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Abstract
The convergence of cloud computing and Internet of Things (IoT) is partially due to the pragmatic need for delivering

extended services to a broader user base in diverse situations. However, cloud computing has its limitation for applications

requiring low-latency and high mobility, particularly in adversarial settings (e.g. battlefields). To some extent, such

limitations can be mitigated in a fog computing paradigm since the latter bridges the gap between remote cloud data center

and the end devices (via some fog nodes). However, fog nodes are often deployed in remote and unprotected places. This

necessitates the design of security solutions for a fog-based environment. In this paper, we investigate the fog-driven IoT

healthcare system, focusing only on authentication and key agreement. Specifically, we propose a three-party authenticated

key agreement protocol from bilinear pairings. We introduce the security model and present the formal security proof, as

well as security analysis against common attacks. We then evaluate its performance, in terms of communication and

computation costs.
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1 Introduction

Cloud computing is relatively mature and has been utilized

in a number of applications, including those involving

Internet of Things (IoT) devices. IoT devices are Internet

connected devices (also referred to as objects or things)

designed to collect data (e.g. sense environmental data such

as moisture and air temperature) prior to sending the data to

a processing center (e.g. the cloud) for storage, processing,

analysis, etc. In other words, the bulk of the processing is

undertaken at a remote data center site that may be phys-

ically located in another country. Such a deployment model

may not be suitable for applications that have specific

requirements [4], such as the following:

– Latency/delay sensitive applications Latency/delay

sensitive applications such as video conferencing and

industrial automation may demand an extremely short

latency in order to maintain a high quality of (user)

experience (e.g. Quality of Service—QoS, and Quality

of Experience—QoE). Other latency sensitive applica-

tions such as battlefields, smart traffic lights and

emergency response services may require an even
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shorter latency as any delay can have real-world

consequences (e.g. fatalities).

– Network connectivity constrained applications In a

cloud computing model, all data and requests are

transmitted to and processed at the cloud server. The

significant increase in the number of IoT devices also

results in a corresponding increase in the amount of

data to be transmitted, processed, stored, etc. However,

IoT devices typically have limited network (and

computing) capacities. Thus, it is challenging to deliver

continuous and reliable service in a constrained

network environment.

– Geographically distributed applications IoT applica-

tions can be geographically distributed, for example, in

smart grids, railways, and pipeline monitoring, and the

distance between IoT devices and remote cloud center

affects latency and consequently the quality of service.

– Real-time mobile applications Cloud servers are

deployed in a static location, but IoT applications such

as those deployed in smart transportation and environ-

mental monitoring are dynamic and have high mobility.

1.1 Fog computing

To mitigate some of the above challenges, a more recent

cloud-related trend is to move computing capabilities (e.g.

limited processing and storage) closer to the users and their

devices. In such a paradigm (also referred to as fog com-

puting), fog nodes (routers, gateways, switchers, access

points, etc) are deployed at the edge of the network, geo-

graphically close to the end devices [15, 22]. By extending

the cloud services to the edge of network, fog computing

turns a cloud data center into a distributed platform, while

retaining cloud services for users; thus, minimizing latency

and improving QoS and/or QoE. Furthermore, fog com-

puting provides better support for mobile and geographi-

cally distributed devices and large-scale sensor networks.

Typically, fog computing has a hierarchical architecture,

comprising the cloud layer, the fog layer, and the end

device layer (see Fig. 1).

Healthcare system is one of several potential industry

IoT (IIoT) applications, where IoT devices can be deployed

in venues as big as a large healthcare center (e.g. Univer-

sity of Texas Health System) or venues as small as a pri-

vate specialist clinic. In addition, the popularity of

wearable smart devices has changed the healthcare system

from hospital-centric to patient-centric, by allowing citi-

zens to access healthcare services anytime, anywhere

without any geographical limitations. For example, patients

can upload their health conditions to healthcare profes-

sionals using their embedded (e.g. pacemakers), wearable

(e.g. smart watches) and other IoT devices, without the

need to physically visit a hospital.

Healthcare is one particular industry that requires

latency to be minimized. For example, a minute delay

could have catastrophic consequences on an individual

suffering from a heart attack (e.g. fatality). Thus, we posit a

fog-driven solution in this context. For example, a fog-

driven IoT healthcare system described in Fig. 1 comprises

three layers, namely: the IoT healthcare devices layer, the

IoT healthcare fog layer, and the IoT healthcare cloud layer

[8].

– IoT healthcare device layer This layer consists of a

large number of distributed IoT devices and sensors,

which are used to monitor the physical objects, collect

data, and transmit data to the fog nodes. For example,

embedded and wearable devices facilitate the collection

of a user’s health data (e.g. blood pressure, heartbeat

and body temperature), which can be used by the

responding healthcare professionals to formulate med-

ical delivery strategy when the user arrives at the

hospital. These devices connect to the nearest fog nodes

through various communication protocols, either via a

wired or a wireless network.

– IoT Healthcare fog layer This layer consists of fog

nodes. The fog nodes can be deployed in appropriate

sites. Fog nodes have the capability to process,

transmit, and store the received data. They receive

data and commands from both the user and the cloud,

and are responsible for filtering the raw data, and

sending the aggregated data to the cloud for long-term

storage or further analysis. These fog nodes can also

provide real-time response on time-sensitive applica-

tions. To accommodate different kinds of devices, the

fog nodes must be equipped with different interfaces

and have the ability to communicate with different

communication protocols. Fog nodes and the cloud

Fig. 1 An example hierarchical fog computing architecture
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server are connected by a backbone network, such as an

IP/MPLS network.

– IoT Healthcare cloud layer This layer consists of high

performance servers and storage devices. It provides

computing, networking and storage services for large

amount of data. Unlike conventional cloud computing,

cloud servers are only responsible for work that

requires high computing power and has low latency

requirements. Cloud server also provides long-term

storage for critical or sensitive data such as medical

records of patients. Big data analytics is also an

important function of the cloud server. By analyzing

the aggregated medical data or stored / archival data,

the cloud layer can provide suggestions about the

health status, disease predicting, etc. The cloud server

also provides an interface for the patients and the

healthcare professionals (e.g. medical doctors) to

monitor and manage the connected IoT devices. It also

enables the users to read or share their medical data.

Figure 2 shows our proposed fog-driven IoT personal

health monitoring system.

Unlike a centralized cloud computing system, fog nodes

are usually deployed in an environment without adequate

physical security measures. In other words, end devices and

fog nodes may be easier to compromise (e.g. data trans-

mitted between devices and devices, devices and fog

nodes, fog nodes and cloud servers can be eavesdropped,

modified and replayed). This could result in the leakage of

user privacy information, such as identity, location, health

status, and medical records [1, 14].

In order to establish trust and prevent impersonation,

each user or fog node in the system should be uniquely

identified and authenticated. Furthermore, to ensure the

security and privacy of data transmitted over the public

channel and stored in fog nodes or cloud server, the data

need to be encrypted. However, it is not realistic to pre-

share session keys between fog nodes and end devices due

to the dynamic and mobility nature of end devices and fog

nodes. Thus, authenticated key agreement (AKA) protocol

is a good solution to authenticate users or nodes and pro-

duce common session keys [7]. Unfortunately, there are

relatively few AKA schemes designed specifically for a fog

computing environment. In the settings of most existing

AKA protocols designed for IoT applications, a user and an

IoT device authenticate each other with the help of a

gateway node, which has no ability to process data and

does not have access to a common session key. Also,

usually there is no role for a cloud server in these protocols.

In the fog computing environment, however, fog nodes are

more than gateway nodes. Fog nodes need to preprocess

data collected from IoT devices, and receive instructions

from the user or the cloud.

In this paper, we mainly focus on AKA protocols

designed specifically for a fog-driven IoT personal health

monitoring system. Our key contributions are listed as

follows:

– The proposed efficient three party AKA protocol, based

on bilinear pairings. By execution the protocol, the IoT

device and fog node are authenticated by the cloud

server, and a common session key shared by the three

entities is generated. The protocol execution only

requires one round communication to achieve mutual

authentication and key agreement.

– The proposed protocol is then proved secure formally

in the BRP security model. Informal security analysis

also demonstrates that the protocol preserves user

anonymity and un-traceability and is immune to

various attacks.

– The protocol’s performance is then evaluated, which

demonstrates that our protocol outperforms Hamid

et al.’s protocol [11] in terms of computation and

communication costs.

In the next section, we will describe extant literature on IoT

healthcare and three-party AKA protocols. Sections 3 and

4 introduce the mathematical assumptions used in the

proposed protocol, and the security model and security

definition for the protocol. The proposed AKA protocol is

then presented in Sect. 5, whose security analysis is pre-

sented in Sect. 6. The performance evaluation of the pro-

posed protocol is then presented in Sect. 7. Section 8

concludes this paper.

2 Related literature

Bonomi et al. [5] introduced the concept of fog computing

and described its characteristics and potential application in

IoT services. Since then, fog computing has been the

subject of ongoing research [22]. For example, similar to

Huang, Lu and Choo [15], Sookhak et al. [24] presented a

fog vehicular computing (FVC) infrastructure for smart

transportation. Farahani et al. [8] discussed the application

of IoT in healthcare and medicine and presented a fog-

based IoT eHealth ecosystem. Similar to this paper, Gia

et al. [10] and Rahmani et al. [23] presented fog-based

healthcare systems. More recently in 2017, Hu et al. [14]

Fig. 2 Proposed fog-driven IoT personal health monitoring system
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summarized the architecture, key technologies, applica-

tions and open issues of fog computing.

There has also been studies dedicated to the security and

privacy of fog computing. For example, Stojmenovic et al.

[25], for example, focused on man-in-the-middle attack in

fog computing. Authentication and authorization were

presented as viable solutions in their follow-up work [26].

Yi et al. [31] described security and privacy issues such as

trust and authentication, network security, secure data

storage, secure and private data computation, privacy,

access control and intrusion detection. In [17], a number of

security issues and possible solutions in fog computing

were also presented. However, there was no discussion of a

specific practical solution for these security challenges.

In the fog computing setting, three entities (data user,

fog node and cloud server) need to authenticate each other

and negotiate a common session key to protect the confi-

dentiality, integrity and authenticity of the transmitted data.

There are a large number of three-party AKA protocols

proposed for wireless sensor networks (WSNs), which can

be adapted for IoT applications. Turkanović et al. [27]

proposed an efficient AKA protocol for the heterogeneous

WSN. In their protocol, an IoT user can authenticate with a

sensor node without having to communicate with a gate-

way node. However, Farash et al. [9] found that the

scheme does not provide user untraceability and sensor

node anonymity, as claimed. It was also found to be vul-

nerable to stolen smart card attack. More recently in 2018,

Amin et al. [2] presented a lightweight AKA protocol for

IoT enabled devices in the distributed cloud computing

environment. In their protocol, the user, the service pro-

vider server and the control server achieve mutual

authentication and a common session key is shared

between the user and the service provider.

The above mentioned schemes only used symmetric

cryptosystem to achieve high efficiency. As pointed out by

Wang et al. [28], anonymous authentication cannot be

achieved by symmetric cryptosystem alone. Thus, there has

also been focus on designing asymmetric-based AKA

schemes. Hayajneh et al. [12] proposed a lightweight

authentication protocol based on Rabin signature for

remote patient monitoring with wireless medical sensor

networks and implemented the protocol on different hard-

ware settings. Yeh et al. [30] proposed the first AKA

scheme for WSNs based on elliptic curve cryptography

(ECC). Since then, many more ECC-based AKA protocols

have been designed and presented in the literature

[6, 20, 21, 29].

Despite the many AKA protocols designed for IoT

applications, few such protocols are suitable for direct

deployment in a fog computing environment. Hamid et al.

[11] proposed a three party one-round AKA protocol with

bilinear pairings to preserve the privacy of medical big data

in a fog-based healthcare system. However, the session key

produced by their protocol is static and does not provide

forward privacy. As their key exchange mechanism is

based on the tripartite Diffie-Hellman key exchange algo-

rithm of Joux [16], it is also vulnerable to man-in-the-

middle attacks launched by an active adversary.

In this paper, we will present an efficient and secure

AKA protocol for fog-driven healthcare IoT system, which

does not suffer from the drawbacks in Hamid et al.’s

scheme [11].

3 Complexity assumptions

ECC has been widely used in designing public key cryp-

tographic protocols, since it can achieve equivalent secu-

rity level with relatively short key size compared to non-

ECC public key cryptosystems (e.g. Diffie–Hellman-based

and RSA-based cryptosystems). Let E be an elliptic curve

over a finite field Fp defined by the following equation:

y2 ¼ x3 þ axþ bðmod pÞ;

where x; y; a; b 2 Fp and ð4a3 þ 27b2Þmod p 6¼ 0. E=Fp

denotes the set of points on E. G ¼ E=Fp [ O, where O is a

‘‘point at infinity’’. G is an additive cyclic group under the

point addition operation. Scalar multiplication is denoted

as kP ¼ Pþ Pþ . . .þ P (k times), where k 2 Zn and n is

the order of group G.

Next, we introduce the bilinear pairings defined on

elliptic curve groups, and the related complexity assump-

tion which underpins the security of the proposed protocol.

G1 is an additive cyclic subgroup of E=Fp with an order

q, where q is a large prime number. P is a generator of

group G1, which we call a base point. Let G2 be a multi-

plicative cyclic group of the same order q. A bilinear

pairing is a map e : G1 � G1 ! G2, which satisfies the

following three properties.

– Computability Given two points P1;P2 2 G1, there is a

polynomial time algorithm to compute eðP1;P2Þ.
– Non-degeneracy If P is an arbitrary generator of G1,

then eðP;PÞ 6¼ 1.

– Bilinearity Given P1;P2 2 G1 and a; b 2 Z�n , there is

eðaP1; bP2Þ ¼ eðP1;P2Þab.
A bilinear map satisfies the above properties is a non-de-

generate admissible bilinear map, which can be obtained

from the Weil, Tate or Ate pairings over super-singular

elliptic curves.

BDH Assumption. Let P be a base point of group G1.

The Bilinear Diffie-Hellman (BDH) assumption says that

any given xP; yP; zP 2 G1 for some unknown x; y; z 2 Z�q , it

is computationally hard to compute eðP;PÞxyz 2 G2.
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DBDH Assumption. Let P be a base point of group G1.

The Decisional Bilinear Diffie-Hellman assumption says

that any given xP; yP; zP 2 G1 for some unknown x; y; z 2
Z�q and h 2 G2, it is computationally hard to decide if h ¼
eðP;PÞxyz holds.

4 Security model

We slightly modify the three-party BRP model [3] to define

the security of the proposed protocol.

Let P be the protocol, and U is a participant of the

protocol. In our protocol, the participants include the client

C, the fog nodes FN and the cloud service provider S. Pi
U

denotes oracle machine of the i-th instance of participant

U. The adversary A and the protocol participants execute

the protocol interactively through various oracle queries.

Each type of oracle query models the adversary’s ability to

attack the protocol. The oracle queries are described as

follows.

– SendðUi;MÞ: This query models an active attack

against the instance Ui. A sends message M to the

oracle Pi
U . P

i
U responses with the message that would

be output by the instance Ui in a true execution of the

protocol. A may start the protocol by issuing a

SendðUi; STARTÞ query.
– RevealðUiÞ: This query models the leakage of the

session key. If Pi
U has already produced a session key

SKi
U , then it returns SKi

U to A; otherwise, it outputs a
?.

– Corrupt(U): This query simulates the perfect forward

privacy. C returns the U’s long-term key. In our

protocol, it could be the smart card or the password of

the client.

– ExecuteðAi;Bj; SkÞ: This query models the passive

eavesdropping on the public channel. The protocol is

executed among the client instances Pi
A, P

j
B and the

server instance Pk
S. The oracle machine returns all

messages exchanged in the execution of the protocol.

– TestðUiÞ: This query is used to define the semantic

security of the session key. The adversary is allowed to

issue this query only once. The Test oracle flips a coin

and obtains a bit b 2 f0; 1g. If b ¼ 1, then the

adversary is returned a true session key SKi
U . If

b ¼ 0, the adversary is returned a random value of

the same size.

Definition 1 (Partnership) Two instances Pi
A and Pj

B are

called partners if, and only if, the following conditions are

satisfied:

1. Pi
A and Pj

B exchange messages directly;

2. Pi
A and Pj

B accept the common session key SK; and

3. There is no other instance who would accept SK,

except for Pi
A and Pj

B.

Definition 2 (Freshness) An instance Pi
U is fresh if the

following conditions hold:

– Pi
U has accepted the session key SK;

– Reveal oracle has not been queried before Pi
U being

accepted; and

– Corrupt oracle has never been queried on Pi
U and its

partners (see Definition 1).

Suppose Pi
A and Pj

B are partners and have established a

common session key SK. SK is said to be fresh if, and only

if, both Pi
A and Pj

B are fresh.

Definition 3 (AKA-security) For any adversary A,
SuccðAÞ denotes the event that A issues a TestðUiÞ query
some accepted fresh instances, and outputs the correct b.

The advantage of A in attacking the semantic security of

protocol P is defined as

AdvAKAP ðAÞ ¼ j2Pr½SuccðAÞ� � 1j:

A protocol P is said to be AKA-secure if for any proba-

bilistic polynomial time adversary A, AdvAKAP ðAÞ is

negligible.

5 Proposed scheme

There are three entities in our protocol, namely: the user,

the fog note and the cloud service provider (CSP). The user

controls one or more IoT devices connected to the fog node

and is able to gain access to the system using a password

and a smart card.

In our authentication model, fog nodes are regarded as

entities that are not trustworthy. Thus, these nodes will not

maintain/store any private authentication information of

users. They are not responsible for authenticating users.

They only transfer public authentication messages between

the user and the cloud server, and they provide a share of

the session key.

We establish a verifier-based mechanism to authenticate

the user and fog nodes. A verifier-based AKA scheme is a

variant of a password-based AKA scheme, in which the

server only preserves a verifier instead of an image of the

password. There have been a number of verifier-based

three-party AKA protocols in the literature [13, 18, 19].

Each fog node or end device has a unique identity and

must register with the cloud server. The cloud server will

keep a verifier of that node or device for future

Wireless Networks (2019) 25:4737–4750 4741
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authentication. The verifier is derived from the identity and

the CSP’s master key. The protocol generates a common

session key shared by an end device, the fog node and the

cloud server. The fog node does not preserve the private

information (password, verifier) of any user. If a fog node is

compromised, then user’s data on other nodes will not be

affected even if they use the same password and smart card.

Now, we present the details of the proposed AKA

scheme.

5.1 System setup

The CSP chooses a non-singular elliptic curve over finite

field Fp, where p is a large prime number, and l ¼ log2p is

the security parameter. Let G be a cyclic group of order n

generated by a base point P. CSP then chooses a random

s 2 Z�n , and calculates Ppub ¼ sP. ðG;P;PpubÞ are published
as the public system parameters, while s is kept secret. CSP

selects 6 secure hash functions fh0; h1; h2; h3; h4; h5g,
where h0 : G1 ! f0:1g�, h1 : f0; 1g� � f0; 1g� ! Z�p , h2 :

f0; 1g� � Z�n � Z�p ! Z�p , h3 : G1 � Z�p � G1 � f0; 1g��
f0; 1g� � f0; 1g� ! Z�p , h4 : G1 � G1 � G1 � G1 � f0; 1g�

�f0; 1g� ! Z�p , h5 : G2 � G1 � G1 � G1 ! Z�p . CSP also

maintains a database to record the registered users and fog

nodes. We assume that CSP is trustworthy.

5.2 User registration phase

In this phase, each user sends a registration request to the

trusted cloud, and receives a smart card.

1. Ui randomly chooses ri 2 Z�p , inputs the password PWi

and the identity IDi and computes RIDi ¼ h1ðIDijj
PWiÞ � ri. Ui sends ðIDi;RIDiÞ to CSP securely.

2. After receiving Ui’s request, CSP randomly chooses

xi 2 Z�p and computes Ri ¼ h2ðIDijjsjjxiÞ � RIDi. CSP

stores Ri on a smart card, and sends it to Ui via a secure

channel. CSP also records ðIDi; xiÞ in its own database.

3. After receiving the smart card, Ui computes R�i ¼
Ri � ri and replaces Ri on the card with R�i .

Here, we emphasize that the registration process must be

carried out through a secure channel and the user must be

authenticated by the CSP. The process is depicted in Fig. 3.

5.3 Fog node registration phase

Each fog node FNj must register with the CSP before it is

deployed. FNj sends its identity IDj to the CSP. CSP ran-

domly chooses yj 2 Z�p and computes Rj ¼ h2ðIDjjjsjjyjÞ.
CSP sends Rj to the fog node in a secure way and stores

ðIDj; yjÞ in its own database. The process is depicted in

Fig. 4.

5.4 Authentication and key agreement phase

In this phase, the user, the fog node and the cloud server

authenticate each other and generate a common session

key. The process is depicted in Fig. 5.

1. Ui randomly chooses a 2 Z�n , and computes A ¼ aP,
�A ¼ aPpub, PIDi ¼ IDi � h0ð�AÞ, Mi ¼ h1ðIDjj
PWiÞ � R�, Ni ¼ h3ð�AjjMijjAjjIDijjIDjjjTuÞ, where

Tu is the current timestamp. Ui sends Msg1 ¼
ðA; PIDi;Ni; TuÞ to FNj.

2. Upon receiving the authentication request from Ui, FNj

first checks the freshness of the timestamp Tu, then

randomly chooses b 2 Z�n , and computes B ¼ bP,
�B ¼ bPpub, PIDj ¼ IDj � h0ð�BÞ, Lj ¼ h3ð�BjjRj

jjAjjPIDijjIDjjjTf Þ, where Tf is the current timestamp.

FNj forwards Msg2 ¼ ðA;B;PIDi;PIDj;Ni; Lj; Tu; Tf Þ
to the CSP.

3. After receiving FNj’s authentication request, CSP first

checks the validity of two timestamps Tu;Tf , and then

proceeds as follows.

– CSP computes �A0 ¼ sA, �B0 ¼ sB, ID0i ¼ PIDi�
h0ð�A0Þ, ID0j ¼ PIDj � h0ð�B0Þ.

– CSP searches its database to find the entries

ðID0i; xiÞ, ðID0j; yjÞ. If the entries are not found, then
CSP rejects the request and aborts the session.

Fig. 3 User Registration Phase

Fig. 4 Fog Node Registration Phase
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– CSP continues to compute M0i ¼ h2ðID0ijjsjjxiÞ,
R0j ¼ h2ðID0jjjsjjyjÞ, N 0i ¼ h3ð�A0jjM0i jjAjjID0ijj ID0jjj
TuÞ, L0j ¼ h3ð�B0jjR0jjjAjjPIDijjID0jjjTf Þ.

– CSP checks if Ni ¼ N 0i and Lj ¼ L0j. If either one

does not hold, then CSP rejects the request and

aborts.

Fig. 5 Authentication and Key Agreement Phase
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– CSP randomly chooses c 2 Z�n , and computes

C ¼ cP, Authi ¼ h4ðAjjBjjCjj�A0jjID0ijjTcÞ, Authj

¼ h4ðAjjBjjCjj�B0jjID0jjjTcÞ, Kc ¼ eðA;BÞc, SKc

¼ h5ðKcjjAjjBjjCÞ, where Tc is the current

timestamp.

– CSP sends Msg3 ¼ ðC;Authi;Authj; TcÞ to FNj.

4. Upon receiving the response from CSP, FNj checks the

freshness of Tc, and verifies if Authj ¼ h4ðAjjBjj
Cjj�BjjIDjjjTcÞ. If not, then FNj aborts the session.

Otherwise, FNj computes Kf ¼ eðA;CÞb, SKf ¼
h5ðKf jj A||B||C) and forwards Msg4 ¼ ðB;C;Authi; TcÞ
to Ui.

5. Upon receiving the response from the fog node, Ui

checks the freshness of Tc and verifies if

Authi ¼ h4ðAjjBjjCjj�AjjIDijjTcÞ. If not, then Ui aborts

the session. Otherwise, Ui computes Ku ¼ eðB;CÞa,
SKu ¼ h5ðKujjAjjBjjCÞ.

We claim that if the protocol proceeds correctly, then

Ui, FNj and CSP achieve mutual authentication and share a

common session key at the end of the authentication pro-

cess. The correctness is guaranteed by the equation

eðB;CÞa ¼ eðA;CÞb ¼ eðA;BÞc ¼ eðP;PÞabc. Then, we

have Ku ¼ Kf ¼ Kc and therefore, SKu ¼ SKf ¼ SKc.

5.5 Password update phase

To prevent password guessing attacks, users are advised to

change their password regularly. In the proposed scheme, a

user Ui can update his/her password locally, as frequent as

required. Ui executes the following steps.

1. Ui inserts the smart card and issues an instruction to

modify the password.

2. Ui is required to input the old password PWu and the

new password PWnew
u .

3. The smart card computes ðR�Þnew ¼ h1ðIDijjPWuÞ�
h1ðIDijjPWnew

u Þ � R�, and replaces R� with ðR�Þnew.

5.6 User revocation and re-registration

In some cases, users need to revoke their accounts from the

system. For example, if a user Ui’s smart card is lost or

stolen, then he/she should revoke the old account in such

event. Ui sends a revocation request to the CSP. After

verifying the Ui’s identity (based on the old password or

other identity information), CSP deletes the entry ðIDi; xiÞ
from its database and thereafter the login requests issued by

the old smart card will be rejected.

Ui can re-register with the CSP using the same identity

and a new password following the registration procedure

described in Sect. 5.2. CSP then chooses a new random

number xnewi and stores ðIDi; x
new
i Þ in its database.

5.7 Fog node revocation

If a fog node FNj is damaged or compromised, then CSP

will revoke the node by deleting the record ðIDj; yjÞ from
its database. Subsequently, any access to the fog node will

be declined, since all authentication requests issued by FNj

cannot successfully pass the verification without the ran-

dom number yj.

6 Security analysis

In this section, we present the formal security proof of the

proposed scheme, as well as the informal security analysis

against possible attacks.

6.1 Formal security proof

We prove that that the proposed scheme is AKA-secure

and achieves mutual authentication under the security

model described in Sect. 4.

Theorem 1 Let P be the proposed protocol. If there is a

probabilistic polynomial time adversary A who wins the

AKA attack game with advantage AdvAKAP ðAÞ, then there

must be a probabilistic polynomial time algorithm that can

solve the BDH problem with advantage

AdvDBDHG1;G2
� 1

qs
AdvAKAP ðAÞ �

Pi¼4
i¼0 q

2
hi
þ ðqs þ qeÞ2

2pqs

þ qh5
pqs
þ 2qh0qh3

p2qs
Þ;

where qhi ði ¼ 0; 1; 2; 3; 4; 5Þ, qs, qe, qr denotes the times of
the hash, Send, Execution and Reveal oracle queries

respectively.

Proof Let A be an adversary who attacks the protocol and

wins the game with an advantage of �. We construct a

challenger C who makes use of A’s ability to solve a

DBDH problem instance (P, xP, yP, zP, h) for some

unknown x; y; z 2 Z�n and h 2 G2, namely, to decide if h ¼
eðP;PÞxyz holds. The hash functions in the protocol are

simulated as random oracles. C maintains a hash list Lh,

which is initialized to be empty. Msgiði ¼ 1; 2; 3; 4Þ
denotes the corresponding messages transmitted among the

entities during the execution of the protocol. C randomly

picks a random s 2 Z�n , and Ppub ¼ sP publishes

ðG;P;PpubÞ as the public parameters, and keeps s secret. C
also sets identity and password ðIDi;PWiÞ and the smart
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card information R�i for each user, as well as ðIDj;R
�
j Þ for

each fog. h

C simulates the protocol and answers A’s oracle queries
as follows.

– Send query A issues an active attack and sends

messages adaptively constructed by itself through

different Send queries. According to the execution

process of the protocol, there are four different Send

queries available to A.

– SendðCi; ðFN; STARTÞÞ: Upon receiving this query,

C starts a new session and returns the login message

generated by the user. Specifically, C randomly

chooses a 2 Z�n and computes A ¼ aP, �A ¼ aPpub. C
then computes PIDi ¼ IDu � h0ð�AÞ, Mi ¼ h1ðIDujj
PWuÞ � R�, Ni ¼ h3ð�AjjMi jjAjjIDijjIDjjjTuÞ. C
returns ðA;PIDi;Ni; TuÞ to A, and the instance Pi

C

was set to an expecting state.

– SendðFNj;Msg1Þ: Upon receiving this query, C first
divides Msg1 into ðA;PIDi;Ni; TuÞ, then randomly

picks b 2 Z�n and computes B; �B; PIDj ¼ IDj; Lj as

described in Sect. 5.4. C returns ðA;B;PIDi;PIDj;

Ni; LjÞ to A and sets the instance Pj
FN to an

expecting state.

– SendðSk;Msg2Þ: Upon receiving this query, C
divides Msg2 into ðA;B;PIDi;PIDj;Ni; LjÞ, and

computes ðN 0i ; L0jÞ as described in Sect. 5.4. A
verifies if Ni ¼ N 0i and Lj ¼ L0j, if not, C rejects A’s
query and returns nothing. Otherwise, C picks a

random c 2 Z�q , and computes ðC;Authi;Authj;
Kc; SKcÞ as in Sect. 5.4. C returns ðC;Authi;AuthjÞ
to A, and the CSP instance terminates.

– SendðFNj;Msg3Þ: Upon receiving this query,

assuming that Pj
FN is in the expecting state, C first

divides Msg3 into ðC;Authi;AuthjÞ, and verifies if

Authj ¼ h4ðAjjBjjCjj�BjjIDjÞ holds. If not, then C
rejects A’s query and returns nothing. Otherwise, C
returns ðB;C;AuthiÞ to A and the fog instance

terminates.

– SendðCi;Msg4Þ: Upon receiving this query, assum-

ing that Pi
C is in the expecting state, C first divides

Msg4 into ðB;C;AuthiÞ and verifies if

Authi ¼ h4ðAjjBjjCjj�AjjIDiÞ. If not, then C rejects

A’s query and returns nothing. Otherwise, C
computes Ku ¼ eðB;CÞa, SK ¼ h5ðKujjAjjBjjCÞ,
and the client instance accepts and terminates.

ðMsg1;Msg2;Msg3;Msg4Þ is added to the list C.

– Corrupt query. The adversary issues this query to

obtain one of the user’s long term key.

– On receiving Corrupt(C, PW), returns the client C’s

password PWu.

– On receiving Corrupt(C, SC), returns the informa-

tion R�u stored on the smart card.

– ExecuteðUi;FNj; SkÞ. On receiving this query, C sim-

ulates the execution process of the protocol by issuing

the following Send queries.

Msg1  SendðCi; ðFN; STARTÞÞ;
Msg2  SendðFNj;Msg1Þ;
Msg3  SendðSk;Msg2Þ;
Msg4  SendðFNj;Msg3Þ;

C returns ðMsg1;Msg2;Msg3;Msg4Þ to A.
– RevealðPi

PÞ. On receiving this query, responses with

the session key SK if the session instance Pi
P is

accepted, else returns ?.
– Test query. On receiving a query TestðUiÞ, C randomly

picks s 2 f0; 1g. If s ¼ 1, then returns the true session

key SK; otherwise, returns a random value with the

same size.

The proof consists of a sequence of games: G0;G1; . . . G5.

Let Si be the event that A outputs the correct s in game Gi

ði ¼ 1; 2; 3; 4; 5Þ.
Game G0. G0 is the original attacking game. In this

game, C simulates the oracle queries as a real player would

do, as listed above. Hash functions are modeled as random

oracles. Thus, the probability of success in this game is

equal to the probability that A succeeds in attacking the

real protocol. By definition, we have

� ¼ j2Pr½S0� � 1j: ð1Þ

Game G1. G1 is as same as G0, except that C maintains hash

value lists L0 � L5. When a hash oracle is queried, C first

searches the corresponding list and if there is an entry

already, then returns the same, else C returns a random

chosen value and adds the result to the corresponding list

Li. From the properties of random oracles, it is easy to see

that G1 is indistinguishable from G0, so

Pr½S1� ¼ Pr½S0�: ð2Þ

Game G2. This game simulates all kinds of queries just like

in game G1, except that the simulation will be terminated if

the following two events happen:

– Event E1: Collisions on the output of hash queries.

– Event E2: Collisions on the copy of the messages

ðMsg1;Msg2;Msg3;Msg4Þ.
According to the birthday paradox, we have
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Pr½E1� 	
Xi¼4

i¼0
q2hi=ð2pÞ: ð3Þ

Since a, b, c are randomly chosen, the probability that E2

happens is Pr½E2� 	 ðqs þ qeÞ2=ð2pÞ, where qs and qe are

the upper bound of Send and Execute queries, respectively.

Thus,

jPr½S2� � Pr½S1�j 	 ð
Xi¼4

i¼0
q2hi þ ðqs þ qeÞ2Þ=ð2pÞ: ð4Þ

Game G3. In this game, we modify the Send query. C
randomly picks a matched instance ðCi;FNj; SkÞ and

answers A’s Send queries as follows.

– When A issues a SendðCi; ðFN; STARTÞÞ query, C sets
A ¼ xP, �A ¼ sA, and generates PIDi;Mi;Ni; Tu as it

does in G2. C returns Msg1 ¼ ðA;PIDi;Ni; TuÞ to A.
– When A issues a SendðFNj;Msg1Þ query, C sets

B ¼ yP, �B ¼ sB, and generates PIDj; Lj; Tf as it does

in G2. C returns Msg2 ¼ ðA;B;PIDi;PIDj; Ni; LjÞ to A.
– When A issues a SendðSk;Msg2Þ query, C sets c ¼ zP,

�C ¼ sC, and generates Authi;Authj as it does in G2. C
sets Kc ¼ h and calculates SKc ¼ h5ðKcjjAjj B||C). C
returns Msg3 ¼ ðC;Authi;AuthjÞ to A.

– When A issues a SendðFNj;Msg3Þ query, C sets

Kf ¼ h, SKf ¼ h5ðKf jjAjjBjjCÞandreturns Msg4 ¼
ðB;C;AuthiÞ to A.

– When A issues a SendðCi;Msg4Þ query, C sets Ku ¼ h,

SKu ¼ h5ðKujjAjjBjjCÞ and terminates the instance.

We demonstrates that if the DBDH assumption holds, then

the difference between game G2 and G3 is negligible, just

as the following equation shows.

jPr½S3� � Pr½S2�j 	 qsAdv
DBDH
G1;G2

: ð5Þ

Suppose there is a differentiator that can successfully dis-

tinguish game G2 and G3, C can make use of this differ-

entiator to solve the DBDH problem. The differentiator

selects an instance with probability of 1=qs. From the

above description, we can see that C simulates all the

queries without knowing x, y, z. If h ¼ eðP;PÞxyz holds,

then the differentiator actually interacts with game G2.

Otherwise, the differentiator interacts with G3. If the dif-

ferentiator decides it is interacting with G2, then C outputs
1, or else outputs 0. So we have AdvDBDHG1;G2

�
ð1=qsÞjPr½S3� � Pr½S2�j, and Equation (5) holds.

In game G3, Ku ¼ Kf ¼ Kc ¼ h is a random value

independent of the password and the number x, y, z. The

adversary may distinguish a true session key and a random

one, if the following events happen.

– Event E3: A has queried h5 oracle on input (h, A, B,

C), which has a probability of

Pr½E3� ¼ qh5=p: ð6Þ

– Event E4: A successfully impersonates the user and

forges a Msg1 ¼ ðA;PIDi;Ni; TuÞ, which passes the

verification executed by the CSP. To achieve this, A
has to calculate a valid PIDi and Ni. A can issue the

Corrupt(C) query to achieve one of the long term keys

but not both. Since x is an unknown value, A cannot

compute �A, and the probability that A outputs a valid

Msg1 is:

Pr½E4� 	
qh0
p
� qh1
p
¼ qh0qh3

p2
: ð7Þ

– Event E5: A successfully impersonates the fog and

forges a Msg2, which passes the verification executed

by the CSP. Similar to event E4, the probability that A
outputs a valid Msg2 is:

Pr½E5� 	
qh0
p
� qh3
p
¼ qh0qh3

p2
: ð8Þ

In summary, we have

Pr½S3� 	
1

2
þ qh5

p
þ 2qh0qh3

p2
: ð9Þ

From Equation (1)-(5) and Equation (9), we have

AdvAKAP ðAÞ	
Pi¼4

i¼0 q
2
hi
þ ðqs þ qeÞ2

2p
þ qh5

p
þ 2qh0qh3

p2

þ qsAdv
DBDH
G1;G2

:

Hence,

AdvDBDHG1;G2
� 1

qs
AdvAKAP ðAÞ �

Pi¼4
i¼0 q

2
hi
þ ðqs þ qeÞ2

2pqs

� qh5
pqs
� 2qh0qh3

p2qs
:

Now, we have concluded the proof of Theorem 1. In other

words, as long as the BDH problem is hard, it is compu-

tationally challenging for any polynomial time adversary to

break the AKA-security of the proposed protocol.

6.2 Security analysis

• User anonymity and un-traceability In the proposed

protocol, an adversary (e.g. an inside user, a fog node,

or an external attacker) cannot extract the real identity

of the user, even if it intercepts all messages Msgiði ¼
1; 2; 3; 4Þ transferred over the public channel during the

authentication and key agreement process. The user’s

real identity is hidden by a hash value that can only be

calculated by the CSP, namely, PIDi ¼ IDi � H0ð�AÞ,
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instead of being transmitted in plaintext over the public

channel. What’s more, a, b, c are random numbers and

the timestamps are dynamic and unique for each

session.

• Perfect forward privacy Perfect forward privacy

requires that even if the user’s long-time key (here,

long-term key include password and smart card) are

compromised, previous session keys established by

these keys are still secure. Namely, the session keys are

independent of the user’s long-term key. In the

proposed protocol, even if PWi and the smart card are

compromised at the same time, A still cannot break the

security of the previously generated session keys. This

is because SK ¼ hðKjjAjjBjjCÞ where K ¼ eðP;PÞa;b;c;
A ¼ aP;B ¼ bP;C ¼ cP, the generation of each ses-

sion key needs the random numbers a, b, c chosen by

all the three entities, which is independent of the user’s

long-term key. The perfect forward privacy is assured

by the randomness of the session key and the collision

resistance of the underpinning hash function.

• Offline dictionary attack In the proposed scheme,

neither the CSP nor the fog node store any user’s

password. The only possible way to get some informa-

tion about a user’s password is from the smart card.

Suppose an adversary A has tried to obtain a user’s

smart card and extract the information R� on it. We can

see that the user Ui’s password is protected by a secure

hash and masked by the server’s private key and a

random number, which is unknown to A. Namely, R� ¼
hðIDijjPWiÞ � hðIDijjsjj xiÞ. Thus, it is infeasible for A
to verify his/her guess. The protocol is secure against

offline dictionary attack.

• Stolen-verifier attack We can see that in the proposed

protocol, the CSP only stores the user’s identity IDi and

a randomly chosen xi instead of the real verifier

hðIDijjsjjxiÞ directly. Suppose there is an adversary A
who has stolen the information stored in the CSP,

namely, ðIDi; xiÞ. A still cannot calculate the real

verifier hðIDijjsjjxiÞ without the secret key s. Thus, it is

infeasible for A to impersonate Ui even if A obtains the

information stored in the CSP. Similarly, A cannot

impersonate a fog node FNj by stealing FNj’s verifier

ðIDj; yjÞ either.
• Stolen smart card attack Suppose there is an adversary

A who has stolen the smart card of the user Ui and

extracted the authentication factor R� stored in the

smart card and attempted to produce a legitimate login

message Msg1. Suppose A also knows the user’s

identity IDi, the identity of fog node IDj. A can even

choose a random number a0 2 Z�n , a fresh timestamp Ta,

and compute �A0 ¼ a0Ppub. However, A has no idea of

PWi, which is necessary in calculating Mi ¼

hðIDijjPWiÞ � R�i and Ni ¼ hð�AjjMijjIDijjI DjjjTuÞ.
Thus, A cannot produce a legitimate login message.

The protocol is vulnerable to stolen smart card attack.

• Known session key attack In the proposed protocol, a

session key SK ¼ hðKjjAjjBjjCÞ, where K ¼ eðP;PÞabc,
is established after mutual authentication. Notice that

a, b, c are dynamic numbers randomly chosen by

different entities in each session. In other words,

session keys in different sessions are independent from

each other. Therefore, the leakage of one session key

has no effect on the privacy of the others.

• Man-in-the-middle attack We show that even if A
intercepts and modifies all the messages transferred

over the public channel, it is still infeasible for A to

produce a legitimate message Msgiði ¼ 1; 2; 3; 4Þ in the

name of any entity in the protocol. Suppose that A
knows the user’s identity IDi and the fog node’s IDj. To

produce a valid Msg1, A can choose its own random

number a 2 Z�n and the timestamp Ta, and computes

A; �A;PIDi as the legitimate user does, but it cannot

calculate Mi;Ni without R� and PWi. Thus, the

adversary can have both values as long as he/she does

not get the password and the smart card at the same

time. In addition, if A uses R� and PWi of its own

choice, it will be easily detected by the CSP. Similarly,

A cannot generate a Msg2 without the registered

verifier Rj. Furthermore, without the CSP’s private

key s, A cannot forge Msg3 and Msg4 either. In

summary, the proposed scheme is secure against man-

in-the-middle attack.

• Replay attack In the proposed protocol, timestamps are

involved in each step of the authentication process. As

long as the time interval to assure the freshness of the

timestamps is sufficiently small and the clock remains

synchronized, it is challenging for A to replay a

legitimate message.

7 Performance evaluation

In this section, we evaluate the performance of the pro-

posed protocol, in terms of computation and communica-

tion costs.

In the evaluation, we used a super singular elliptic curve

E=Fp, and the Ate pairing e : G1 � G1 ! G2 generated by

a point on E=Fp. Both G1 and G2 are groups of prime order

q, and p and q are large prime numbers with a length of 512

and 160 bits respectively.

The evaluation was realized by MIRACL library on two

platforms. One is the elastic compute service (ECS) host

provided by the Alibaba Cloud platform, which was used to

simulate the cloud server and fog node. The host’s
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operating system is Ubuntu 14.04 for 64 bit with an

Intel(R) Xeon(R) CPU E5-2630 0 @ 2.30 GHz, and

equipped with 1 GB RAM. Another one is a Google Nexus

One smart phone with ARM CPU armeabi-v7a 2 GHz, 300

MiB RAM, and Android 4.4.2 operation system. Table 1

lists the computational cost in these two platforms for basic

operations used in the protocol.

Table 2 lists the computation costs of three entities in

the different phases of the protocol. From the table, we

observed that the computation cost in the registration phase

is very small and has little impact on the overall perfor-

mance. In the authentication and key agreement phase, the

time cost on the user is 2TGm þ 5Th þ TGe (88.643 ms),

time cost on the fog node is 2TGm þ 5Th þ TGe (9.26 ms),

and time cost on the cloud server is 3TGm þ 9Th þ TGe

(11.266 ms). It can also be observed from the table that the

time cost is mainly in the calculation of bilinear pairings.

Thus, we could reduce the time costs by designing a pro-

tocol without bilinear pairings.

To evaluate the communication costs, we denote the

length of a point in group G1 as jG1j, which is 1024 bit. The

output of hash functions h0; h1; h2; h3; h4 is in Z
�
p , which has

a length of 160 bit, denoted as |q|. The output length of h5 is

equal to the session key size k, and we assume it to be 256

bit. We also assume that timestamp has a length of 32 bit,

denoted as T. The communication costs in each phase of

the protocol are listed in Table 3. From the table, we

observed that the communication costs on the user and

cloud are the same, namely, jG1j þ 2jqj þ jT j (1376 bit).

Communication on the fog node side is relatively higher at

3jG1j þ 6jqj þ 3jT j (4128 bit).

8 Conclusion

Fog computing has applications in a wide range of appli-

cations, ranging from civilian (e.g. healthcare settings such

as the context in this paper) to military (e.g. battlefields in

fog-of-battlefields). Thus, the capability to ensure security

and privacy of a fog-driven deployment will be increas-

ingly important.

In this paper, we proposed a three-party AKA protocol

with bilinear pairings, and proved its security in the ran-

dom oracle model. The performance evaluation was also

presented, which demonstrated its potential to be deployed

in a real-world healthcare organization.

Future work includes exploring ways to improve the

efficiency of the scheme, in order to be more suited for

other lightweight applications.

Table 1 Computation time of basic operations (ms)

Operation Description ECS host Google Nexus One

TGê : Bilinear pairing 5.275 48.66

TGm : Scala multiplication 1.970 19.919

Th : Hash function 0.009 0.029

TGa : Point addition 0.027 0.176

Table 2 Computation cost at

each entity (ms)
Phase User Fog Note Cloud

User registration Th – Th

(ms) 0.009 – 0.009

Fog node registration – – Th

(ms) – – 0.009

Authenticaiton and key agreement 2TGm þ 5Th þ TGe 2TGm þ 4Th þ TGe 3TGm þ 9Th þ TGe

(ms) 88.643 9.251 11.266

Total 2TGm þ 6Th þ TGe 2TGm þ 4Th þ TGe 3TGm þ 11Th þ TGe)

(ms) 88.652 9.251 11.284

Table 3 Communication costs

at each entity (bits)
Phase User Fog Note Cloud

User registration 2|q| – |q|

(bits) 320 – 160

Fog node registration – |q| |q|

(bits) – 160 160

Authenticaiton and key agreement jG1j þ 2jqj þ jT j 3jG1j þ 6jqj þ 3jT j jG1j þ 2jqj þ jT j
(bits) 1376 4128 1376
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