature death of sensors may occur

in WSNs. Hence the acquired data cannot be transmitted to

the base station, which ends in data loss. Thus, clustering,

data collection, and routing are major issues in WSNs, and

it is necessary to improve them to enhance the network

lifetime [15–17].

The data collection and routing process mainly involves

the cluster heads or gateways and sinks [16, 17]. All these

components are also operated by batteries; hence, they

consume more energy than other sensor nodes. Another

important issue in WSNs is the selection of a proper

routing protocol. Existing routing mechanisms pass infor-

mation through multiple hops to the base station. Thus, the

general data forwarding approach creates hot spot prob-

lems during the network communication [18, 19].

Low-Energy Adaptive Clustering Hierarchy (LEACH)

is a well-known routing protocol for WSNs. Several

modified or updated versions of this protocol have been

developed [20]. Since the data collection and routing pro-

cess mainly involve the cluster heads or gateways and

sinks, they consume more energy than other sensor nodes.

Moreover, a fixed sink also consumes more energy with or

without any load-balancing mechanism. In addition, it

causes high latency during data collection and communi-

cation. In many situations, the data flow in a fixed sink and

its nearby cluster heads is very high. Thus, hot spot prob-

lems occur during routing [18]. Therefore, it is necessary to

modify the LEACH protocol.

To overcome the aforementioned issues, a number of

clustering and routing algorithms have been proposed to

improve the network lifetime; we refer [19, 21–24] and the

references therein. These techniques achieve efficient

clustering in the first phase, followed by a routing

approach. However, gateway-based routing results in the

hot spot problem, and gateway nodes consume more

energy than normal nodes during each transmission. Thus,

the data-forwarding mechanisms are replaced by intro-

ducing Mobile Sinks (MS) or Mobile Data Collectors

(MDC). MS are responsible for collecting and forwarding

data to the Base Station (BS) [15] and they avoid the hot

spot problem and enhances the network lifetime by pre-

venting fast battery drainage.

1.1 Motivations

The existing approaches have apparent limitations, which

are discussed here. (i) Most of the existing cluster head

(CH) selection methods concentrate only on the residual

energy and not on other parameters such as the degree of

CH, and the distances between CH and other cluster

members. Therefore, other sensor members should be

joined to CH by using these parameters. (ii) In general,

CHs near the sink need to forward most of the data. As a

result, these CHs drain their energy faster than other CHs

which are far away from the sink and so it causes the

energy hole problem [18]. However, the data forwarding

mechanism can be improved to prolong the network life-

time [25]. (iii) Almost all the existing WSN algorithms are

based on multi-path routing and data aggregation where

CH acts as a relay node. But in the literature, mobile data

collector with optimal route traversing for data collection is

not explored thoroughly [26]. Consequently, the operation

scope of data collection methods for WSNs needs to be

expanded.

In recent years, data collection using mobile robots in

WSNs attracts much attention. When the mobile device is

in the proximity of a cluster head, it transmits the collected

data to the mobile device directly. Thus, the data transfer

can be direct. In this scenario, the mobile device visits all

the cluster heads to collect the buffered data and returns to

the base station to upload the information for further pro-

cessing [27]. The advantages of this approach are as fol-

lows; data forwarding to longer distance can be avoided

and CH can save the energy. Hence it avoids the energy

hole problem. Furthermore, the mobile device increases the

security in WSNs by direct data transferring, for example,

in military applications.

1.2 Contributions

The approach proposed in this paper involves two steps.

First, the cluster head is selected for each sub-region using

the proposed algorithm. Next, mobile sinks are imple-

mented for efficient data collection with the shortest rout-

ing mechanism for all the cluster heads. Thus, the proposed

method can prevent premature sensor death and mitigate

the hot spot problem significantly by performing routing

through mobile sinks. The main contributions of this paper

can be summarized as follows:

• A new cluster head selection algorithm is proposed for

effective routing.

• The proposed cluster head selection method enhances

the sensor network lifetime through a dynamic load-

balancing approach.

• The Ant Colony Optimization (ACO) technique is

integrated with mobile sinks to enhance the network

lifetime of WSNs.

• Numerical simulation demonstrates the superiority of

the proposed algorithm over existing optimization

techniques.
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The remainder of this paper is organized as follows. Sec-

tion 2 reviews the literature. Section 3 explains the system

model, including the preliminaries, definitions, and energy

model. Section 4 describes the proposed algorithm. Sec-

tion 5 presents the simulation results. Finally, Sect. 6

concludes the paper.

2 Literature review

In the literature, various types of WSN clustering algo-

rithms have been proposed and implemented. Here, studies

related to the proposed approach are briefly discussed. Sara

et al. [28] proposed an efficient clustering mechanism by

developing a hybrid multi-path routing algorithm. A node

having a good communication range, high residual energy,

and low mobility is selected as a cluster head. Two dif-

ferent schemes, namely energy-aware selection and maxi-

mal nodal surplus energy determination, are used to

manage the energy consumption during routing. These

techniques include a clustering and routing protocol that

can perform well in low-energy network conditions as well

as in highly dynamic environments.

Karim and Nasser [29] designed the Location-aware and

Fault-tolerant Clustering Protocol for Mobile Wireless

Sensor Network (LFCP-MWSN). During cluster formation

and node movement between clusters, a range-free mech-

anism is implemented and the nodes are localized by

LFCP-MWSN. Compared to conventional protocols, such

as LEACH-Mobile and LEACH-Mobile-Enhanced, LFCP-

MWSN consumes 30% less energy. Furthermore, it mini-

mizes the end-to-end transmission delay. In [30], a mobile

data collector for heterogeneous networks was discussed

and a data collector that gathers data from sensors was

employed. The data collection starts from the base station,

proceeds throughout the region, and ends at the base station

to perform data transfer. In the case of larger networks, the

authors suggested the divide-and-conquer method with

multiple data collectors. Thus, the computation time of this

method is longer than that of methods involving a single

data collector.

In [31], the authors proposed a biased adaptive sink

mobility scheme that is adjustable to local network con-

ditions, such as the number of past visits in each network

region, surrounding density, and remaining energy. To

cover the network area faster and to adaptively remain in

network regions for a longer time, the sink moves proba-

bilistically by favoring less visited areas that tend to pro-

duce more data. The mobility scheme was implemented

and evaluated in diverse network settings, and the results

showed that the scheme can reduce latency, especially in

networks with non-uniform sensor distribution. Moreover,

its energy consumption is lower than that of blind random

non-adaptive schemes. However, although its success rate

is high, random walks with no stop involve high energy

consumption.

Arshad et al. [32] proposed an MDC-based LEACH

routing protocol that involves a multi-hop routing strategy

for deploying self-organized sensor nodes with distributed

cluster formation techniques for environmental applica-

tions. To balance the energy consumption equally among

the sensor nodes and finally forward the data to the base

station with the support of MDC, this technique selects the

cluster heads randomly. The results showed that this

technique reduces the energy consumption of the sensor

nodes and enhances the network lifetime. In addition, data

collection at the base station is performed more efficiently

compared to the LEACH protocol. However, during data

transmission, the delay, which can significantly degrade the

performance, is longer.

The Intelligent Agent-based Routing (IAR) protocol was

proposed to provide efficient data delivery to mobile sinks

[33]. The performance of the IAR protocol was mathe-

matically analyzed, and the results showed that this

scheme effectively supports sink mobility with low over-

head while mitigating the triangular routing problem.

However, if a collision occurs, then retransmission will

occur four times, and this scheme fails. Consequently, the

network overhead increases. In addition, this scheme may

cause overuse of resources. Moreover, owing to the link

failure between the sink and its immediate relay, packet

loss may occur.

Gupta and Prasanta [34] implemented Genetic Algo-

rithm (GA)-based approaches for clustering and routing in

WSNs. The proposed clustering algorithm balances the

gateway energy usage and marginally reduces the energy

consumption of the sensors. This approach produces better

results than conventional genetic algorithms because it

periodically runs a genetic algorithm for clustering and

route generation. Even though it performs all the GA

computations, including selection, crossover, and mutation,

for clustering and routing, the gateway with the routing

mechanism reduces the overall network lifetime of the

sensors. Therefore, this method might fall into local

optima. In addition, the authors did not consider sensor

nodes or gateway failures during the operation time, nor

did they consider a dynamic clustering approach.

Srinivasa Rao et al. [35] discussed an energy-efficient

cluster head selection algorithm for clustering based on

Particle Swarm Optimization (PSO). Using PSO in each

iteration, the algorithm selects new cluster heads. The

results were compared with those of existing algorithms,

such as LEACH and its variants. Because the authors did

not consider the routing algorithm, efficient routing or

Quality of Service (QoS) cannot be guaranteed. Moreover,
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the sensor battery drains quickly owing to the computations

in each iteration.

In [24], clustering and routing were formulated as

optimization problems using linear and non-linear pro-

gramming. The routing algorithm was developed on the

basis of the number of hops and transmission distance in

order to enhance the network lifetime. The cluster heads

are used as next-hop relay nodes as well as for data for-

warding. Thus, the computation is heavy and gateway-

based WSNs require more energy in the data forwarding or

routing phase.

In order to increase the network lifetime, we propose a

clustering algorithm for head selection and sensor joining.

In addition, an ACO-based algorithm is adapted to guide

MDC to move optimally in the sensor region for efficient

data collection. Experimental results demonstrate that the

proposed algorithm can extend the network lifetime.

3 System model

We adopt the following common assumptions in [36–38] to

implement the sensor network:

• Sensor nodes are homogeneous.

• Initially, all sensor nodes have the same residual

energy.

• All sensors are homogeneous and have the same

operational capabilities, including data collection, pro-

cessing, and communication.

• The communication links between sensor nodes are bi-

directional and symmetric.

• The mobile sink node has unlimited energy and it is

capable of traveling anywhere in the given region R.

• There are no obstacles between the sensor nodes.

The sensors are randomly deployed in the region, and the

entire region is subdivided into multiple clusters. Based on

the energy level of the sensors, the cluster head for the

region is selected. In general, the sensor having the highest

residual energy is selected as the cluster head. Then, the

other members send the data to the cluster head. The

cluster head is responsible for sending data to the mobile

sink.

3.1 Energy model

In the proposed approach, we consider the mobile sink as a

vehicle or a robot with unlimited energy for performing the

routing process. The basic energy utilization of the sensor

nodes is due to environment sensing and information

exchange, which involves transmission and reception of

data.

Figure 1 shows the radio energy dissipation model of

the transmitter and receiver of a sensor unit. Energy is

consumed by the transmitter and receiver units on the basis

of the sensor activity. During transmission, energy is

consumed by the transmitter unit to run the radio elec-

tronics and power amplifier. Similarly, the receiver unit

consumes energy to run the radio electronics. The rate of

energy consumption by a sensor unit depends on the

transmission distance and data size.

Based on the model presented in [39], the energy

required to transmit an l-bit message with distance d is

given by

Etxðl; dÞ ¼
Eelec � lþ �fs � l � d2; for d� d0;

Eelec � lþ �mp � l � d4; for d[ d0;

(
ð1Þ

where Eelec denotes the energy required by the electronics,

and �fs and �mp denote the energy required by the amplifier

in free space and multi-path operation, respectively. The

energy dissipated by the reception of l bit is denoted by

ErxðlÞ and given by

ErxðnÞ ¼ Eelec � l: ð2Þ

The energy dissipation is experimentally calculated using

the two above-mentioned formulae.

3.2 Network model

In this paper, the general WSN model is used. It has the

following properties and features. Sensor nodes are

deployed randomly in the sensing region, and each node

has the capability to calculate the distance from its

neighbor nodes [15, 40]. Once the random deployment is

completed, all the sensor nodes become stationary and are

involved in the cluster selection process. In the sensing

field, each sensor can operate either as a normal node or as

a cluster head depending on its properties, including the

distance between sensors, the distance between clusters,

and remaining residual energy. Each cluster member senses

the environment and sends the data to its corresponding

cluster head. The network always maintains the number of

cluster heads to be less than the number of sensors in the

region. In general, each sensor operates at different sensing

and power levels. The communication medium is wireless,

and communication can be established between the cluster

members and the cluster heads when they are within the

communication radius.
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4 Proposed algorithm

Cluster head selection is a crucial step in WSNs. Most of

the above-mentioned algorithms assign a high-energy node

as a cluster head without considering any other parameters,

such as distance from a sensor to the cluster head or

residual energy. In general, the network lifetime enhance-

ment of WSNs is not a single process; based on it, there are

multiple granularities in the sensory environment.

The sensors are deployed randomly in the region R,

which is subdivided into multiple regions called the clus-

ters or sub-regions r1; r2; r3; . . .; rn. Cluster heads are

selected for each sub-region on the basis of the threshold

value calculated using three different parameters. BS pro-

vides the cluster head information including the locations

to all the members in R. After cluster formation, the cluster

members send the sensed data to the cluster head. The

cluster head receives and processes the data for further

operations. The ACO algorithm is adopted to find the

shortest route to reach all the cluster heads for data col-

lection. Then, the traversing path information is provided

to MDC. Based on the route calculated by ACO, MDC

starts traversing to all the cluster heads to collect the data

without forming a loop. The process is repeated, and in

every iteration, a new cluster head is selected in each

region to prevent premature death due to over-burdening of

a particular node. The clustering and ACO-based traversing

techniques with MDC for efficient data collection are

described in detail herein.

4.1 Terminologies

In the proposed approach, we use the following termi-

nologies to elucidate sensor deployment, clustering, and

routing:

1. R: region to monitor.

2. S: set of sensor nodes deployed in R where

S ¼ fs1; s2; s3; . . .; sng.
3. C: set of cluster head nodes C ¼ fc1; c2; c3; . . .; cmg,

m� n.

4. disðsi; cjÞ: distance between sensor node si and

cluster head cj.

5. X: weight factor or constraint value for sensor node

si to be selected as a cluster head.

6. Eres: residual energy of sensor node si.

7. Ei: initial energy of sensor node si.

8. CRi: maximum communication range of si.

9. Th: threshold value for si to be selected as a cluster

head.

10. Dcj : degree of cj, i.e., number of cluster members

connected with cj. Initially, for all the cluster heads,

Dcj is 0.

The network lifetime is an important metric for the per-

formance evaluation of WSNs. Various definitions of the

lifetime are available in the literature [41], e.g., the time

until the first node dies, the time until the last node dies,

and the time until the first gateway dies. The network

lifetime depends on the application of the sensor network.

This study considers the longest network lifetime, i.e., the

time until the last node dies, because the mobile sinks or

MDCs can traverse the entire region R to collect the data

from the cluster heads.

4.2 Clustering

To enhance the network lifetime, an efficient cluster head

selection method should deal with various aspects, such as

minimum energy usage of the nodes, the distance between

the cluster members and the cluster head, and the com-

munication range. Furthermore, the mobile sink should

traverse the region R to cover all the cluster heads effec-

tively. Therefore, based on the proposed approach, the best

cluster head for the cluster is selected and the best route for

MDC is calculated.

We denote the membership of the sensor nodes to the

cluster heads by the Boolean value xij:

xij ¼
1; if si joins to cj;

0; otherwise;

�
ð3Þ

for 1� i� n, 1� j�m. The entire network is partitioned

into several clusters. A node from each cluster serves as a

cluster head and the remaining nodes act as cluster mem-

bers. The cluster head for a cluster is selected as follows:

First, calculate the total residual energy of the network:

Fig. 1 Energy model for radio
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Er ¼
Xn
i¼1

EresðiÞ: ð4Þ

Then, calculate the threshold value Th by finding the

average residual energy of the sensors:

Th ¼ 1=n � Er: ð5Þ

For a sensor si to be selected as a cluster head, the residual

energy of si should be higher than the threshold value, and

it should be the highest compared to that of the other

sensors. In addition, the total distance between si and other

sensors in that sub-region should be minimum. The dis-

tance between sensors si ðx1; y1Þ and sj ðx2; y2Þ within the

sub-region rk is given by

disðsi; sjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � x2Þ2 þ ðy1 � y2Þ2

q
; ð6Þ

where ðx1; y1Þ are the coordinates of the sensor si and

ðx2; y2Þ are the coordinates of the sensor sj. The cluster

head cj is selected by the above-mentioned constraints, and

its information is broadcasted to the entire cluster

members.

The broadcast message is received by si only if the

distance between si and cj is less than the communication

range CRi. If si is to join cj, then it should satisfy the

following constraints: (i) the residual energy of cj should be

maximum, (ii) the minimum distance between si and cj,

i.e., disðsi; cj), should be less, and (iii) the degree of cj, i.e.,

Dcj , should be minimum. Based on the above constraints,

the weight factor Xicj for si to join cj is calculated as

follows:

• Residual energy of cj: Sensor si compares the residual

energies of all the cluster heads within its communi-

cation range, and it is likely to join the cluster head with

the highest residual energy. The constraint equation for

the residual energy of cj is given by

Xicj / EresðcjÞ; ð7Þ

where Xicj is the constraint value and EresðcjÞ is the

residual energy of cj.

• Distance between si and cj: The distance between si and

cj should be minimum, and the communication range

CRi of si should allow communication with cj. The

energy consumed for transferring data between si and cj

increases with the distance between si and cj. The

constraint equation for the distance between si and cj is

given by

Xicj /
1

disðsi; cjÞ
; ð8Þ

i.e., the weight factor increases as the distance between

the sensor and the cluster head decreases. Hence, if the

distance is less, then it is more likely that si will join cj
• Degree of the cluster head Dcj : The degree of the cluster

head should be minimum compared to the neighboring

cluster heads. Note that si is more likely to join cj if the

degree of cj is low, and the weight factor is given by

Xicj /
1

Dcj

: ð9Þ

By combining all the above-mentioned constraints, we

can obtain the value of Xicj in the form

Xicj ¼ W �
EresðcjÞ

disðsi; cjÞ � Dcj

; ð10Þ

where W is a constant that is set to 1 in order to

maintain the performance of the algorithm. If si has the

maximum Xicj with cj in Eq. (10), then si will join with

the corresponding cj.

The cluster head sends the TDMA broadcast message with

the scheduling information to its sensor nodes. Then, the

sensed data is sent to cj from si. The base station collects all

the cluster head position information and executes the

ACO algorithm to find the shortest traversing path. MDC

traverses the path fed by the base station and collects the

data from all the cluster heads. In general, if the distance

between the nodes, gateway, and base station increases,

then the network lifetime decreases proportionately. In this

study, the concept of mobile sink is adopted and the

gateways are removed from the model. The gateway

removal enhances the network lifetime because most of the

energy is dissipated during the routing phase, especially

while forwarding the data from one gateway to another.

Hence, cluster head selection and data collection with the

mobile sink achieves a fast and efficient data collection.

Furthermore, to increase the efficiency, the clustering

parameters are considered to have joined the sensors in

their cluster heads.
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Algorithm 1 Proposed Algorithm

1: {si: Set of sensors in a given region R}
2: {cj : Set of cluster heads in si}
3: {Eres: Residual energy of sensors }
4: {Th: Threshold value for si to be selected as a cluster head}
5: {CRi: Maximum communication range of si }
6: {dis(si, cj): Distance between si and cj}
7: {Dcj : Degree of cluster head}
8: {Xicj : Constraint value for si to join cluster head cj }
9: {n: Number of sensor nodes}

10: {Nd: Number of dead nodes}
11: Deploy sensors randomly
12: Partition region R into number of sub-regions
13: while TRUE do
14: loop i := 1 to n
15: Calculate residual energy of si
16: end loop
17: Calculate Th using Eq. 5
18: Find residual energy of cj
19: Calculate distance between si and cj
20: Find degree of cj
21: Calculate Xicj using Eq. 10
22: Sensor si joins cj if Xicj is maximum
23: Call ACO with cluster head’s coordinates
24: Traverse MDC to collect the data
25: Find Nd

26: if (Nd = n) then
27: FALSE
28: end if
29: end while

4.3 Illustration example

In this sub-section, we consider a small WSN to illustrate

how the proposed cluster head selection and sensor joining

work. We consider a WSN with 25 sensors, randomly

deployed in a region, as given in Fig. 2. We set Eres and

Einit by the same value 0:5 J. Initially, the region is split

into 4 sub-regions and the cluster head is randomly selected

in each sub-region, for instance, CH ¼ 3; 9; 15; 21 and we

set Dcj ¼ 1 for those CHs.

For clustering, all other sensors si calculate the weight

value Xicj for each cluster head cj and join CH of the largest

Xicj . For example, the sensor 5 is 3m and 7m away from

CH3 and CH9, respectively, and all other CHs are farther

Fig. 2 Illustration example

round 1
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than those. In this case, X5c3 ¼ 0:166 and X5c9 ¼ 0:07.

Hence the sensor 5 joins CH3 and we set Dc3 ¼ 2. Simi-

larly, the sensor 8 is 2m and 5m away from CH9 and CH3,

respectively, and thus, X8c9 ¼ 0:25 and X8c3 ¼ 0:1. So, the

sensor 8 joins CH9 and Dc9 is updated as 2. The process is

repeated until all the sensors join proper CHs. After clus-

tering, a directed graph is formed, where the sensor

members are connected to their cluster head. The graph is

also given in Fig. 2. The members send their sensed

information to their corresponding CH in a single hop and

CHs do to the mobile collector in a single hop.

At each round, new cluster heads are selected to balance

the energy. Contrary to the first round, CHs are selected by

the threshold value Th, which is the average residual

energy. The sensors of which residual energy is less than Th
are not selected for CH. For example, after the first round,

if Th is 0.49 J and the residual energy of the sensor 3 is

0.489 J, then CH3 is needed to be replaced by a sensor

among 4, 5, 6, 1 and 7. We assume that the residual energy

of the sensor 1 is more than 0.49 J and so, it is selected as

CH. Similarly, we let CH9, CH15 and CH21 be replaced by

the sensors 12, 13, and 23, respectively.

A new round of clustering is illustrated in Fig. 3. The same

process is repeated until all other sensors are assigned to

properCHs. For example, if the sensor 2 is 2m away fromCH1

andDc1 ¼ 5, thenX2c1 is 0.499. Similarly, if the sensor 2 is 5m

away from CH12 and Dc12 ¼ 3, then X5c12 is 0.33. Hence the

sensor 2 joins CH1. The same cluster head selection and

sensor joining processes are repeated at each round.

4.4 ACO-based traveling with MDC

To maximize the network lifetime and to avoid the hot spot

problem in WSNs, MDC or MS is deployed, i.e., a moving

object is introduced to collect data from the cluster head

effectively. The location of the cluster head is well known to

the base station, and it has unlimited energywith computation

capabilities. Once the cluster heads are determined by the

proposed algorithm, MDC finds the shortest routing path to

collect the data from the cluster heads. Therefore, the cluster

members consume less energy for data transmission as well

as data reception because routing via gateways and fixed

sinks consumesmore energy, which is a concerning real-time

issue. To maintain the energy consumption balance between

the sensors, cluster head selection is performed in each iter-

ation. Furthermore, MDC is a device with unlimited energy

capacity, and it can travel anywhere in region R. In each

iteration, BS supplies the cluster head information to MDC

with the execution of the ACO algorithm. Thus, the load

balance of the cluster is maintained and the hot spot problem

is avoided owing to dynamic selection of the cluster heads.

In this approach, MDC traverses the entire region in the

network and reaches the initial point again after transmit-

ting the data to BS. Hence, the routing approach is typically

a traveling salesman problem. MDC acts as a salesperson

who visits all the cities and returns to his/her hometown.

Therefore, in each iteration, cluster head points are passed

to the ACO routing section in order to enhance the network

lifetime. In the ACO approach, N represents the cities to be

visited (destination or food source) and M denotes MDC

(salesperson or ant) that covers all the cluster heads. The

probability of MDC choosing the next destination is

directly proportional to the cost metric, which is denoted as

the intensity of the pheromone value; furthermore, it is

inversely proportional to the present cluster head and next

cluster head. Here, the ants are artificial ants that are

capable of storing the visited cities in memory to avoid

revisiting the same city. However, the cost details of

neighboring cities are well known to the artificial ants, and

among these cities, the city to be visited is based on its cost

Algorithm 2 ACO Algorithm for Data Collection

1: {S: Set of sensors or cluster members }
2: {C: Set of cluster heads }
3: {maxItr: Maximum number of iterations }
4: {noi: Number of iterations }
5: Initialize: Control parameters, design variable, pheromone range, number of ants
6: Get cluster head’s coordinates
7: loop
8: Calculation of probability path
9: Path construction

10: Random generation of ants
11: Path identification
12: Evaluate the fitness
13: Selection of optimum values
14: Update pheromones (local, global)
15: Update probability values
16: noi = noi+ 1
17: end loop(noi = maxItr)
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details. Therefore, the probability of visiting the next

cluster head from the current cluster head, i.e., the cluster

head i to the cluster head j, using the kth ant is given by

Pk
ij ¼

½sij�a � ½gij�
bP

k2allowedk ½sik�
a � ½gik�

b ; if k 2 allowedk

0; otherwise

8><
>: ð11Þ

where Pij denotes the probability of the food source being

found by an ant, sij is the pheromone initialization matrix

value, i.e., intensity of the route pheromone between the

cluster head i and cluster head j, allowedk denotes the set of

destinations to be visited, gij is the distance between the

cluster head i and cluster head j, which can be calculated as

gij ¼ 1=dij, i.e., ðdijÞ the Euclidean distance, a and b are the

constant parameters to regulate the influence of the pher-

omone that supports decision making by the ant. In each

visit, MDC decides the next cluster head to be visited

according to the probability Pk
ij given by Eq. (11), and in

each iteration, the ants ignore cities at longer distances

while leaving a larger pheromone value along shorter dis-

tances. Thus, in each iteration, the pheromone value sij can
be updated, and it can be expressed as

sijðt þ 1Þ ¼ ð1� qÞ � sijðtÞ þ dsij; ð12Þ

where q is the pheromone evaporation rate, and on suc-

cessful completion of the ants journey, the pheromone field

is updated. Furthermore, t is the iteration counter, q 2 ½0; 1�
is the parameter that regulates the reduction of sij, and dsij
denotes the sum of the pheromones deposited by all the

ants, expressed as

dsij ¼
XM
k¼1

dskij: ð13Þ

The trail levels are updated on a journey, and the pher-

omone quantity left by each ant k is given by

dskij ¼
Q

dij
; if MDC k travels on cluster head’s ði; jÞ

0; otherwise;

8<
:

ð14Þ

where Q=dij denotes the pheromone quantity of each ant, Q

is a constant, and dij is the length of the journey. Once the

iteration conditions are satisfied, the process will be ter-

minated and an optimal solution will be obtained.

5 Experimental results

In this section, the performance of the proposed approach is

compared with that of LEACH, GA, and PSO on the dif-

ferent number of sensor nodes. The simulation test was

conducted in a MATLAB environment. The simulation

parameters are displayed in Table 1. Figure 4 shows the

basic sensor nodes deployment and sink position. Each

experiment was performed more than 10 times, and the

average result was obtained on the basis of the simulation

environment with the following scenarios:

Fig. 3 Illustration example

round 2

Table 1 Network details

Parameters Value

Network size 200.200

Number of sensors 100–500

Number of rounds 3000–5000

Sensor energy 0.5 J

BS position (100, 100)

Clustering Dynamic

Cluster head probability 0.05

Data collection MDC
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5.1 Scenario #1

Figures 5 and 6 compare the network lifetimes of existing

algorithms and the proposed algorithm when the first node

dies and the last node dies, respectively. In Scenario 1, the

conventional TSP approach is implemented with the pro-

posed algorithm for MDC traversal. Initially, the algorithm

is evaluated in terms of the network lifetime with the dead

conditions for the first and last nodes. For this evaluation,

the number of sensor nodes is varied from 100 to 500.

From Figs. 5 and 6, it can be inferred that the proposed

approach achieves a longer network lifetime than the other

heuristic and meta-heuristic algorithms. Furthermore, the

proposed algorithm ensures an efficient selection and

gateway avoidance. In each iteration, the proposed algo-

rithm selects the cluster head on the basis of the threshold

value of the node. Thus, through this approach, dynamic

clustering with load balancing is achieved and premature

sensor death is prevented.

Figure 7 shows the dead nodes obtained as a result of

implementing the proposed algorithm. In each iteration, the

number of dead members in the clusters of the proposed

method is smaller than that of the existing approaches.

Furthermore, from Fig. 7, it can be inferred that the sensor

network lifetime is maximum when the number of dead

nodes is minimum.

Table 2 shows the energy consumption Scenario 1 when

the first node dies. Here, the energy consumptions of

existing algorithms are compared with the energy con-

sumption of the proposed algorithm. The number of sen-

sors is varied from 100 to 500. Table 2 indicates that the

proposed algorithm consumes lower energy than the

existing approaches.
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Fig. 5 First node dead

Fig. 6 Last node dead
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5.2 Scenario #2

Here, WSN with ACO-based MDC is introduced to collect

the information from the cluster heads. It differs from the

previous scenario in terms of routing and produces better

results. Furthermore, it is important to note that the

network lifetime is significantly longer in the case of the

ACO-based MDC implementation. The reason is that the

ACO-based MDC traversal method is more efficient than

the conventional traversals. In addition, the proposed

algorithm achieves cluster head selection and data collec-

tion with high efficiency. The obtained initial and last node

dead conditions with respect to the network lifetime in each

iteration are shown in Figs. 8 and 9, respectively. It is

evident that the proposed ACO-based MDC approach

enhances the network lifetime under the both conditions.

Compared to Scenario 1, Scenario 2 enhances the network

lifetime owing to an optimal selection of the route and

dynamic selection of the cluster heads.

Figure 10 compares the proposed algorithm with the

other algorithms in terms of the number of dead nodes in

each round. The proposed algorithm shows better results

than the other algorithms because of its efficient use of

ACO-based MDC during the traversal. Thus, it signifi-

cantly reduces the number of dead nodes in each round and

enhances the network lifetime.

Table 3 clearly shows that the energy consumption

values in Scenario 2 are lower than those in Scenario 1. For

example, if the number of sensors is 100 in Scenario 1 and

Scenario 2, the proposed approach with ACO-based MDC

Table 2 Average energy consumption in J

Number of sensors LEACH GA PSO Proposed

100 15.34 14.86 12.80 11.98

200 28.06 26.15 26.09 25.01

300 42.52 41.17 39.40 37.96

400 52.68 50.62 48.88 47.93

500 65.34 64.27 61.08 60.19

Fig. 8 First node dead

Fig. 9 Last node dead
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Table 3 Average energy consumption in J

Number of sensors LEACH GA PSO Proposed

100 15.03 13.10 12.01 11.07

200 27.87 25.93 25.14 24.91

300 41.95 39.18 37.97 35.90

400 51.73 49.17 48.08 46.18

500 63.84 62.89 59.15 58.72
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reduces the average energy consumption from 11.98 to

11.07 J. Similar results are observed for the remaining

values in Table 3.

6 Conclusion

In this paper, an efficient path selection routing algorithm

for mobile sinks was proposed on the basis of ACO. The

proposed approach involves two steps: an energy-efficient

load-balanced clustering and effective data collection

through mobile sinks using ACO. The results show that the

proposed clustering algorithm balances the energy by

cluster head selection in each round and reduces the energy

consumption of the cluster members during data trans-

mission. The cluster head selection algorithm is imple-

mented using an efficient load-balancing technique because

of its dynamic cluster head selection behavior in each

round. From the results, we infer that periodically running

ACO for routing with mobile sinks enhances the overall

sensor network lifetime while ensuring a maximum oper-

ability. Furthermore, the experimental results show that the

performance of the proposed cluster head selection algo-

rithm with the ACO mobile sink routing is better than that

of existing algorithms, such as LEACH, GA, and PSO. In

the future, MDC should be implemented with other opti-

mization algorithms on the basis of the requirements of an

application using the self-healing approach.
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