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Abstract
Automatic modulation classification plays an important role in many fields to identify the modulation type of wireless

signals in order to recover signals by demodulation. In this paper, we contribute to explore the suitable architecture of deep

learning method in the domain of communication signal recognition. Based on architecture analysis of the convolutional

neural network, we used real signal data generated by instrument as dataset, and achieved compatible recognition accuracy

of modulation classification compared with several representative structure. We state that the deeper network architecture

is not suitable for the signal recognition due to its different characteristic. In addition, we also discuss the difficult of

training algorithm in deep learning methods and employ the transfer learning method in order to reap the benefits, which

stabilize the training process and lift the performance. Finally, we adopt the denoising autoencoder to preprocess the

received data and provide the ability to resist finite perturbations of the input. It contributes to a higher recognition

accuracy and it also provide a new idea to design the denoising modulation recognition model.

Keywords Modulation classification � Deep learning � Convolutional neural network �Wireless signal � Transfer learning �
Denoising autoencoder

1 Introduction

Automatic modulation classification (AMC) is aiming to

detect the modulation type of received signals in order to

recover signals by demodulation. Research of modulation

recognition techniques is one of the key technologies of

receiver in the non-cooperative communication systems. It

is of significance in both militarily and civilian applica-

tions. Recently, the idea of intelligent communication is

proposed and we hope the intelligent receiver can decode

the message information and search for a specific signal for

need. Furthermore, in military communication systems,

detection of the modulation type is significant in generating

energy efficient jamming signals.

Generally, the dominant approach of signal modulation

recognition can be categorized as likelihood-based meth-

ods and feature-based methods [5]. Most likelihood-based

classifiers require parameter estimation, while feature-

based methods can be free from parameter estimation and

achieve high popularity in recent years. Feature-based

methods consist of two steps: feature extraction and clas-

sifier, which can provide classification decisions according

to some particular criterion. Although there are many

feature extracting methods and their combinations, how-

ever, their performance might not be easily compared as

different algorithms consider different modulation sets and

different assumptions, such as the channel fading, fre-

quency carrier and phase offsets. However, most conven-

tional feature-based methods cannot utilize full feature

information when the performance of feature-based meth-

ods relies on the quality of the extracted features.
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Furthermore, artificially choosing features is a complicated

and difficult process. To solve this problem, some methods

based on deep learning have been proposed and achieved

good results [14, 20, 22], the advantage of which is that the

method can extract features automatically from the signal

data.

As a branch of machine learning, deep learning is a

fascinating field and has achieved a series of state of the art

results in different domains while it also has been tried for

modulation classification in some related researches

[14, 20, 22]. From the result show in the most literature, the

deep learning method can get a better performance com-

pared with the conventional feature-based method in most

modulation sets. That is own to the information which is

get from the large-scale training process. However, how to

apply the deep learning method in the problem of com-

munication signal recognition seems to not have a

criterion.

In this paper, we contribute to explore the suitable ar-

chitecture of deep learning method in the domain of

communication signal recognition and pave the road for the

development in automatic modulation classification.

Among those algorithm architecture proposed in the liter-

ature, convolutional neural network (CNN) [12] enjoys

high popularity due to its low complexity and translation

invariance. We also adopt the CNN as our base structure to

recognize the signal modulation types and get a good

effect. Most research about deep learning method often

highlight two salient aspects, which consist of how to

design the model architecture and how to conduct training

process. However, the result is varied sometimes it is even

terrible due to the different training process. In our

experiments we found that the transfer learning method

[15], which refers to the situation where some learned

knowledge is transferred to improve generalization in

another setting, can help learning process. The motivation

is that the same representation may be useful in both set-

tings. The main contribution of transfer learning is stabilize

the training process on account of a good initial point and

get a lift in the performance. For improving performance

further, we use the denoising autoencoder [19] to prepro-

cess the received signal, which can bring prominent

advantages to the next recognition management. In this

case, we get the best performance in this paper in the last.

The main idea of this paper is to provide a stacked

convolutional neural network of deep learning architecture

for modulation classification based on extracted features of

wireless signals automatically. We state the advantage of

deep learning method and how we improve our model.

Besides, we also analyze the improved performance

method about the transfer learning and denoising autoen-

coder. The rest of the paper is organized as follows. In

Sect. 2, convolutional neural network and some related

principle are investigated. Based on real sampled data of

wireless signals, an improved CNN architecture is trained

and proposed in Sect. 3. In Sect. 4, to solve the problem of

training process, the transfer learning method is investi-

gated and adopt to stabilize the training process. In Sect. 5,

we introduce the principle of denoising autoencoder and

how we training the denoising autoencoder architecture,

which get a lift in the performance. Finally, conclusions are

drawn in Sect. 6.

2 Convolutional neural network

2.1 Machine learning and deep learning

Machine learning has found wide-ranging applications in

image/audio processing, finance and economics, social

behavior analysis, project management, and so on. A

machine learning algorithm is an algorithm that is able to

learning from data. Machine learning algorithms can be

simply categorized as supervised and unsupervised learn-

ing, where the adjectives ‘‘supervised/unsupervised’’ indi-

cate whether there are labeled samples in the database. In

this paper, we use supervised learning method to satisfy our

demand. The goal of a machine learning model is to

approximate a function f �. For a classifier, function

y ¼ f �ðxÞ maps an input x to a category y. A model defines

a mapping criterion y ¼ f ðx; hÞ and obtains the value of the

parameters h that result in the optimal approximation

function of the true mapping function. Especially, deep

learning allows the model to build complex concepts out of

simpler concepts. The quintessential example of a deep

learning model is the feed-forward deep network or mul-

tilayer perceptron (MLP). A multilayer perceptron is just a

mathematical function mapping some set of input values to

output values. The function is formed by composing many

simpler functions.

2.2 Architecture of convolutional neural
network

Convolutional neural network is a powerful architecture of

artificial neural network, which is popular because of state

of the art achievement in computer vision processing and

natural language processing.

CNN process consists of two components: convolutional

layers and pooling layers. Convolutional layers are com-

prised of filter kernels and feature maps. The filter kernels

have weighted inputs and generate an output value like a

neuron. The feature maps is the output of one filter kernel

applied to the previous layer. A given filter kernel is drawn

across the entire previous layer and moved one point at a

time, which depends on the stride. Each position results in
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activation of the neuron and generates an output to form the

feature maps, as illustrated in Fig. 1.

Assume we have a 4D kernel tensor K with element

Ki;j;k;l giving the connection strength between a unit in

channel i of the output unit and a unit in channel j of the

input, with an offset of k rows and l columns between the

output unit and the input unit. Assume our input consists of

observed data V with element Vi;j;k giving the value of the

input unit within channel i at row j and column k. Assume

our output consists of Z with the the same format as V. If

Z is produced by convolving K across V without flipping

K, then

Zi;j;k ¼
X

l;m;n

Vi;jþm�1;kþn�1Ki;l;m;n ð1Þ

where the summation over l, m and n is over all values for

which the tensor indexing operations inside the summation

is valid.

The pooling layer down-samples the feature map of

previous layers. Pooling layers follow a sequence of con-

volutional layers to consolidate the learned features in the

previous feature map. Therefore, pooling may be consid-

ered as a technique to compress and generalize feature

representation, so as to generally reduce the model over-

fitting phenomena. In Fig. 2, the max pooling process is

illustrated with pool width of 3 and stride of 2.

2.3 Training process based on stochastic
gradient descent

Nearly all of deep learning is powered by important

Stochastic gradient descent (SGD) algorithm [21].

Stochastic gradient descent is typical and preferred to

training process for neural networks. One row of data is

inputted into the network at a time. The network activates

neurons forward to produce an output value finally. Then

the output value is compared to the expected output value

to generate an error value. The error is backward

propagated through the network, in which the weights of

layer are updated one after another, according to the con-

tributed amount to the error. The process is repeated for all

of the examples in the training data to get a trained network

of the intended goal.

The weights in the network can be updated from the

calculated errors for each training example, which can

result in fast but also chaotic changes to the network. On

the other hand, the errors can be saved up across all of the

training examples and the network can be updated at the

end.

The cost function used by a machine learning algorithm

often decomposes as a sum over training examples of some

per-example loss function. For example, the negative

conditional log-likelihood of the training data can be

written as

JðhÞ ¼ Ex;y� pdataLðx; y; hÞ ¼
1

m

Xm

i¼1
LðxðiÞ; yðiÞ; hÞ ð2Þ

where L is the per-example loss

Lðx; y; hÞ ¼ � log pðyjx; hÞ ð3Þ

For these additive cost functions, gradient descent requires

computing

5hJðhÞ ¼
1

m

Xm

i¼1
5hLðxðiÞ; yðiÞ; hÞ ð4Þ

Fig. 1 Convolution operation of

CNN

Fig. 2 Max pooling process of CNN

Wireless Networks (2019) 25:3735–3746 3737

123



Considering the computational cost, we use a small set of

samples to approximately estimate the true gradient.

Specifically, on each step of the algorithm, we can sample a

minibatch of examples B ¼ fxð1Þ; . . .; xðmÞg drawn uni-

formly from the training set. The minibatch size m’ is

typically chosen to be a relatively small number of

examples, ranging from 1 to a few hundred.

Based on examples from the mini-batch B, the estimate

of the gradient is formed as

g ¼ 1

m
0 5h

Xm0

i¼1
LðxðiÞ; yðiÞ; hÞ ð5Þ

The stochastic gradient descent follows the estimated gra-

dient downhill

h h� eg ð6Þ

where e is the learning rate.

While stochastic gradient descent remains a very pop-

ular optimization strategy, learning with it can sometimes

be slow. The method of momentum [16] is designed to

accelerate learning, especially in the face of high curvature,

small but consistent gradients, or noisy gradients. The

momentum algorithm accumulates an exponentially

decaying moving average of past gradients and continues

to move in their direction. A hyperparameter a 2 ½0; 1Þ
determines how quickly the contributions of previous

gradients exponentially decay. The update rule is given by

v av� e5h
1

m

Xm

i¼1
Lðf ðxðiÞ; hÞ; yðiÞÞ ð7Þ

h hþ v ð8Þ

The velocity v accumulates the gradient elements

5h
1
m

Pm
i¼1 Lðf ðxðiÞ; hÞ; yðiÞÞ. The larger a is relative to e, the

more previous gradients affect the current direction.

3 The proposed CNN for modulation
classification

To meet the requirements of modulation classification, our

network architectures are mainly inspired by ALEXNET

[11], as shown in Fig. 3.

3.1 Signals data sampled and process

Because digital modulation has better immunity perfor-

mance to interference, which is mostly discussed in the

literatures for modulation classification. Here, it is assumed

that there is a single carrier-transmitted signal in additive

white Gaussian noise (AWGN) channel. The modulation

types include 2ASK, BPSK, QPSK, 8PSK and 16QAM.

The signal data are produced by vector signal generator.

The sampling rate is 1GHz. All the signal data of different

modulation types have the same carrier frequency of

100 MHz and bandwidth of 25 MHz. Every sample has

2000 raw points and there are 25,000 samples in total, 5000

samples for each modulation type. The only preprocess is

to rescale the amplitude to the range of � 2 to 2 V.

For most classification and regression process, there is

still possibility to get results even with small random noise

added to the input. However, neural networks are proved

not robust to noise [18]. One way to improve the robustness

of neural networks is simply to do training process with

input random noise data. So in training procedure to

improve the robustness, training data of same SNR are

included, which are also used to test the performance of

proposed method in different SNR conditions.

When the network layers are not deep, it is not likely to

encounter the problems like vanishing/exploding gradients

[2, 4]. The principle of maximum likelihood is taken as the

cost function, which means the cross-entropy between the

training data and the prediction of the model is regarded as

the cost function. The weights are initialized with Gaussian

distribution initializers, which have zero means and unit

variance. We use rectified linear units [13] as our activation

function in every convolutional layers, the function is given

by

gðzÞ ¼ maxf0; zg ð9Þ

This makes the derivatives through a rectified linear unit

remain large whenever the unit is active. We adopt the

Softmax function as our output function which is given by

softmaxðzÞi ¼
expðziÞP
j expðzjÞ

ð10Þ

The SGD is involved with a mini-batch size of 256. The

weight decay is 0.0001 and the momentum is 0.9. The

learning rates starts from 0.1.

As for the testing process, it is typically to use a simple

separation of the same sampled data into training and

testing datasets. In experiments, 80% data of the sampled

signal is assigned to training dataset and 20% data of the

sampled signal is assigned to testing dataset. Finally when

the training is halt, we get the accuracy through inputting

the testing datasets and statistical the accuracy.

3.2 The improved CNN architecture

In this section, we mainly explore how to design the

adaptive model architecture to get a higher recognition

accuracy and lower complexity.

3738 Wireless Networks (2019) 25:3735–3746
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To analyze the design principle and the result, we

choose 3 kinds of representative structure proposed in the

literatures and adopt the parameter to compare the per-

formance and complexity. In our experiment, we use the

stacked denoising sparse autoencoder proposed in [22] as

the base structure to state that the advantage of CNN.

Besides, paper [20] show that radio modulation recognition

is not limited by network depth and we also investigate the

deep neural network with more than 30 layers to explore

the applicability. Finally, we also compare the performance

with the CNN2 in paper [14] to demonstrate the role of the

fully-connected layer.

In our improved CNN architecture, the large kernel size

is designed for better performances and acceptable com-

plexity. Moreover, after investigating the deep neural net-

work with more than 30 layers, it is found that there are

over-fitting problems. It is possible to apply a shallow

neural network to compete modulation recognition for

signals with reasonable SNR. Based on the analysis above,

the number of input neuron is 2000, which means every

sample has 2000 raw points. The improved CNN is pro-

posed with 3 convolutional layers, and each convolutional

layer is followed by a max pooling layer. At the end of the

CNN network, a 5-way fully-connected layer with Softmax

is used to output the probability of 5 kinds of signal

modulations classification. The convolutional layers have

filter kernels with length of 40. 64 filter kernels are used in

both the input layer and the second layer. For the third

layer, the filter kernels are increased to length of 128. The

max pooling layers perform down-sampling with stride of 2

and pool width of 3 to get overlapping pooling. We do not

use the any regularization like dropout [8]. So, the

improved CNN consists of 4 weighted layers, as shown in

Fig. 4.

3.3 Experiments and results analysis

In order to evaluate recognition performances of deep

neural networks with shallow neural networks and explain

what is overfitting phenomenon by an instance and explain

how this phenomenon appear, a 32-layers RESNET [6, 7]

(we have to use bottleneck structure due to the degradation

problem) and the improved CNN with 4 layers are com-

pared under condition of SNR = 0 dB.

As shown in Table 1, although both have similar train-

ing accuracy, the improved 4-layer CNN has better testing

accuracy than the 32-layer RESNET. Overfitting occurs

when the gap between the training error and test error is too

large.

Although the deeper network can provide higher

capacity and it will get worse result sometimes fail for two

different reasons. First, the optimization algorithm used for

training may not able to find the value of the parameters

that corresponds to the desired function. Second, the

training algorithm might choose the wrong function.

Models with high capacity can overfit by memorizing

properties of the training set that do not serve them will on

the test set.

Recognition accuracy performances of the improved

CNN are compared with several representative deep

learning structure in different SNR conditions as shown in

Fig. 5 and the complexity comparison is show in the

Table 2.

The improved CNN has better recognition accuracy in

these compared structure. Due to the overfitting problem,

the performance of the RESNET structure is not good. But

the descent speed in RESNET network is more stable than

the improved CNN with shallow layers as the SNR drops to

a low extent. The chain rule states that

dz

dx
¼ dz

dy

dy

dx
ð11Þ

Fig. 3 The architecture of ALEXNET
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As the neural network becomes deeper, the derivatives of

the expression of the neural network f is likely to be

smaller, and the feature extraction function will be robust

to finite perturbations of the input, which will be discussed

detailed in Sect. 5. When the SNR of received signals is

very weak, a deep neural network may provide stronger

power to distinguish signal from noise.

Except the overfitting problem, all the CNN structure

have a better performance than the base structure which is

composed by multilayer perceptron. The features extracts

by the CNN, which have the translation invariance, can

utilize feature information better. And we found that the

removal of the fully-connected layers of ALEXNET will

reduce the amount of weight parameters and get little

impact of the recognition accuracy performance. As a

result we got our final structure and the improved CNN

which has best recognition accuracy in these compared

structure.

A prior to apply a deep neural network to a task is that

the factors of variation which can explain the observed data

are expressed in terms of other, simpler representation.

And this simpler representation are combined to more

complicated representation. That is why the deep learning

method get so many success in some domains like com-

puter vision. However, the communication signal is dif-

ferent from those conventional AI task so we think the

deeper neural network is not appropriate for the signal

recognition tasks.

4 Transfer learning improvement method

Transfer learning refers to the situation where what has

been learned in one setting P1 is exploited to improve

generalization in another setting P2. In transfer learning,

the learner must perform two or more different tasks, but

we assume that many of the factors that explain the vari-

ations in P1 are relevant to the variations that need to be

captured for learning P2. A conventional example of

transfer learning is show in Fig. 6. Sometimes what is

shared among the different tasks is not the input but the

output. It makes more sense to share the upper layers of the

neural network. The transfer learning may help to learn

representations that are useful to quickly generalize.

Using the same representation in both settings allows the

representation to benefit from the training data that is

available for both tasks. In this paper how we apple transfer

learning method is show in Fig. 7. In this case, one task is

easy to fulfill while another is hard due to the low quality

Fig. 4 The improved CNN

structure

Table 1 The accuracy comparison between the improved CNN and

RESNET ðSNR ¼ 0 dBÞ

The improved CNN 32 Layers RESNET

Training accuracy Approximate 100% Approximate 100%

Testing accuracy Approximate 100% 86.7%

−5 0 5
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

SNR(dB)

A
cc

ur
ac

y(
%

)

The Improved CNN
32−layer RESNET
base structure
CNN2

Fig. 5 Recognition accuracy comparison

Table 2 The complexity comparison (l is the number of input point)

The number of multiplication

The improved CNN 1:66� 105 � l

CNN2 2� 105 � l

Base structure 5� 103 � l
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of dataset. We can use transfer learning through sharing

weight between the two learning process.

We initialize the weights with the same initializer to

explore the performance of the proposed neural network

architecture in different SNR conditions and encounter the

unstable training problem. We take the experiment with the

SNR ranks � 1 to � 3 dB as an example to describe this

phenomenon. The result of three times in different SNR

conditions is list in Table 3, we report ‘‘failed’’ when the

accuracy is lower than 40%.

As can be seen in Table 3, when the SNR is high, the

experiment works well and the proposed CNN gets satis-

fied recognize accuracy at approximate 100%. We con-

tribute the reason to the dataset which can provide a good

estimation of gradient to update the parameter so the initial

point does not matter. An approximate global maximum

point can be achieved. As the drop of the SNR, the model

encounters the problem which we called unstable training.

In this case, we think that the mini-batches give only a very

noisy estimate of the gradient and it easy to fall into a local

minimum point which blocks the training. The algorithm

cannot calculate a right direction to move which con-

tributes to a failure. The results fluctuated severely and a

method based on transfer learning is proposed in the

following.

We apply the weights trained in the high SNR condi-

tions as the initial weights when we training the model in

the low SNR conditions, which is a kind of transfer

learning. We got the convergent point in high SNR con-

ditions and the gradient become small. There are two tasks

which have a same target to recognize the modulation type

of the signal but have the different input. To some extent

one task has a more clear input while the input of another

task can be seen as a more polluted signal suffer from

AWGN channel. Our experiment results show that the

unstable training problem is well addressed in this setting.

Besides, we also get a lift in the performance of accuracy.

We evaluate our method based on transfer learning by

using the pre-training initial weights and the results is show

in Fig. 8. The Line 1 is the performance of the original

method using Gaussian distribution random initializers

without pre-training. Due to the unstable training problem,

we run the program 5 times and choose the best result as

the final result. We first train the model on 0dB condition

and it exists no difficult to get a satisfied recognize accu-

racy approximate 100%. We save the weights as the initial

weights when we experiment the performance in other low

SNR conditions and the result is show in Line 2. It is

obvious that we obtain the accuracy gains from this

method. Then we use the weights based on iterative SNR to

explore the performance of the neural network in Line 3.

For example, we initial the weights trained in the SNR of

�1 dB when we train the model in the SNR of �2 dB and

Fig. 6 An example of transfer learning sharing the output

Fig. 7 Transfer learning of sharing weights

Table 3 The accuracy

comparison under various SNR

conditions

SNR (db) The 1st experiment The 2nd experiment The 3rd experiment (%)

� 1 99.86% 99.44% 99.50

� 2 Failed 97.31% 92.10

� 3 92.08% Failed 94.45
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recursively. Somehow surprisingly, the results are

improved by healthy margins and report in Fig. 8. Here we

assumed that there are several factors

A1ðtÞ;A2ðtÞ; . . .;AnðtÞ that explain the input data mostly.

As the SNR becomes lower, once the Eigenvalues of the

factor is below the noise floor it will be hard to proceed the

training process. However the factors is not vary as the

SNR becomes lower. The initial point which shared in the

high SNR conditions will make the training process close

to the optimal point that stabilize the process and lift the

performance.

5 Denoising autoencoder improvement
method

An autoencoder [3, 9] is a neural network that is trained to

attempt to copy its input to its output. Internally, it has a

hidden layer h that describes a code used to represent the

input. The network may be viewed as consisting of two

parts: an encoder function h ¼ f ðxÞ and a decoder that

produces a reconstruction r ¼ gðhÞ. This architecture is

presented in Fig. 9.

The denoising autoencoder (DAE) is an autoencoder

that receives a corrupted data point as input and is trained

to predict the original, uncorrupted data point as its output.

The DAE training procedure is illustrated in Fig. 10. We

introduce a corruption process CðexjxÞ which represents a

conditional distribution over corrupted samples ex. Given a

data sample x, the autoencoder then learns a reconstruction

distribution preconstructðxjexÞ estimated from training pairs

ðx;exÞ.
Score matching [10] is an alternative to maximum

likelihood. It provides a consistent estimator of probability

distributions based on encouraging the model to have the

same score as the data distribution at every training point

x. The training criterion of DAE makes the autoencoder

learn a vector field ðgðf ðxÞÞ � xÞ that estimates the score of

the data distribution. In this case, the score is a particular

gradient field

5x log pðxÞ ð12Þ

−6 −5 −4 −3 −2 −1 0
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

SNR(dB)

A
cc

ur
ac

y(
%

)

CNN with Random Initialization(Line 1)
CNN with Transfer Learning based on SNR=0dB dataset(Line 2)
CNN with Transfer Learning based on iterative SNR(Line 3)

Fig. 8 Recognition accuracy comparison

Fig. 9 The general structure of an autoencoder

Fig. 10 The general structure of a denosing autoencoder

Fig. 11 The low-dimensional manifold of received signal and the

training process
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As illustrated in Fig. 11, a denoising autoencoder is trained

to map a corrupted data point ex back to the original data

point x. We repress the training example x as crosses lying

near a low-dimensional manifold. We illustrate the cor-

ruption process CðexjxÞ with a circle of equiprobable cor-

ruptions. An arrow demonstrates how one training example

is transformed into one sample from this corruption pro-

cess. The vector gðf ðexÞÞ � ex points approximately towards

the nearest point on the manifold, since gðf ðexÞÞ estimates

the center of mass of the clean points x which could have

given rise to ex.
In our paper we adopt score matching as our training

criterion rather than maximum likelihood when we training

the denoising autoencoder. Besides, we also add an explicit

regularizer

XðhÞ ¼ k
of ðxÞ
ox

����

���� ð13Þ

It is the core idea of the contractive autoencoder [17],

which encourages the derivatives of f to be as small as

possible. The penalty XðhÞ is the squared Frobenius norm

of the Jacobian matrix of partial derivatives associated with

the encoder function.

Paper [1] showed that in the limit of small Gaussian

input noise, the denoising reconstruction error is equivalent

to a contractive penalty on the reconstruction function that

maps x to r ¼ gðf ðxÞÞ. Denoising autoencoders make the

reconstruction function resist small but finite-sized pertur-

bations of the input, while contractive autoencoders make

the feature extraction function resist finite perturbations of

the input.

As illustrated in Fig. 12, the encoder function trans-

forms the input to another area, which is depend on the

function h ¼ f ðxÞ. This kind of training criterion is

encouraged to map a neighborhood of input points to a

smaller neighborhood of output points. In other words, all

perturbations of a training point x are mapped near to

f(x) and two different points x1 and x2 may be mapped to

f ðx1Þ and f ðx2Þ points that are farther apart than the original
points. This method is similar to increasing the code dis-

tance in coding principle.

In this Section, we use the convolutional neural network

as our base structure of denoising autoencoder. The train-

ing detail is the same with the experiment in the Sect. 3

except that we choose the score matching with an explicit

Fig. 12 A pedagogical explanation of denoising autoencoder

Fig. 13 The structure of a

denosing autoencoder
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regularizer as our training criterion. The structure is show

in the Fig. 13.

The final result curve is shown in the Fig. 14 where we

compare the performance of 5 kinds of different method.

As can be seen from the figure, after processing by the

denoising autoencoder, the input signal have a better rep-

resentation than the former experiment. This method, that

we combine the transfer learning method and denoising

autoencoder method improves the reorganization accuracy

performance significantly.

6 Conclusion

The main idea of this paper is to explore the suitable ar-

chitecture of deep learning method in the domain of

communication signal recognition and provide a stacked

convolutional neural network based on extracted features

of wireless signals automatically. There is not have a cri-

terion on how to combine the deep learning method and

signal recognition nowadays. We also state that deep

architecture is not suitable for this task in our experiment.

It is different from the conventional AI tasks where the

factors of variation which can explain the observed data are

expressed in terms of simpler representation. As for the

notorious problems in communication system, noise

interference, we think that transfer learning method is an

effective method to stabilize the process. In order to further

improve the performance, designing an appropriate struc-

ture using autoencoder may play an important role in the

future.
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