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Abstract
Shotgun cellular systems (SCSs) are wireless communication systems with randomly placed base stations (BSs) over the

entire plane according to a two-dimensional Poisson point process. Such a system can model a dense cellular or wireless

data network deployment, where the BS locations end up being close to random due to constraints other than optimal

coverage. SCSs have been studied by considering path-loss and independent shadowing paths between BS to mobile station

(MS) pairs in the channel models. In this paper, we consider correlated shadowing paths between BS to MS pairs as a most

important factor, and analyze the carrier to interference ratio (CIR), in a SCS over this correlation, and determine an

expression for distribution of CIR, and obtain the tail probability of the CIR.

Keywords Cellular radio � Random cellular deployment � Shotgun cellular systems � Carrier to interference �
Shadow fading � Correlation

1 Introduction

Cellular communication consists of a set of radio BSs dis-

tributed over a region that communicate with MS. Optimal

planar cellular systems place BS in uniform size hexagonal

grids. These ideal hexagonal cellular systems provide upper

performance bound (upb). In contrast to hexagonal cellular

systems with regular BS placement, in many wireless sys-

tems such as LANs and femtocells [1], due to site acquisition

difficulties, BSs are placed randomly over the deployment

region. In these systems called Shotgun cellular systems

(SCSs), the BSs are placed randomly over the entire plane

according to a two-dimensional (2-D) Poisson point process

with a parameter k which is the average BS density for the

SCS [2, 3]. Such systems provide lower performance bound

(lpb). The difference between upper bound and lower bound

is small under operating typical conditions in modern

CDMA and TDMA cellular systems. Furthermore, in the

strong shadowing limit the bounds converge [3]. In a SCS

the signal propagation is affected by path-loss, log-normal

shadowing (slow fading), and multi-path fading (fast fad-

ing). In this paper we only consider path-loss and shadow

fading. Many cellular deployments have significant ran-

domness. Therefore, SCS is a system affected by random

phenomena. The performance in the SCS that we are con-

cerned about is the signal quality at theMS. The performance

in the SCS is defined as the ratio of the received signal power

to the total interference power, and is denoted by CIR ¼ PS

PI
.

The MS listens to the BS with the strongest received signal

power PS, where the subscript S stands for the signal-car-

rying BS. The interference is the sum of the received power

from all the other co-channel BSs and is denoted byPI , where

the subscript I stands for the signal-interfering BS.We know

that the performance differs slightly between the uplink and

downlink, but qualitatively they are similar and downlink

may yield to at least much simpler analysis and simula-

tions [3]. For these reasons, previous works and this paper

focus only on the downlink. The SCS and its downlink per-

formance metrics with shadowing and without shadow-

ing [2–4] and downlink performance for a generalized

SCS [1, 5] have been studied.
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The previous works to study the SCS have considered

independent signal propagation paths between BS to MS

pairs, and have not considered the correlation between

signal propagation paths BS to MS pairs [6–13]. Corre-

lation between signal propagation paths is defined with

correlation between their multi-path fading [7] and/or

shadow fading factors [6–13]. In [8] a spatial correlation

coefficient (for both the shadow and the multi-path fading

environments) was proposed to express the correlation

characteristics of mobile cognitive radio (CR) users in

different environments. Cacciapuoti et al. [7] analyzed

TV white spases (TVWSs) in presence of correlation

among the primary user (PU) traffic patterns through a

Markov process. Szyszkowicz et al. [6] explained com-

pletely the correlated shadowing paths BS to MS pairs.

Correlation in wireless shadowing is a significant step in

obtaining more realistic channel propagation models.

They also showed that shadowing correlation significantly

affects handover behavior, interference power (and con-

sequently system performance), and the performance of

macrodiversity schemes. Shadowing correlation can also

be positively exploited in some algorithms or protocols,

e.g., for wireless positioning, cognitive radio and spec-

trum sensing or neighbor discovery applications. There-

fore, in fact signal propagation in a SCS from BSs to MS

is affected by path-loss and correlated shadowing. In this

paper, by considering this correlation between signal

propagation paths, we determine an expression for the

distribution of CIR, and then obtain the tail probability of

the CIR.

The paper is organized as follows: in Sect. 2, we explain

system model. In Sect. 3, we describe important definitions

and main results. This Sect. consists of three subsections.

Section 3.1 describes important definitions. In Sect. 3.2, we

explain main results. This Subsection consists of three sub-

sections. In this subsection by considering the correlation

between shadowing of BS to MS path pairs, we at first

determine the probability distribution of C (carrier signals

power received at the MS) in Sect. 3.2.1 and then we cal-

culate the probability distribution of I (sum of the received

powers at the MS from all the other co-channel BSs) in

Sect. 3.2.2. Finally, in Sect. 3.2.3, we derive the probability

distribution and tail probability for the CIR. In Sect. 3.3, to

better understand our idea, we show simple numerical

example. In Sect. 4, the details of simulation results are

presented and lastly, in Sect. 5 concludes the paper.

2 System model

In the SCS with fixed non-variable radio properties and no

shadowing, the BS closest to the MS will be chosen as the

carrying or serving BS, and all the others are interfering

BSs. When random radio properties and shadow fading are

introduced to this system, the serving BS is not necessarily

the BS closest to the MS. Since our focus is on the

downlink, we consider the CIR performance of a single

MS. This MS, without loss of generality, is assumed to be

located at the origin and around this MS, BSs are placed

according to 2-D Poisson point process with a parameter k,
which is the average BS density for the SCS [2, 3] (see

Fig. 1). In this figure, Rn is the separation between the BSn
and the MS, where n ¼ 1; 2; 3; . . .;N and R1\R2

\R3\ � � �\RN . In Gaussian channels with transmitted

signal x, the received signal Y can be written as

Y ¼ hxþ Z, in which Z is noise of channel and h is fading

coefficient. In different channels, h can be modeled as

different random variables such as shadowingW and multi-

path fading a. Therefore assuming Gaussian channels in the

SCS, the received power at the MS (without considering

multi-path fading) from a BS is given by Pr ¼ KPTWR�e,

where K is a radio factor and PT is transmitter power. The

path-loss is a function of the BS to MS separation R, and

follows an inverse power law with e as the path-loss

exponent. The shadowing factor W, is usually modeled as a

log-normal random variable [1–7, 10–12]. The MS

receives signals from all BSs, and chooses to communicate

with the BS that corresponds to the strongest received

signal power. This BS is referred to as the carrying BS, and

all the other BSs are called the interfering BSs. Thus, the

signal quality at the MS is defined as the ratio of the

received power from the serving BS (denoted by C or PS)

to the sum of the total interference power (denoted by I or

PI), i.e. carrier to interference ratio C
I
¼ PS

PI
. For a typical

cellular system, the CIR at the MS is given by

C

I
¼ PTKSWSR1

�e

PT

PN
i¼2 KiWiRi

�e
� � ð1Þ
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Fig. 1 SCS
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where KS and fKigNi¼2 are the radio factors of the signal-

carrying BS and the interfering BSs respectively, PT is

transmitter power, fRjgNj¼1 are the separations between the

corresponding BS to MS pairs, and WS and fWigNi¼2 are the

shadow fading factors corresponding to the signal-carrying

BS and the interfering BSs, respectively. The SCS and its

performance without considering the correlation between

BS to MS path pairs is described in [1–5].

3 Definitions and main results

This section describes important definitions and model of

cellular system used for analyzing the SCS with correlation

between signal propagation paths from BS to MS pairs.

3.1 Definitions

3.1.1 Correlation between paths

In fact, there is correlation between signal propagation

paths from BS to MS [6–13]. While all previous works

about SCS, have not considered this correlation. Correla-

tion is defined with correlation between their multi-path

fading [7] and/or shadow fading factors [6–13].

Szyszkowicz et al. [6] explained completely the correlated

shadowing paths BS to MS pairs. It should be noted

however that most of the literature on correlation in

shadowing is driven by cellular scenarios, where the BS or

MS, and uplink or downlink dualities apply. Also they

concerned auto-correlation, cross-correlation, generalized-

correlation, time-correlation, uplinkdownlink correlation.

We specially consider auto-correlation and cross-

correlation.

3.1.2 Auto-correlation (serial correlation)

This model considers a transmitting base station X received

by the same moving mobile (i.e. MS) Y at two moments in

time t1 and t2 and at distinct locations Y1 ¼ Yðt1Þ and

Y2 ¼ Yðt2Þ. Alternatively, the signal may be received by

two distinct mobiles Y1 and Y2 at the same moment in time.

These scenarios may also be reversed to consider the

uplink. Auto-correlation is illustrated in Fig. 2(a).

3.1.3 Cross-correlation (site-to-site correlation)

Cross-correlation, considers two transmitting base stations

Y1 and Y2 that transmit to a common mobile receiver (i.e.

MS) X. Alternatively, cross-correlation can consider a

mobile transmitter X whose signal is picked up by two base

stations Y1 and Y2. These are illustrated in Fig. 2(b).

Assume that X is the common node to all paths, and located

at the origin for simplicity, and all links are between X and

the points Yi; i = 1 and 2, cross-correlation is the central

object of study in [6].

3.1.4 Correlation coefficient

Consider two directed paths XY1
��!

and XY2
��!

with shadowing

values W1 and W2, respectively. Their correlation coeffi-

cient is q. According to [6] the best model for correlation

between shadowing paths is Eqs. 2, 3 and 4, with two

tunable parameters h0 ð0�\h0 � 180�Þ and X0 (X0 usually

in [6 dB, 20 dB]), it may be tuned to approximate many

other correlation models that might have less-desirable

properties.

q ¼ hðh;XÞ ¼ hhðhÞhXðXÞ ð2Þ

hðhÞ ¼ 1� h
h0

h� h0

0 h[ h0

8
<

:
ð3Þ

hXðXÞ ¼ max 0; 1� X
X0

� �

ð4Þ

where X ¼ 10
ln10

jln R1

R2
j.

The quantities h, R1, R2, and d are illustrated in Fig. 3.

According to the cross-correlation shadowing that was

explained in Sect. 3.1.3 for hexagonal cellular systems and

by considering its similarity with SCS, that all the BSs are

moving and transmit to a common MS, we can define

cross-correlation for SCS.

3.1.5 Cross-correlation in the SCS

Consider random BSs placement at the moment t1 in the

SCS (see Fig. 4). The BSs, according to 2-D Poisson point

process, are moving in the SCS thus random BSs place-

ment at the next moment t2 is different (see Fig. 5).

In Figs. 4 and 5, the subscript t � n in BSt�n and Rt�n

stands for random BSs placement with Rt�n (the separation

between the BSt�n and the MS) at the moments t ¼ 1 and 2

(1 is one moment and 2 is next moment), where

n ¼ 1; 2; 3; . . .;N.

The moving of BSs, at the moment, causes the changing

of distance between BS to MS pairs. Since the shadowing

is function of distance between BS to MS pair [6], there-

fore MS, in transmit paths whit BSs, is affected by different

shadowing factors. Recall that the shadow fading in the

SCS is well modeled by a log-normal

distribution [1–7, 10–12].

For more understanding of the random moving of BSs

and defining of the cross-correlation between path pairs, we

assume random BSs placement at the two sequential
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moments t1 and t2 together at the moment (because dif-

ference between t1 and t2 in two states of random BSs

placement is very small). They are illustrated in Fig. 6

(composite random BSs placement in Figs. 4, and 5, is

shown in the Fig. 6). According to Fig. 6, carrier server at

the first the moment t1, i.e. BS1�1, moving to other place-

ment at the next moment t2, i.e. BS2�1, and also interfer-

ence servers at the first the moment t1, i.e. fBS1�igNi¼2,

moving to other placement at the next moment t2, i.e.

fBS2�igNi¼2. By considering Fig. 6 and defined cross-

correlation in Sect. 3.1.3, we can define cross-correlation

for SCS.

The received power at the MS from BSs is equal the sum

of received powers at the MS at the two moments together.

It is given by Pr ¼ KPTW1R1
�e þ KPTW2R2

�e, where K is

a radio factor, and PT is transmitter power, R1 is the BS to

MS separation at the first moment, R2 is the BS to MS

separation at the next moment, R1
�e is path-loss at the first

moment, R2
�e is path-loss at the next moment, W1 is the

shadowing factor at the first moment and W2 is shadowing

factor at the next moment. According to Sect. 3.1.3 there is

correlation between W1 and W2.

3.2 Main results

In this section, by considering the model described in

Sect. 3.1.5, we calculate an expression for probability

distribution of C and I separately and finally we obtain

(a) (b)

Fig. 2 a Shadowing auto-correlation for a mobile Y(t). b Shadowing cross-correlation for a mobile X

Fig. 3 Pair of auto-correlated cross-correlated paths with the most

relevant dimensional variable d, R1;R2; h

Fig. 4 SCS at the first moment t1

Fig. 5 SCS at the next moment t2
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probability distribution and tail probability for the CIR.

The received power at the MS from BSs can be expressed

in a more general form as Pr ¼ KPTW1R1
�eþ KPTW2R2

�e.

The radio factor K would be a random variable to capture

the variations in antenna gains and antenna orientations,

but we assume K as a constant. Shadowing factor is

modeled as a zero mean log-normal random variable with

variance r2. In probability theory, a log-normal distribution

is a continuous probability distribution of a random vari-

able whose logarithm is normally distributed with mean

m and variance r2, and the mean and variance of log-

normal distribution are computed in term of normal dis-

tribution parameters. Thus, if the random variable W is log-

normally distributed, then Z ¼ lnðWÞ has a normal distri-

bution. Likewise, if Z has a normal distribution, then the

W ¼ eZ , has a log-normal distribution. In such case, we can

write the CIR at the MS, in more general form as

C

I
¼ PTðW1�1R1�1

�e þW2�1R2�1
�eÞ

PT

PN
i¼2ðW1�iR1�i

�e þW2�iR2�i
�eÞ

� � ð5Þ

where R1�1 is the BS (carrier server) to MS separation at

the first moment and R2�1 is the BS (carrier server) to MS

separation at the next moment. Then R1�1
�e is path-loss

between BS (carrier server) to MS at the moment and

R2�1
�e is path-loss between BS (carrier server) to MS at the

next moment. The shadowing factor between BS (carrier

server) to MS at the first moment was introduced with

W1�1 and shadowing factor between BS (carrier server) to

MS at the next moment was introduced with W2�1.

fR1�igNi¼2 are the BSs (interference servers) to MS

separation at the first moment and fR2�igNi¼2 are the

BSs(interference servers) to MS separation at the next

moment. Then fR1�i
�egNi¼2 are path-loss between BSs

(interference servers) to MS at the first moment and

fR2�i
�egNi¼2 are path-loss between BSs (interference ser-

vers) to MS at the next moment. The shadowing factors

between BSs (interference servers) to MS at the first

moment were introduced with fW1�igNi¼2 and shadowing

factors between BSs (interference servers) to MS at the

next moment were introduced with fW2�igNi¼2. By consid-

ering random BSs placement at the moment, the separation

BS to MS pairs at the same moment is constant. Therefore,

for simplicity of calculations, we consider path-loss

between each BS to MS pair as constant a ¼ R�e, thus

C

I
¼ a1�1W1�1 þ a2�1W2�1
PN

i¼2ða1�iW1�i þ a2�iW2�iÞ
ð6Þ

To determine the probability distribution of CIR, we need

to determine the probability distribution of C and

I separately.

3.2.1 The probability distribution of carrier
(C) by considering correlation between shadowing BS
to MS path pairs

According to Eq. 6, MS receives carrier signal from two

main servers (i.e. BS1�1 and BS2�1) that there is correlation

between their shadowing BS to MS path pairs, therefore

C ¼ a1�1W1�1 þ a2�1W2�1 ð7Þ

We know that multiply a constant number by log-normal

random variable produces an another log-normal variable

with different mean and variance, therefore in Eq. 7 we

have the sum of two log-normal random variables. Nev-

ertheless, no exact closed form formula for the distribution

of the sum of several log-normal variables is known. Even

the characteristic function of a log-normal random variable

is not known in closed form. Therefore, several approxi-

mations have been developed such as moment match-

ing [14], recursive methods [15], and Laplas transform

method [16]. Abu-Dayya et al. [17] specifically studied

Wilkinson’s approach [14] and an extension to Schwartz

and Yeh’s approach [15]; their results show that among the

three methods considered in this paper, wilkinson’s

approach may be the best method to compute the distri-

bution of sums of correlated log-normal random variables.

Therefore, in this paper we use Wilkinson’s method to

achieve probability distribution of C. In this approximation

(Fenton-Wilkinson (FW)), sum of N correlated log-normal

random variables is approximated with a log-normal ran-

dom variable. The sum of two correlated log-normal ran-

dom variables can be represented by Eq. 7. By using

Fig. 6 SCS at the two moments t1 and t2 together
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approximation FW, the sum of two correlated log-normal

random variables is approximated with a log-normal ran-

dom variable

C ¼ a1�1W1�1 þ a2�1W2�1 ¼ a1�1e
Y1�1 þ a2�1e

Y2�1 ffi eZ

ð8Þ

where terms Y1�1, Y2�1 and Z are Gaussian random vari-

ables. In FW approximation [17], the mean mz and the

standard deviation rz of Z in Eq. 8 are derived by matching

the first two moments of the both sides of Eq. 8. The first

moment of C is denoted by u1. Matching the first moment,

one obtains

u1 ¼ E Cf g ¼ E eZ
� �

¼ E a1�1e
Y1�1 þ a2�1e

Y2�1
� �

¼ emzþrz2

2

¼ a1�1e
my1�1

þry1�1
2

2 þ a2�1e
my2�1

þry2�1
2

2

ð9Þ

where mz and rz2 are in decibels (dB) [17]. The second

moment of C is denoted by u2. Matching the second

moment gives

u2 ¼ E C2
� �

¼ E e2Z
� �

¼ E ða1�1e
Y1�1 þ a2�1e

Y2�1Þ2
n o

¼ e2mzþ2rz2 ¼ E ða1�1e
Y1�1Þ2

n o
þ E ða2�1e

Y2�1Þ2
n o

þ 2a1�1a2�1E eY1�1þY2�1
� �

¼ a1�1
2e2my1�1

þ2ry1�1
2 þ a2�1

2e2my2�1
þ2ry2�1

2

þ 2a1�1a2�1 emy1�1
þmy2�1 e

1
2
ry1�1

2þry2�1
2þ2ðqy1�1 ;y2�1

Þry1�1
ry2�1ð Þ

	 


ð10Þ

Solving Eqs. 9 and 10 for mean and standard deviation of

Z yields

mz ¼ 2lnðu1Þ �
1

2
lnðu2Þ ð11Þ

rz
2 ¼ lnðu2Þ � 2lnðu1Þ ð12Þ

Thus, we can approximate the sum of two correlated log-

normal random variables with a log-normal random vari-

able C ¼ eZ with parameters (mz; rz2). The probability

distribution of C is

fCðCÞ ¼
e
� lnðCÞ�mz

rzð Þ2
2

C
ffiffiffiffiffiffi
2p

p
rz

ð13Þ

3.2.2 The probability distribution of interference
(I) by considering correlation between shadowing BS
to MS path pairs

MS receives interference signals from interference servers

at the first the moment t1, i.e. fBS1�igNi¼2, and interference

servers at the next moment t2, i.e. fBS2�igNi¼2, together, that

there is correlation between their shadowing BS to MS path

pairs, therefore

I ¼ ða1�2W1�2 þ a2�2W2�2Þ þ ða1�3W1�3 þ a2�3W2�3Þ þ � � �
þ ða1�NW1�N þ a2�NW2�NÞ

ð14Þ

where I is sum of N-1 correlated log-normal random

variables. Similar to C in Sect. 3.2.1, we use FW approx-

imation, therefore I is approximated with a log-normal

random variable I ¼ ew. The sum of N correlated log-

normal random variables can be represented by the

expression

I ¼
XN

i¼2

a1�iW1�i þ a2�iW2�ið Þ ð15Þ

By using approximation FW

I ¼
XN

i¼2

a1�iW1�i þ a2�iW2�ið Þ

¼
XN

i¼2

a1�ie
Y1�i þ a2�ie

Y2�i
� �

ffi eW

ð16Þ

The mean mw and the standard deviation rw of W in Eq. 16

are derived by matching the first two moments of the both

sides of Eq. 16. The first moment of I is denoted by u1.

Matching the first moment, one obtains

u1 ¼ E If g ¼ E eW
� �

¼ E ða1�2W1�2 þ a2�2W2�2Þ þ � � �f
þ ða1�NW1�N þ a2�NW2�NÞg

¼ E
XN

i¼2

a1�ie
Y1�i þ a2�ie

Y2�i
� �

( )

¼ emwþrw2

2 ¼
XN

i¼2

a1�ie
my1�i

þry2�i
2

2 þ a2�ie
my2�i

þry2�i
2

2

� �

ð17Þ

where mw and rw2 are in dB [17]. The second moment of

I is denoted by u2. Matching the second moment gives

u2 ¼ E I2
� �

¼ E e2W
� �

¼ E ða1�2W1�2 þ a2�2W2�2Þ þ � � � þ ða1�NW1�N þ a2�NW2�NÞð Þ2
n o

¼ E
XN

i¼2

ða1�ie
Y1�i þ a2�ie

Y2�iÞ
 !2

8
<

:

9
=

;
¼ e2mwþ2rw2

¼
XN

i¼2

E a1�ie
Y1�i þ a2�ie

Y2�i
� �2
n o

þ 2
XN�1

i¼2

XN

j¼iþ1

E ða1�ie
Y1�i þ a2�ie

Y2�iÞ a1�je
Y1�j þ a2�je

Y2�j
� �� �� �

¼ Aþ B

ð18Þ

where
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A ¼
XN

i¼2

E a1�ie
Y1�i þ a2�ie

Y2�i
� �2
n o

¼
XN

i¼2

E a1�ie
Y1�i

� �2þ a2�ie
Y2�i

� �2þ2 ða1�ie
Y1�iÞða2�ie

Y2�iÞ
� �n o

¼
XN

i¼2

E a1�ie
Y1�i

� �2þ a2�ie
Y2�i

� �2þ2 a1�ia2�ie
Y1�iþY2�i

� �n o

¼
XN

i¼2

a1�i
2e2my1�i

þ2ry1�i
2 þ a2�i

2e2my2�i
þ2ry2�i

2
	

þ 2a1�ia2�i emy1�i
þmy2�i e

1
2ðry1�i

2þry2�i
2þ2ðqy1�i ;y2�i

Þry1�i
ry2�i

Þ
	 



ð19Þ

B ¼ 2
XN�1

i¼2

XN

j¼iþ1

E ða1�ie
Y1�i þ a2�ie

Y2�iÞða1�je
Y1�j þ a2�je

Y2�jÞ
� �� �

¼ 2
XN�1

i¼2

XN

j¼iþ1

E ða1�ia1�je
Y1�iþY1�jÞ þ ða1�ia2�je

Y1�iþY2�jÞ
�

þða2�ia1�je
Y2�iþY1�jÞ þ ða2�ia2�je

Y2�iþY2�jÞ
�
¼ 2

XN�1

i¼2

XN

j¼iþ1

a1�ia1�j e
my1�i

þmy1�j e
1
2 ry1�i

2þry1�j
2þ2ðqy1�i ;y1�j

Þry1�i
ry1�j

	 
 ! 

þ a1�ia2�j e
my1�i

þmy2�j e
1
2

ry1�i
2þry2�j

2þ2ðqy1�i ;y2�j
Þry1�i

ry2�j

	 
 !

þ a2�ia1�j emy2�i
þmy1�j e

1
2

ry2�i
2þry1�j

2þ2ðqy2�i ;y1�j
Þry2�i

ry1�j

	 
 !

þ a2�ia2�j e
my2�i

þmy2�j e
1
2

ry2�i
2þry2�j

2þ2ðqy2�i ;y2�j
Þry2�i

ry2�j

	 
 !!

ð20Þ

Therefore, we have u2 ¼ Aþ B ( Eq. 18 ¼ Eq. 19 þ
Eq. 20). Solving Eqs. 17 and 18 for mean and standard

deviation of W yields

mw ¼ 2lnðu1Þ �
1

2
lnðu2Þ ð21Þ

rw
2 ¼ lnðu2Þ � 2lnðu1Þ ð22Þ

Thus, we can approximate the sum of N-1 correlated log-

normal random variables with a log-normal random vari-

able I ¼ eW with parameters (mw; rw2). The probability

distribution of I is

fIðIÞ ¼
e
� lnðIÞ�mw

rwð Þ2
2

I
ffiffiffiffiffiffi
2p

p
rw

ð23Þ

3.2.3 The probability distribution of CIR by considering
correlation between shadowing BS to MS path pairs

Now by obtaining the probability distribution of U,

the probability distribution of CIR is found.

U ¼ C

I
¼ eZ

eW
ð24Þ

By considering Eq. 24, the probability distribution of U is

fUðUÞ ¼ eZ�W ð25Þ

where Z and W are Gaussian random variables. We con-

sider K ¼ Z �W then

fUðUÞ ¼ eK ð26Þ

To calculate fUðUÞ (i.e. the probability distribution of

CIR), first, we calculate distribution of K.

The probability distribution of subtract of two normally

distributed variables Z and W with means and variances

ðmz; rz2Þ and ðmw; rw2Þ, respectively, is another normal

distribution (i.e. fKðKÞ) and given by

fKðKÞ ¼
Z 1

�1

e
�Z2

2rz2

rz
ffiffiffiffiffiffi
2p

p :
e
�W2

2rw2

rw
ffiffiffiffiffiffi
2p

p dððZ �WÞ � KÞdZdW

¼ e
� K�mz�w

rz�wð Þ2
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2prz�w

2
p

ð27Þ

where dðxÞ is a delta function and

mz�w ¼ mk ¼ mz � mw ð28Þ

rz�w
2 ¼ rk

2 ¼ rz
2 þ rw

2 ð29Þ

Therefore, probability distribution of K is

fKðKÞ ¼
e
� K�ðmz�mwÞð Þ2

2ðr2zþr2wÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðr2z þ r2wÞ

p ð30Þ

Then, the probability distribution of U ¼ C
I
¼ eK (i.e.

fUðUÞ), is a log-normal with parameters (mk; rk2).

fUðUÞ ¼ fCIRðCIRÞ ¼
e
� lnðUÞ�mk

rk

� �2

2

U
ffiffiffiffiffiffi
2p

p
rk

ð31Þ

In [1–5], tail probability of the CIR performance metric is

given by prob C
I
[ y

�
�
�
�y� 1; e

 �

¼ Key
�2
e , where the con-

stant Ke ¼ prob C
I
[ 1

�
�
�
�e

 �

and e is the path-loss exponent.
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Therefore, we can easily calculate the tail probability of

CIR, for a SCS over a generalized shadowing distribution.

prob
C

I
[ y

 �

¼
Z 1

U¼y

fUðUÞdU ¼
Z 1

U¼1

fUðUÞdU ð32Þ

By using Eq. 31 in Eq. 32, the tail probability of CIR is

given by

prob
C

I
[ y

 �

¼
Z 1

U¼y

e
� lnðUÞ�mk

rk

� �2

2

U
ffiffiffiffiffiffi
2p

p
rk

dU

¼
Z 1

U¼1

e
� lnðUÞ�mk

rk

� �2

2

U
ffiffiffiffiffiffi
2p

p
rk

dU

ð33Þ

3.3 Numerical example

In this section, to better understand our work, we show

simple numerical example. To simplify of calculations, we

only consider four BSs at any moment, that first nearest BS

is main server (carrier server) and next BSs are interference

servers. We assume random BSs placement distribution in

at the moment t1 be according to Fig. 4 with N ¼ 4.

Moreover, the BSs, according to 2-D Poisson point process,

are moving in the SCS thus random BSs placement at the

next moment t2 is different (see Fig. 5 with N ¼ 4). For

more understanding of the random moving of BSs and

defining of the cross-correlation between path pairs, we

assume random BSs placement at the two sequential

moments t1 and t2 together at the moment. They are

illustrated in Fig. 6 (composite random BSs placement in

Figs. 4 and 5, is shown at the Fig. 6).

In this example, we consider values of column R in

Table 1 for Fig. 6. Recall that the shadow fading in the

SCS is well modeled by a log-normal distribution. Shad-

owing (variance of log-normal random variable) is a

function of the separation between paths BS to MS

pairs [6]. Then, for calculating r in dB using

rðRÞ ¼ 10 1� e
�3R
200

	 

ð34Þ

where R is distance between BS to MS. According to

Eq. 34 and values of column R in Table 1, we obtain

values of column rs in Table 1.

According to Sect. 3.2, to calculate the CIR by consid-

ering correlation between shadowing paths we use Eq. 6

with N ¼ 4, where Ws are shown in Table 1.

In this example, we assume path-loss power e is 3, then
obtain values a according to column a in Table 1. For

calculating correlation between shadowing paths between

main server to MS path pair, i.e. W1�1 and W2�1, using

Eqs. 2, 3, and 4.

If we assume the angle of between path pair

h1�1;2�1 ¼ 10�, by using Eq. 3 we have hðhÞ ¼ 0:8333.

According to description of Sect. 3.1.4, we have

X ¼ 10

ln10
ln
R2�1

R1�1

�
�
�
�

�
�
�
� ¼

10

ln10
ln
105m

100m

�
�
�
�

�
�
�
� ¼ 0:5115 ð35Þ

By using Eq. 4 we obtain

hXðXÞ ¼ max 0; 1� X
6

� �

¼ 0:9647 ð36Þ

Then by entering Eqs. 3 and 4 in Eq. 2, correlation coef-

ficient between path pair is

q ¼ hðh;XÞ ¼ hhðhÞhXðXÞ ¼ 0:8333� 0:9647 ¼ 0:8039

ð37Þ

For calculating probability distribution of C ¼
ða1�1W1�1 þ a2�1W2�1Þ, we use Eqs. 8, 9, 10, 11, and 12.

Therefore mC ¼ �13:4009 dB and rC2 ¼ 62:3270 dB.

For calculating correlation between shadowing inter-

fering server to MS path pairs I ¼
P4

i¼2ða1�iW1�i þ a2�i

W2�iÞ, we use Eqs. 2, 3, and 4. If the angle between path

pairs is similar to the column h in Table 2, then by using

Eqs. 2, 3, 4, correlation between path pairs are obtained

similar to the column q in Table 2.

Also, for calculating probability distribution of I, we use

Eqs. 16, 17, 18, 21, and 22.

Therefore

mI ¼ �13:5681 dB and rI2 ¼ 74:2140 dB. Finally for

calculating the probability distribution of CIR, we enter

Eqs. 28 and 29 in Eq. 31. Therefore, the distribution of

CIR is a log-normal random variable with parameters mk ¼
0:1672 dB and rk2 ¼ 11:68512 dB, thus CIR	 log� N

ð0:1672; 11:68512Þ.
The tail-probability of CIR for a SCS over a generalized

shadowing distribution by using Eq. 33 is

prob
C

I
[ yjy� 1

 �

¼
Z 1

U¼y

fUðUÞdU

¼
Z 1

1

1

U � 11:6851
ffiffiffiffiffiffi
2p

p e
� lnðUÞ�0:1672ð Þ2

2�11:68512 dU

ð38Þ

4 Simulation results

In this section, the details of simulating the SCS are pre-

sented. In every single trial a random number

M	PoissonðkÞ is generated for the number of interferer

BSs, and then the BSs are placed around MS (this MS

without loss of generality, is assumed to be located at the

origin). The received power at the MS for each BS is
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computed by using the path-loss exponent e and the sha-

dow fading. For calculating the numerical results, in every

trial, the received power at the MS from each BS is com-

puted by generating random variables for shadowing

according to the log� Nð0; rW2Þ. Finally the CIR random

variable by considering correlated shadowing and inde-

pendent shadowing paths between BS to MS pairs is gen-

erated according to Eq. 5. The trial is repeated T ¼ 10;000

times and the tail probability of C
I
[ 1

� �
is simulated.

Mont-Carlo method is used with number of iteration T ¼
10;000 times. Figure 7 shows the plot of Ke vs e comparing

the semi analytical expression with the Monte-Carlo sim-

ulations by considering correlated shadowing and inde-

pendent shadowing paths between BS to MS pairs. This

shows that this work is consistent with the previous

attempts (cf. Fig. 2 of [1]). As with any cellular system

covering the plane, communication is impossible when the

path-loss exponent is less than or equal to 2. Conversely,

CIR only improves with greater attenuation. In Fig. 8, the

tail probability of CIR for a SCS, over different channel

models, at different BS densities are compared. Correlated

shadowing increases the tail probability, as was concluded

in [2] with independent shadowing effect. Also, increasing

the BS density, reduces the tail probability for all channel

models; that it is because of increasing the interferer BSs.

But when the number of BSs goes up, the tail probability

gets approximately fixed, because the ratios of interferer

distances to server distance get very high; hence the path-

loss gets approximately fix. It is the same as results in

[2, 5], calculated for path-loss channels. We compare the

distributions of CIR for two different BS densities by

considering correlated shadowing and independent shad-

owing paths between BS to MS path pairs, in Fig. 9. It

shows that, when we consider correlated shadowing,

the average of CIR is increased. Also, it is obvious that

increasing the BS density leads to upper interference, and

reduces the average of CIR.

Table 1 Parameters R, r, a and

W in the numerical example
R (m) r (dB) W	 log-Nð0;r2Þ a ¼ R�e

R1�1 ¼ 100 r1�1 ¼ 7:7687 W1�1 	 log-Nð0; 7:76872Þ a1�1 ¼ 100�3

R1�2 ¼ 110 r1�2 ¼ 8:0795 W1�2 	 log-Nð0; 8:07952Þ a1�2 ¼ 110�3

R1�3 ¼ 120 r1�3 ¼ 8:3470 W1�3 	 log-Nð0; 8:34702Þ a1�3 ¼ 120�3

R1�4 ¼ 130 r1�4 ¼ 8:5773 W1�4 	 log-Nð0; 8:57732Þ a1�4 ¼ 130�3

R2�1 ¼ 105 r2�1 ¼ 7:9299 W2�1 	 log-Nð0; 7:92992Þ a2�1 ¼ 105�3

R2�2 ¼ 115 r2�2 ¼ 8:2183 W2�2 	 log-Nð0; 8:21832Þ a2�2 ¼ 115�3

R2�3 ¼ 125 r2�3 ¼ 8:4665 W2�3 	 log-Nð0; 8:46652Þ a2�3 ¼ 125�3

R2�4 ¼ 135 r2�4 ¼ 8:6801 W2�4 	 log-Nð0; 8:68012Þ a2�4 ¼ 135�3

Table 2 Angle h and correlation q between path pairs in the

numerical example

hð�Þ q

h1�1;2�1 ¼ 10 q1�1;2�1 ¼ 0:1609

h1�2;2�2 ¼ 20 q1�2;2�2 ¼ 0:1182

h1�3;2�2 ¼ 10 q1�3;2�2 ¼ 0:1366

h1�1;1�2 ¼ 30 q1�1;1�2 ¼ 0:1889

h1�1;1�3 ¼ 15 q1�1;1�3 ¼ 0:5441

h1�2;1�3 ¼ 15 q1�2;1�3 ¼ 0:2607

h2�1;2�2 ¼ 15 q2�1;2�2 ¼ 0:2716

h2�1;2�3 ¼ 30 q2�1;2�3 ¼ 0:3482

h2�2;2�3 ¼ 15 q2�2;2�3 ¼ 0:2507

h1�1;2�2 ¼ 10 q1�1;2�2 ¼ 0:4626

h1�1;2�3 ¼ 20 q1�1;2�3 ¼ 0:5929

h1�2;2�3 ¼ 10 q1�2;2�3 ¼ 0:4263

h1�2;2�1 ¼ 30 q1�2;2�1 ¼ 0:0924

h1�3;2�1 ¼ 15 q1�3;2�1 ¼ 0:3993

h1�3;2�2 ¼ 10 q1�3;2�2 ¼ 0:1419

Fig. 7 Comparison of the Ke obtained through Monte-Carlo simula-

tions with that obtained from the semi-analytical expression by

considering correlated shadowing and independent shadowing paths

between BS to MS pairs for various path-loss exponent values ðeÞ
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5 Conclusion

We know that in reality between signal propagation paths

there is correlation. This correlation is defined with cor-

relation between their shadowing factors. In this paper, by

considering this correlation as an important factor between

BS to MS pairs, we have analyzed the performance of SCS,

i.e. CIR, and determined an expression for the distribution

of CIR, and then obtained the tail probability of the CIR.

We compared the calculated distributions and exploited the

Monte-Carlo results by simulations, in order to show the

ability of approximation and correctness of the analytical

expression. Also, the simulations illustrated that the

correlated shadowing provides better metric performances

in the SCS.
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