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Abstract
The spectrum sensing is a key process of the cognitive radio technology in which the cognitive users identify the

unutilized/underutilized primary users (PUs)/licensed users spectrum for its efficient utilization. The sensing performance

of cognitive radio (CR) is generally measured in terms of false-alarm probability (Pf ) and detection probability (Pd). IEEE

802.22 wireless regional area network is one of the typical cognitive radio standards to access unused licensed frequencies

of TV band and according to this standard, the false-alarm probability of CR should be B 0.1 and the detection probability

must be C 0.9. Further, the detection and false-alarm probabilities are greatly affected by the selected threshold value in

the spectrum sensing approach and selection of threshold is a crucial step to yield the status (presence/absence) of PU. In

most of the available literatures, the threshold is decided by fixing one parameter (Pf or Pd) and optimizing the other

parameter (Pd or Pf ). Moreover, at low SNR, while achieving one of the targeted sensing parameter, there is significant

degradation in the other sensing parameter. Therefore, in this paper, we are motivated to decide the optimal threshold at

low SNR (signal-to-noise ratio) in such a way where we can jointly achieve both sensing matrices (Pf B 0.1 and Pd � 0:9)

and provided better sensing performance in comparison to that of the traditional constant false-alarm rate and constant

detection rate (CDR) threshold selection approaches. Further, we have illustrated that at low SNR, the proposed optimal

threshold selection approach has provided better throughput as compare to that of the threshold selected by traditional CDR

approach. The proposed approach has improved throughput approximately 24.63% when compared with CDR at chosen

SNR.
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1 Introduction

The key concern of next generation communication sys-

tems (NGCS) is to fulfill the demand of spectrum for

various services such as high-speed internet, internet-of-

things (IoT) [1], and user-centric mobile applications [2].

The radio frequency spectrum is a scarce resource which is

already allocated to different services for example, the

voice-telephony, military services, satellite and radar ser-

vices etc. [3]. Therefore, this spectrum scarcity restricts the

introduction of new services/devices which require the

spectrum. However, a report of the Federal Communica-

tion Commission (FCC) reveals the fact that most of the

allocated spectrum remains underutilized/unutilized at

specific time and space [4]. This finding has motivated the

concept of spectrum reuse by allowing the unlicensed/

cognitive users (CUs) to utilize the licensed/allocated

spectrum of the primary users (PUs) when the spectrum is

temporally unexploited/underutilized. In this context, the

dynamic spectrum allocation (DSA) [5, 6] allows the CUs

to utilize the spectrum in such a way that the licensed user/

PUs communication remains impervious [7–9]. The cog-

nitive radio (CR) is a framework which supports the DSA

mechanism by exploiting the cognitive cycle that com-

prises four elements [10] namely, (1) spectrum sensing, (2)
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spectrum analysis and decision, (3) spectrum sharing/ac-

cessing, and (4) spectrum mobility. Initially, the CU senses

its radio environment to perceive the state of channel being

either active or idle by employing the spectrum sensing

techniques [11]. Further, the idle sensed channels are

analyzed, and the suitable idle channel is selected for

essential application. Moreover, the selected channel is

accessed for communication via the preferred spectrum

accessing technique i.e. interweave, underlay, overlay and

hybrid [12, 13]. The emergence of PU during the CU

communication is a prospective event and at this instant,

the CU need to stop or switch the communication on

another idle channel. The process of switching the com-

munication on another idle channel is known as spectrum

mobility or handoff [14].

The spectrum sensing (SS) is a prime step of cognitive

cycle which exploits the following major techniques to

detect the channel states, namely, (1) energy detection

spectrum sensing (EDSS) [15–18], (2) matched filter (MF)

detection [19, 20], (3) cyclostationary feature detection

(CFD) [21], (4) covariance absolute value detection(CAV)

[22], and (5) eigen-values based detection (EVD) [23, 24].

Further, these techniques are classified as blind (EDSS,

CAV, EVD) and non-blind (CFD, MF) spectrum sensing.

The non-blind spectrum sensing techniques entail the

information about the PUs signal (such as the modulation

type, carrier frequency, frame structure, pulse shaping etc.)

at the CU terminal which is in general, difficult to yield

however, in the blind spectrum sensing, there is no such

prerequisite. Moreover, the comparison of different sensing

approaches has been presented in [25, 26] and it is

observed that the EDSS has significantly less computation

and implementation complexity, therefore it is widely used

spectrum sensing technique. In EDSS, the energy/test

statistics (T) of the received signal is compared with the

predefined threshold value (k) and when the energy of

received signal is greater than or equal/less than the

threshold value, the sensing result is in favor of channel

being active/idle, respectively. The sensing decision in the

EDSS relies on the threshold value, therefore, the compu-

tation and selection of threshold is a very prominent aspect.

In addition, the key sensing performance metrics are the

false-alarm probability and detection probability. The

false-alarm probability (Pf ) is the probability of CR user

decision in favor of channel being busy while in actual it is

idle however, the detection probability (Pd) is the proba-

bility of CR user decision in favor of channel being busy

when the PU signal is actually there. The low numerical

value of Pf approx: � 0:1ð Þ is required for maximum uti-

lization of channel, while the high numerical value of

Pd approx: � 0:9ð Þ is required to provide protection to PU.

For example, in IEEE 802.22 (WRAN) standard, for TV

signal detection, it is required to achieve 90% probability

of detection and 10% probability of false-alarm at SNR

level as low as - 20 dB with maximum sensing time of

25 ms required in order to achieve the sensing requirement

[27]. It has been reported in earlier literature that the

selection of threshold greatly affects the false-alarm and

detection probability [28, 29].

The threshold is mainly selected with constant false-

alarm rate (CFAR) or constant detection rate (CDR) in

EDSS. The details of CFAR and CDR approaches are

provided in Sect. 2. In [30], the authors have exploited

CFAR and CDR approaches individually for the selection

of threshold. Further, individual consideration of CFAR/

CDR agrees to meet the target value of false-alarm/detec-

tion probability, however at the same time restricts to meet

the detection/false-alarm probability. Also, it has been

observed that CFAR approach has enhanced the throughput

in comparison to the CDR approach [31], however CFAR

is unable to provide sufficient protection to the PU as

compared to that of the CDR approach. In this context, to

improve the overall throughput at low SNR, Verma and

Sahu [32] have exploited the combination of CFAR and

CDR approaches to select the threshold. In [32] the authors

have although enhanced the throughput, however both the

desired values of Pf and Pd have not been achieved

simultaneously at low SNR, which is one of the challeng-

ing issues. Moreover, the authors also have not considered

the concept of optimality conditions for threshold value at

low SNR which is essential to achieve desired Pf and Pd.

Therefore, in this paper, considering all the above aspects,

we have selected the optimal threshold in EDSS which

jointly achieve the targeted Pf and Pd at low and high SNR.

Further, the throughput is computed subjected to the opti-

mality limits for the considered CU network. The potential

contributions of this paper are summarized as follows.

• Distinct thresholds are computed for CFAR, CDR and

MEP approaches for a chosen number of samples (N)

and received primary SNR at CU (SNRp or cp).
• Since most of the authors have worked on the selection

of threshold either by fixing the value of Pf or Pd

individually but not simultaneously which degraded the

sensing results at low SNRp. Therefore, to improve

sensing performance, we have selected the threshold by

utilizing both Pf and Pd simultaneously.

• Thereafter, the condition for a single optimal threshold

is analyzed to achieve the desired values of Pf and Pd

simultaneously at all SNRp. However at low SNR

region, we have observed that the threshold with CFAR

approach is greater than the CDR approach ðkf [ kmÞ,
therefore the optimality condition for the selection of

threshold has not been satisfied as discussed in detail in

Sect. 4.1. Further, we found the optimal number of

3918 Wireless Networks (2019) 25:3917–3931

123



samples such that the same optimality condition is

satisfied even at low SNR.

• The closed-form expressions of different spectrum

sensing performance metrics such as the probability

of detection, the probability of false-alarm, and the

probability of error have been computed for the

proposed approach and compared with the state-of-art

work. Thereafter, throughput for the proposed approach

has been computed and compared with reported

literature.

This paper is structured as follows. The related work is

presented in Sect. 2. A system model of the proposed

framework is described in Sect. 3. Section 4 comprises a

performance analysis of the proposed system model. The

MATLAB simulation results with their analysis are pre-

sented in Sect. 5. Finally, Sect. 6 concludes the work with

future recommendations.

2 Related Work

The function of CU in spectrum sensing is to detect the

spectrum opportunities. One of the techniques for detecting

the unused licensed bands is the energy detection spectrum

sensing (EDSS) for which, the selection of threshold

defines sensing detector performance. In general, the fixed

threshold (FT) and the dynamic threshold (DT) methods

are employed for the selection of threshold in EDSS

technique. In the fixed threshold, the threshold remains

constant even with the change in SNR, however in order to

incorporate channel variations, the dynamic threshold

method has been proposed which varies its threshold with

the channel conditions in order to minimize the probability

of error in sensing results. It has been illustrated by various

researchers [29, 33, 47] that the threshold selection with

DT method provides better spectrum sensing result as

compare to that of the FT method.

In fixed threshold method, the threshold is mainly

selected with constant false-alarm rate (CFAR) approach

however, in dynamic threshold, it is selected by using

either constant detection rate (CDR) approach or by min-

imizing error probability (MEP) approach. Moreover, in

CFAR approach, the targeted value of false-alarm proba-

bility (Pf fixed) is fixed and the value of threshold (kCFAR) is
computed to maximize the probability of detection (Pd),

while in CDR approach the targeted value of detection

probability (Pd fixed) is fixed and the threshold value (kCDR)
is computed to minimize the probability of false-alarm (Pf )

[30]. However, in MEP approach, the threshold is com-

puted by differentiating the sensing error probability with

respect to threshold [28]. Various researchers have used

these different approaches to select the threshold in

spectrum sensing technique for cognitive radio communi-

cation system which are detailed further in this section and

in Table 1.

2.1 CFAR and CDR approach

As discussed above, the CFAR approach computes the

value of threshold to maximize the detection probability. In

this context, Gandhi and Kassam [34] have presented that

the CFAR approach is used to identify the status of target

frequency band when it shows the unknown/dynamic dis-

tributions and it has been observed that its performance is

highly degraded in the presence of abrupt variation in noise

and interfered signal. Thereafter, Kortun et al. [35] have

also illustrated that the threshold selection using CFAR

approach does not perform well in the presence of noise

uncertainty, hence the eigen-values based detector is

employed to decide the threshold in order to enhance the

sensing performance. Moreover, the throughput has been

maximized by keeping fixed sensing time in the presence

of noise uncertainty. Further, Lehtomaki et al. [36] have

achieved a significant improvement in the sensing perfor-

mance by employing forward-detection methods with

CFAR when multiple PUs are presented in the chosen

environment. In addition, Mahdi et al. [37] have decided

the threshold using CFAR and empirical mode decompo-

sition (EMD) techniques to maximize the detection prob-

ability and have identified multiple channels in the given

spectrum band. Recently, the authors in [38] employed

CFAR and improved the throughput as compared to con-

ventional ED by employing simultaneous sensing and

transmission using a single antenna at CR terminal.

Moreover, in [39], the authors have employed CDR

approach to yield the detection threshold and computed the

value of throughput. Further, Koley et al. in [31] have

presented that CDR approach is suitable to provide suffi-

cient protection to PU from CU however with reduced

throughput in comparison to the CFAR approach. In this

context, in order to provide sufficient protection to PU and

high throughput to CU, Gaurav and Sahu [32] have

employed the combination of CFAR and CDR approaches

to decide the threshold. Recently, Zhang et al. [40] have

designed a framework for the power control and sensing

time optimization in a cognitive small-cell network and

employed CDR approach to select the threshold. Moreover,

CFAR and CDR approaches have been explored widely by

several authors in various literature [30, 32, 34–38, 46].

2.2 MEP and other approaches

In order to minimize the overall sensing error, MEP

approach has been employed in various literatures. In

[28, 41], the dynamic value of threshold has been achieved
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Table 1 Summary and comparison of literature employing different threshold selection methods

Ref. no. Threshold selection Major contribution Pros and cons

[34, 36] CFAR Maximized the detection probability Multiple primary user environments have been

considered

Threshold selection through the proposed

approaches is not appropriate when there is

abrupt variation in noise

[43, 44] MEP, gradient descent Dynamic threshold approach has been employed to

minimize the sensing error as compare to fixed

threshold scheme

Sensing performance has improved, and threshold

value has been adapted according to the noise

power of the channel

Employed for wideband spectrum sensing

Tradeoff between the sensing time and power

consumption

[46] Adaptive CFAR varying with

noise power

Adaptive methods (by varying threshold and

sensing time) have improved the sensing of weak

primary user signal by employing multi-tap

window frequency domain power detector

Employed for wide-band spectrum sensing

(WBSS) and spectrum leakage in the unutilized

frequency band

Complex as compare to conventional energy

detector

[28] MEP Closed form expression for miss-detection

probability has been derived for Rayleigh and

Nakagami-m fading channels

Sensing performance is measured at low SNR

The desired value of sensing parameters has not

been achieved at low SNR

[47] Variable threshold according to

the SINR

Improved the transmission rate of CU by

employing the dynamic threshold with respect to

fixed threshold

Transmission rate of CU is maximized

This approach is applied only for slotted spectrum

sensing

[57] Threshold is randomly selected

to minimize the sensing error

Interference effect of other cognitive users on the

sensing node of respective CU has been

computed and sensing results show significant

degradation due to interference effect

Further, the sensing errors have been improved by

proper selection of threshold

Multiple CU environments have been considered

However, the cooperative spectrum sensing has not

been employed to improve the sensing

performance

[35] CDR, eigen-value based

spectrum sensing

Eigen-value based spectrum sensing has provided

the improved spectrum sensing performance in

comparison to ED for noise uncertainty

environment

Further, the throughput of CU has been maximized

at low SNR in the presence of noise uncertainty

Energy with minimum eigen-value (EME) based

detector has provided higher throughput as

compare to energy detector and maximum eigen-

value based detector under noise uncertainty

scenario

However, this proposed approach requires multiple

antennas

[31] Gradient based detection Improved the detection probability at low SNR This approach is useful in WBSS and variable

noise floor environment to improve the detection

of PU at low SNR

The simulated probability of detection curves

deviates with the theoretical ones for higher

signal bandwidths

[37] Cell averaging CFAR and

empirical mode decomposition

Use empirical mode decomposition (EMD)

technique to improve the detection probability

Identified multiple idle channels using multiple

detectors in CU for the given frequency band

Threshold selection is not affected with variation in

noise and/interference, therefore this approach

could be blindly used for sensing the channel

without prior knowledge of PU signal

Sampling rate has been adapted to achieve the

sensing performance which increases the

implementation cost

Miss detection has increased for lower valued of

the false alarm even after increasing the sampling

rate

[53] CFAR, Weighted Covariance

based spectrum sensing

Achieved better sensing performance by

employing the data aided weight to covariance

matrix and employing multiple antennas at

cognitive user

It is a blind spectrum sensing

Detection performance is improved even when

there is low correlation between PU signals

3920 Wireless Networks (2019) 25:3917–3931
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Table 1 (continued)

Ref. no. Threshold selection Major contribution Pros and cons

[30, 32] CFAR, CDR, CFAR and CDR In order to improve the throughput, the

combination of both CFAR and CDR is

employed to choose the threshold

Achieved higher throughput at low SNR

However, the desired value of both sensing

parameters (Pf\ 0.1 and Pd[ 0.9) at low SNR

has not been achieved simultaneously

Noise uncertainty and cooperative spectrum

sensing is also not considered

[51] MEP, Covariance based

spectrum sensing

Threshold selection is performed to provide

protection to PU from CU signal

Improved the sensing performance under noise

uncertainty scenario

At low SNR, the proposed approach is performing

better than the ED however could not achieve the

targeted detection probability

[58] Threshold is selected for

efficient spectrum utilization

Improved the sensing performance by jointly

optimizing the detection threshold and sensing

time

Improved the spectrum utilization at low SNR

Spectrum utilization is increased in single PU and

CU scenario. However, single PU and CU is not

a practical scenario

[48] Threshold is selected on the

basis of prior channel state

information

Detection probability has been improved by

employing the channel statistical information

This approach is more effective when large number

of samples is employed for sensing

[52] Variance of received signal

energy over group of samples

are defined and used for PU

detection

Detection of PU is fast with higher detection

probability as compare to conventional energy

detection approach

Sensing is fast and is generally employed when

there is noise uncertainty in the channel

Approach work effectively only when signal

energy over a group of samples remains constant

[54] Employ Ljung-Box test for

detection of PU, Covariance

based SS

Improved the sensing performance when there are

low-correlated antennas present at the CU

It is a blind detection method

The proposed method attains a significant detection

performance improvement compared with the

existing covariance-based methods in fading

channel

[50] Threshold selection to maximize

the throughput

Developed an approach to maximize the

throughput by jointly optimizing the threshold

value for sensing, sensing time, and selection of

sensing and data transmission

Improved the throughput and energy efficiency of

cognitive radio under cooperative spectrum

scenario

[38] CFAR Applied the concept of simultaneous spectrum

sensing and data transmission with single

antenna to improve the throughput

Successive interference cancellation (SIC) is

employed to sense the channel state and

decoding error effects on the sensing reliability is

observed

Detection performance is better as compare to

conventional energy detector

Employ single antenna at CR terminal

Cooperation among CU transmitter and CU

receiver is required to employ this approach

[55] Random spectrum sensing

strategy

By employing PU traffic pattern, an adaptive

spectrum sensing strategy is proposed to

determine the channel to be sensed which has

high possibility of being idle

Hardware requirement problem of multiband

spectrum sensing is overcome by employing

adaptive spectrum sensing

[56] Embedded Markov chain with

full-duplex

Analyzed the effect of sensing frequency on energy

efficiency, throughput and probability of

collision

By considering proper sensing frequency, energy

efficiency in full-duplex cognitive radio is

improved without loss in throughput as compare

to contiguous sensing

For this approach, primary user’s arrival rate and

departure rate on a channel should be known to

the CU

Proposed

approach

CFAR, CDR, MEP Optimal threshold is computed at low SNR which

has jointly satisfied the sensing matrices i.e.

detection probability C 0.9 and false alarm

probability B 0.1. Further, the throughput is

computed for the CR user

Even at low SNR, the desired value of both the

sensing parameters has been achieved by

employing the adaptive threshold and optimal

number of samples (ONS)

Throughput improvement is achieved in the

proposed threshold selection approach in

comparison to CDR however, less than CFAR

approach
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by minimizing the error probability with respect to the

threshold for Gaussian channel. Further, Choi et al. [42]

have decided the transmit power of CU and then accord-

ingly changed its sensing threshold dynamically so that the

PU and CU can communicate on the same channel without

interfering to each other. However, Joshi et al. [43, 44]

have used the gradient descent algorithm to minimize the

error function without employing the transmitted power of

CU and have found the dynamic value of threshold.

Moreover, in [45], the authors have discussed the maxi-

mum allowable power that can be transmitted by the CU

and have decided the threshold value according to the

relative position of CU towards the base station. In addition

to this, Yu et al. [46] have observed that there is spectral

leakage in vacant frequency band when the PU has used

high transmit power and to resolve this problem, the

authors considered variable sensing duration, dynamic

selection of threshold and utilized multitap-windowed FFT

processing technique for the targeted value of false-alarm

and detection probability. Further, it is presented that

dynamic threshold is a more suitable method instead of

increasing the sensing duration to yield the desired value of

detection. Moreover, Ling et al. [47] have selected the

dynamic threshold according to a linear function of signal-

to-interference plus noise ratio (SINR) and maximized the

CU throughput. Further, in [48], the sensing performance

has been improved with the use of prior available PU

spectrum utilization information. Moreover, the authors

have assumed that the previous status of the spectrum is

known and selected the threshold according to the previous

state information. However, Ding et al. [49] have discussed

the spectrum prediction techniques based on the models of

spectrum usage, sources of spectrum data and the pre-

dictability of spectrum evolution for better utilization of

spectrum and to make CR more intelligent. However,

Kerdabadi et al. [50] have maximized the throughput by

jointly optimizing the threshold value, sensing time and

user selection for sensing and data transmission. Moreover

in [51], adaptive threshold is selected using covariance-

based channel selection with intelligent way to minimize

the probability of error with required protection to PU.

Further, in order to improve the detection probability

and sensing time, Benedetto and Giunta [52] have

employed constant energy (CE) technique considering the

signals whose energy per data-block remains fixed and the

variance of the received signal energy over M block is used

to decide the status of channel. Moreover, the weighted-

covariance-based detection (WCD) [53] is used to enhance

the performance of CAV. However, the demerit with WCD

befalls when a large number of low correlated receiving

antennas are there and hence results in less primary user

detection. Furthermore, to overcome the aforementioned

problem of WCD, Chen et al. [54] have used Ljung-

Box (LB) test to detect the presence of PU signal in the

above-mentioned scenario and provided significantly better

performance under noise uncertainty. Recently, Xiong

et al. [55] have presented adaptive spectrum sensing

strategy (ASSS) which utilized the PU traffic pattern to find

the channel to be sensed having more possibility of being

idle. Further to improve the energy efficiency in full-duplex

cognitive radio (FDCR), Bayat and Aı̈ssa [56] used the

concept of contiguous sensing by inserting sleep period

between sensing without any significant degradation in

throughput parameter.

3 System model

The integration of CUs with lesser priority which should

transmit their messages in a way that PU of the licensed

channelwould not be adversely affected is the key concern of

CRN. The spectrum sensing is a critical aspect ofCR systems

that intent to identify theworking state of PUbefore allowing

the CU temporarily accesses the channel without causing

harmful interference to the PU. In the proposed system

model, we are considering single band spectrum sensingwith

a pair of PU and CU transceiver and assumed that the PU

receiver is in the range of CU transmitter as shown in

Fig. 1(a). In an anticipated band of interest, the probability of

Fig. 1 The proposed a system model and b frame structure of

cognitive user [62]
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PU activity (idle or busy) is considered and denoted asP H0ð Þ
or P H1ð Þ, respectively. The PU operates between idle and

busy states alternately, while the CU executes spectrum

sensing to the licensed channel and opportunistically trans-

mits data in a frame-wise manner. Further, we have assumed

that the PU stays at the same state (idle or busy) with a high

probability and its activity remains constant during thewhole

sensing frame [15, 59, 60]. Moreover, we have computed the

throughput for proposed approach under two cases of PU

activity. In case-1, the PU is absent on the channel and no

false-alarm is generated by theCU.While in case-2, the PU is

present on the channel and it is not detected by the CU. Both

these cases of throughput under different PU activities have

been presented in Sect. 4.5. However, the periodical spec-

trum sensing scheme is considered in which the frame

comprising sensing and transmission time and repeats itself

after T units of time. As shown in Fig. 1(b), we have con-

sidered P frames, where each frame comprises two phases

i.e. sensing phase (Ts) and transmission phase (T � Ts). The

transmitted signals and noise of PU are assumed to be

independent and identically distributed (IID) Gaussian ran-

dom variables. The noise samples are considered as circu-

larly symmetric complex Gaussian (CSCG) and the signal is

complex-valued phase shift keying (PSK) signal. The

received signal X nð Þ at CU is represented by (1).

X nð Þ ¼ W nð Þ : H0

h:S nð Þ þW nð Þ : H1

� �
ð1Þ

where W(n), S(n), and h are the additive white Gaussian

noise (AWGN), transmitted signal, and channel gain

coefficient, respectively. The binary hypothesis H0 and H1

are considered to identify the status of channel i.e. idle and

active, respectively. The test statistics T xð Þ for EDSS is

given as [13]:

T xð Þ ¼ 1

N

XN�1

n¼0

X nð Þj j2 ð2Þ

where N is the number of samples of the received signal

used for computing the signal energy. The probability

density function (PDF) of test statistics T xð Þ under

hypothesis H0 and H1 follows a Chi square distribution

with 2N degree of freedom for complex valued noise while

has N degree of freedom for real valued noise. For a suf-

ficient high number of samples (N[ 256), the PDF of T xð Þ
under hypothesis H0 and H1 followed the Gaussian distri-

bution [61]. H0 and H1 under the Gaussian approximation

is represented as [62]:

H0 : N Nr2n;Nr
4
n

� �
& H1 : N Nr2n 1þ cp

� �
;Nr4n 1þ cp

� �2� �
;

where r2n is the noise variance and cp is the received pri-

mary users SNR. Further, the false-alarm and detection

probability is given as [28]:

Pf ¼
1

2
Erfc

k� Nr2nffiffiffiffiffiffiffiffiffiffiffi
2Nr4n

p
 !

ð3Þ

Pd ¼
1

2
Erfc

k� Nr2n 1þ cp
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Nr4n 1þ cp

� �2q
0
B@

1
CA ð4Þ

Pm ¼ 1� Pd ð5Þ
Pe ¼ Pf þ Pm ð6Þ

where k, N, and Erfc(.) are threshold value, number of

samples and error function, respectively.

4 Performance analysis

The performance metrics of spectrum sensing are the

probability of false-alarm, probability of detection, and

probability of error which have been defined by (3), (4) and

(6), respectively. The desired values of these metrics affect

the selection of threshold in EDSS which is the function of

number of samples as detailed in Sect. 4.3. In addition to

this, it is difficult to achieve the desired value of both the

metrics i.e. Pf and Pd because there exists a trade-off

between these two metrics. Therefore, there is a demand to

select the optimum value of the threshold to fulfill the

desired values of Pf and Pd, simultaneously. Further, we

have verified the optimality condition for the threshold at

high SNR for fixed N. Moreover, the optimal selection of

threshold at low SNR is also evaluated by selecting the

optimal number of samples (N*). Furthermore, the

throughput of the network for that optimal value is com-

puted. The condition for optimal threshold, the computa-

tion of different thresholds with CFAR, CDR and MEP

approaches, and optimal threshold selection at low and

high SNR also have been illustrated. Further, the critical

SNR and throughput analysis for the proposed system is

also presented.

4.1 Optimal threshold condition

From Fig. 2, it is perceived that the false-alarm probability

(Pf ) and miss-detection probability (Pm) shows a direct and

an inverse relation with the threshold (k). In the CFAR and

CDR approach, we have fixed the maximum permissible

value of false-alarm and miss-detection probability and

computed the corresponding value of the threshold kf and
km, respectively. In Fig. 2, it is clear that to minimize the

false-alarm, the threshold kf (threshold for CFAR
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approach) needs to be as high as possible while to mini-

mize the miss-detection, the threshold km (threshold for

CDR approach) needs to be as low as possible. Therefore,

it has been observed from the above discussion that the

above two conditions will be satisfied only when kf B km
(optimal threshold condition) which satisfy both the false-

alarm and miss-detection probabilities, simultaneously

[63].

4.2 Computation of different threshold

In CFAR approach, the false-alarm probability is fixed

(Pf fixed) and we have computed the threshold with the

help of (3) as follows:

kf ¼
ffiffiffiffi
2

N

r
Erfc�1 2Pf fixed

� �
þ 1

( )
Nr2n ð7Þ

In CDR approach, the miss-detection probability is fixed

(Pm fixed) and the corresponding value of threshold with the

help of (4) and (5) has been computed as follows:

km ¼
ffiffiffiffi
2

N

r
1þ cp
� �

Erfc�1 2 1� Pm fixed

� �� �
þ 1þ cp
� �( )

Nr2n

ð8Þ

Further, in MEP approach, the error probability is

minimized with respect to the threshold and threshold

value has been achieved as [63]:

ke ¼
Nr2n
2

1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

2 2þ cp
� �

ln 1þ cp
� �

Ncp

s( )
1þ cp
1þ cp

2

 !

ð9Þ

4.3 Optimal threshold selection

The optimal threshold value is selected when the optimality

condition for the threshold as mentioned in Sect. 4.1 is

satisfied. Initially, we have computed different threshold

values (kf and km) as already described in Sect. 4.2. There

are three possible combinations of kf and km as shown in

Fig. 3(a)–(c). It is clear from Fig. 3(a), the threshold value

kf \ km and therefore the optimal threshold condition is

satisfied. Hence, any threshold value which is in between

kf and km can be selected as optimal threshold.

Moreover, in Fig. 3(b), kf ¼ km and here again, the

optimal threshold condition is satisfied, and either kf or km
is selected as an optimal threshold. Moreover, in Fig. 3(c),

kf [ km, therefore the optimal threshold is not possible in

this scenario. However, in order to satisfy the optimality

condition in this scenario, we have computed the optimal

number of samples (N�) according to (10) and an optimal

threshold is selected as is performed in previous two sce-

narios of Fig. 3(a), (b). Further, the flow chart to select

optimal threshold is depicted in Fig. 4.

Algorithm-1: Optimal threshold selection
1    Input: N, 2, , _ ,  _

2    Output:
3   Compute , , and using eqn.(7), (8), and(9), 

respectively. 
4        if     ≤

5           if   ≤

6                    
7                 else if <

8                        
9                        else
10     
11     end
12                    else >

13     is not possible
14     ∗           N  
15     compute ∗, ∗, and ∗

16     ∗
=

∗
=  

∗

17     ∗
=

∗
=  

∗

18     end 

In Algorithm-1, N� is the optimal number of samples

required to achieve the desired Pf and Pd, k
�
f , k

�
m and k�e are

the threshold values with CFAR, CDR and MEP approa-

ches when N is replace by N� in Eqs. (7), (8), and (9),

respectively.

N� ¼ 1

c2p
Q�1 Pf fixed

� �
�Q�1 Pd fixed

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cpþ 1

qn o2

ð10Þ

Fig. 2 Threshold selection in hypothesis model

(a) (b)  (c)

λf

λm

λm

λf

λopt λ f = λm 
= λopt

Fig. 3 The optimal threshold selection a kf\km, b kf ¼ km and c
kf [ km
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where Q�1 :ð Þ is the inverse complementary distribution

function of the standard Gaussian distribution.

4.4 The condition for critical SNR (cc)

Critical SNR is defined as the SNR below which kf [ km
and optimality threshold condition will not be satisfied. For

the fixed value of N, we have computed the minimum SNRp

(cp) at which the optimality condition is satisfying and is

computed by equating Eqs. (7) and (8) as follows:

cc ¼

ffiffiffi
2
N

q
Erfc�1 2Pf fixed

� �
� Erfc�1 2Pd fixed

� �	 

1þ

ffiffiffi
2
N

q
Erfc�1 2Pd fixed

� � ð11Þ

4.5 Throughput computation

The throughput has been categorized into two cases as

follows. In case-1, the PU is absent in the channel and no

false-alarm is generated while in case-2, the PU is present

in the channel and it is not detected by the CU. The

throughput of first and second cases are denoted by R0 Tsð Þ
and R1 Tsð Þ, correspondingly. In a chosen frequency band,

we have considered that P H1ð Þ and P H0ð Þ are the proba-

bility of channel being active and idle, respectively and

average throughput, R Tsð Þ for CU has been computed as

follows [62].

R0 Tsð Þ ¼ T � Ts

T

� �
1� Pf

� �
log2 1þ csð Þ ð12Þ

R1 Tsð Þ ¼ T � Ts

T

� �
1� Pdð Þlog2 1þ cs

1þ cp

 !
ð13Þ

where cs is the SNR for secondary link. The total average

throughput for CU is as:

R Tsð Þ ¼ P H1ð ÞR1 Tsð Þ þ P H0ð ÞR0 Tsð Þ ð14Þ

5 Results and discussion

In this section, we have presented the numerically simu-

lated results for sensing performance parameters i.e. the

probability of detection, the probability of false-alarm and

probability of error. Further, the numerically simulated

results for the threshold values and throughput for CFAR,

CDR, MEP approach have been presented and compared

with the proposed optimal threshold selection approach.

The simulation environment is yielded using the

MATLAB 2010 [64]. Moreover, the values of simulation

parameters are selected based on IEEE 802.22 wireless

regional area network (WRAN) standard and are presented

in Table 2. The minimum number of samples assumed is

more than 256, therefore maximum value of SNRp con-

sidered is - 8 dB [61]. The sensing time ðTsÞ and each

frame duration (T) is considered as 2.5 ms and 100 ms,

respectively.

The variations in threshold value for the CFAR (kf Þ,
CDR (kdÞ, and MEP (keÞ approaches with received primary

SNR (SNRp or cp) are presented in Fig. 5. The threshold is

constant with SNRp in CFAR approach however its value

increases with increase in SNRp in CDR and MEP

approaches. We have defined the critical SNR (SNRc) as

that SNRp value below which kf [ km: Further, it is

depicted from the Fig. 5 that at higher value of SNR

Start

If λf ≤ λm ?

Define N, σn
2

,SNRp ,Pf_fixed ,  

Pd_fixed

Find the value     
of λf, λm , λe at  

N for  
corresponding 
value of SNRp

No optimum 
value of λ for 

predefined 
value of N

No

Compute the 
value of N*

Find the value     
of λf*, λm* ,λe* at 

N*  for 
corresponding value 

of SNRp

λopt =   λf* = λm* = λe*

End

λf*= λm* = λe*

If λf ≤ λe ≤ λm ?

λopt =   λe

If λe < λf ?
No

λopt =   λf

Yes

λopt =   λm

No

Yes

Yes

Fig. 4 Flow chart for optimal threshold selection

Table 2 The simulation parameters for the proposed CRN

Parameter Value Parameter Value

N 15,000 PðH0Þ 0.8

cs 20 dB PðH1Þ 0.2

Ts 2.5 ms Pf fixed 0.1

T 100 ms Pd fixed 0.9
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(SNRp C SNRc), the optimal threshold condition (kf\km)
is verified, moreover the threshold value with MEP

approach is in between kf and km. However, at low SNR

(SNRp \ SNRc), the optimal threshold condition is not

satisfied as is illustrated in Fig. 5 since in this region

(kf [ km). Further, the variations in sensing performance

parameters (Pf , Pd, Pe) with SNRp for CFAR, CDR and

MEP approaches are presented in Fig. 6.

In CFAR approach, the Pf value is constant (0.1) at

every value of SNRp, while the value of Pd is less (\ 0.9)

for SNRp � SNRc and increases until SNRp becomes equal

to SNRc. In CDR approach, the Pd value is constant (0.9)

for all values of SNRp, while the value of Pf is high ([ 0.1)

for SNRp � SNRc. Also, it is clear from Fig. 6 that the

probability of error (Pe) is approximately same in CFAR

and CDR approaches. Moreover, with MEP approach there

has been an improvement in terms of probability of error

(Pe) with respect to CFAR and CDR approach for all SNRp.

However, in MEP approach, we have not achieved the

desired value of Pf and Pd simultaneously for

SNRp � SNRc. It is illustrated from the Fig. 6 that the error

probability (Pe) decreases with SNRp for all approaches

and threshold selection with MEP approach provides least

sensing error ðPeÞ.
Therefore, any approach among CFAR, CDR and MEP

does not satisfy the sensing requirements of CR (Pf \ 0.1

and Pd [ 0.9), simultaneously at SNRp � SNRc. Further the

variation in the achievable throughputs of CU with SNRp,

for CFAR, CDR and MEP approaches with fixed number

of samples (N = 15,000) are presented in Fig. 7. It is clear

from Fig. 7 that in CFAR approach, the throughput value

decreases with SNRp from 5.812 to 4.674 bps/Hz and

afterwards become constant. While in CDR and MEP

approach, the throughput increases from 0.7684 bps/Hz

and 3.414 bps/Hz to 5.319 bps/Hz and 5.194 bps/Hz,

respectively and thereafter remains constant. It is observed

that when the SNRp � SNRc, throughput is more for CFAR

approach, however its value is high with CDR approach for

SNRp [ SNRc. Further, to achieve the optimal threshold

condition at SNRp\SNRc, we have proposed an approach

in Sect. 4 to outcome the optimal number of samples (N*)

to get desired value of Pf and Pd, simultaneously. In this

context, the performance of sensing parameters (Pf , Pm)

with SNRp for the proposed approach is compared with [32]

and presented in Fig. 8. In the proposed approach, we have

achieved both targeted values of Pf = 0.1 and Pd = 0.9,

simultaneously when SNRp � SNRc. While in [32], authors

have fixed one of the sensing parameter (either Pf or Pd)
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and have tried to improve the other (Pd or Pf ), as is

illustrated in Fig. 8.

However, the required sensing performance improve-

ment was not achieved in [32] when SNRp � SNRc.

Moreover, the comparison of throughput variation with

SNRp for a fixed number of samples (FNS) and an optimal

number of samples (ONS) using CFAR, CDR and MEP

approaches are presented in Fig. 9.

There are four possible cases as: (a) Case-1

SNRp \ SNRc and fixed numbers of samples (FNS) are

considered, the throughput in this case is high with CFAR

approach. (b) Case-2 SNRp \ SNRc and optimal number of

samples (ONS) are considered, the throughput is nearly

same for CFAR, CDR, and MEP approaches however less

than the achieved throughput of Case 1. (c) Case-3

SNRp C SNRc and fixed number of samples (FNS) are

considered, the throughput is highest and remains almost

constant with CDR approach. (d) Case-4 SNRp C SNRc

and optimal number of samples (ONS) are considered, the

throughput is highest with MEP approach in comparison to

CFAR and CDR, however lesser than the throughput

achieved as in Case 3. The advantage of Case-2 (i.e. the use

of ONS for SNRp \ SNRc) is that we have achieved the

target value of false and detection probability at the cost of

reduced throughput, while the merit of Case-3 (use of FNS

for SNRp C SNRc) is that we have achieved higher

throughput. Therefore, in our proposed approach, we have

combined the benefits of ONS for SNRp \ SNRc and FNS

for SNRp C SNRc and have improved the throughput per-

formance as shown in Fig. 10. The throughput in proposed

approach nearly remains constant with decreasing SNRp in

the region of SNRp � SNRc as shown in Fig. 10. Moreover,

the throughput for the proposed approach where we have

adapted the number of samples according to SNRp (ONS

for SNRp \ SNRc and FNS for SNRp C SNRc), is presented

in Fig. 10 and compared with [32].

It is illustrated in Fig. 10 that the proposed approach has

provided significantly improved performance in compar-

ison to that of the CDR at SNRp \ SNRc. The proposed

approach has shown approximately 24.63% improved

throughput when compared with CDR at SNRp equals to

- 18 dB (near to SNRc). Since the throughput is decreas-

ing with decrease in SNRp in the CDR approach as is

illustrated in Fig. 10, therefore the percentage enhance-

ment in the throughput for the proposed approach is sig-

nificantly more with respect to CDR approach with

reduction in SNRp.However, CFAR throughput has out-

performed with the proposed method at the cost of lower

protection to PU due to lower detection probability which

is earlier shown in Fig. 8. Further, all the above simulation
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results for different threshold selection approaches are

compared in Table 3.

6 Conclusion and future scope

In this paper, we have exploited the threshold computation

using CFAR, CDR and MEP approaches. We have ana-

lyzed the optimality condition for threshold and selected

the appropriate threshold which has been achieved with the

anticipated values of Pf and Pd , simultaneously. Further,

the computation of SNRp as a critical SNR (SNRc) below

which the optimality condition is not satisfied, has been

performed. Moreover, we have proposed an approach in

order to satisfy the optimality condition even though at low

SNR (SNRp \ SNRc) and have computed the throughput

for the proposed approach. It has been perceived that at low

SNR, the throughput for proposed approach is higher than

CDR and MEP approaches however, less than that of

CFAR approach. Moreover, the throughputs achieved

using CDR, CFAR and MEP approaches are not satisfying

the desired Pf and Pd values when compared with the

proposed approach.

Hence, in this proposed approach, we have achieved the

maximum throughput while achieving the desired Pf and

Pd simultaneously at all SNRp. The proposed approach has

shown approximately 24.63% improved throughput when

compared with CDR at SNRp equals to - 18 dB (near to

SNRc). However, in this paper, we have not considered the

noise uncertainty of the channel while checking the opti-

mality condition for threshold that is a challenging task

which will be reported in the future communication.

Moreover, the multiband spectrum sensing in the proposed

approach can also be considered when PU changes its state

during the sensing period.
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