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Abstract
To achieve energy efficiency is very important for future cognitive radio networks since we need less power consumption

and much more transmitted information. In this paper, we propose a power allocation scheme with robust energy efficiency

consideration for appropriately guaranteeing target signal to interference plus noise ratio (SINR) requirement for cognitive

users and the received interferences at primary receivers below a threshold. A time-varying interference threshold pro-

tection factor and a protection margin to the SINR targets are introduced for the above purpose. This problem is formulated

as a fraction programming problem solved by an iterative algorithm based on Lagrange dual approach by convex trans-

formation. Simulation results show the validity of the proposed algorithm on both energy efficiency and robustness under

channel gain disturbance.

Keywords Cognitive radio � Power control � Energy efficiency

1 Introduction

The explosive growth of real time wireless communication

applications requires unprecedented demand on the radio

spectrum [1]. However, wireless spectrum is scarce

resource and the fixed spectrum allocation approach has

seriously affected the development and the applications of

wireless networks [2]. Therefore, to improve spectral effi-

ciency becomes main goal for wireless communication

networks and a challenging task for researchers worldwide.

Cognitive radio (CR) has been proposed as a promising

technology to upgrade the efficiency by using ‘‘spectrum

holes’’ without affecting the spectrum used by primary

users [3].

Power control plays an important role in CR networks

for the improvement of the spectrum efficiency in wireless

communications. For the past few years, some scientists

have been working on enhancing network throughput [4–7]

where the cognitive users adjust their transmit power to

maximize their network rate under different constraints,

including interference power limit from primary users,

transmit power budget or SINR requirements for cognitive

users.

High speed data transmission consumes more energy to

guarantee quality of service (QOS) in wireless communi-

cations [8]. To overcome this problem, energy efficiency

for cognitive radio networks has become increasingly

crucial and attracted more attention from academic field

recently. In [9], the authors consider a joint subchannel

allocation and power control strategy to maximize energy

efficiency of each cognitive transmitter for orthogonal

frequency-division multiple access (OFDMA) CRNs with

multiple cognitive transmitters. In [10], the authors con-

sider power allocation schemes that adopt spectrum sharing

combined with soft-sensing information, adaptive sensing

thresholds, and adaptive power to design an energy effi-

cient system. A power allocation scheme, basing on max-

imizing energy efficiency for spectrum sharing cognitive

radio systems, is proposed in [11] with constraints in peak

or average of power. In [12], the authors specifically deal

with the problem of energy efficiency power control for

single user OFDM-CR system. In [13], user association and
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power allocation in mm Wave-based ultra dense networks

is considered with attention to load balance constraints,

energy harvesting by base stations, user quality of service

requirements, energy efficiency, and cross-tier interference

limits. Zhang et al. [14] proposes a distributed radio

resource allocation scheme to maximize the energy-effi-

ciency in uplink OFDMA dense femtocell networks. They

model the subchannel allocation and power control prob-

lem into a non-cooperation game. In [15], the studied

scheme maximizes energy efficiency by allocating both

transmit power of each small cell base station to users and

bandwidth for backhauling, according to the channel state

information and circuit power consumption. However,

these existing works normally assume perfect knowledge

about channel gain information, which is difficult or even

infeasible to obtain perfectly in a practical CR network. In

particular, the minimum acceptable SINR for all cognitive

users can not be guaranteed when there exist perturbations

in channel gains.

As an important issue for consideration in CRNs, robust

energy efficiency power allocation has been studied in [16].

The authors investigate a robust energy efficiency maxi-

mization problem in underlay CRNs with multiple cogni-

tive users and primary users. They consider that all

channels lie in some bounded uncertainty regions. Under

the worst-case conditions, a scheme to handle power

allocation problem via fractional programming is proposed.

An energy-efficient resource management with channel

uncertainty is proposed in [17]. The authors aim to maxi-

mize the energy efficiency of a CR network while con-

sidering practical restrictions, including the power budget

of the system, the interference thresholds of primary users,

the rate requirements of cognitive users, and the fairness

among them. The interference constraint is introduced as

chance-constrained form and treated by the Bernstein

approximation. These works consider the channel uncer-

tainty with norm-bounded parameter perturbations. In [18],

the authors propose a power control and sensing time

optimization problem in a cognitive small cell network,

where cognitive radio enabled small cell architecture is

designed to opportunistically access the spectrum via

cognitive small basestation. And there are no base stations

or communication infrastructures in this paper.

The SINR of an active cognitive radio link may dip

below the target requirement in the continuously changing

environment. Different from the robustness considered in

[16, 17], a protection algorithm is provided where robust-

ness is captured in the constraints and the energy efficiency

of communication links in the objective function in this

paper. Our target is to maximize the energy efficiency of

the cognitive system while having interference threshold

protection factor and SINR requirement protection margin.

The main contributions of this paper are summarized as

follow:

(1) An interference protection factor to provide a

protection margin for the interference threshold of

primary users is provided to keep the interference

from cognitive-user transmitters below a permissible

threshold that the primary user can tolerate. Thus the

protection scheme can guarantee quality of service

(QOS) of the primary users when there are distur-

bances in the network.

(2) Based on protection factor, by using constrained

fractional programming optimization that takes pro-

tection factors as the uncertain variables, a robust

energy efficiency power allocation scheme is pro-

posed with the consideration of total SINR of dB per

joule of energy metric as an energy efficient

objective function. Additionally, this scheme is also

robust because of the introduction of interference

constraint and target SINR requirement constraint.

The remainder of the paper is organized as follows. The

system model for cognitive radio networks is introduced in

Sect. 2. In Sect. 3, we present our robust energy efficiency

power allocation algorithm. In Sect. 4, performance anal-

ysis for our proposed algorithm is performed through

simulation results. Finally, the conclusion of this work is

given in Sect. 5.

2 System model

We consider a cognitive radio network where a secondary

system coexists with a primary system and each cognitive

user has single transmitter and single receiver. We assume

that there are M active cognitive radio transmitter–receiver

pairs and only one primary user in the vicinity of interest,

as shown in Fig. 1.

In this system cognitive users share the radio spectrum

with primary user via the underlay mode. For the underlay

based CR systems, cognitive users can use same frequency

Fig. 1 System model: underlay cognitive radio networks
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spectrum with primary user as long as the interference

power provided by cognitive users is less than a predefined

tolerable threshold [19]
X

i

pihi � IT ð1Þ

where pi denotes the transmit power of cognitive user i. hi
denotes the channel gain between the primary receiver and

cognitive transmitter i. IT is defined in a way to make sure

that the tolerant interference power threshold does not

violate the threshold at the primary receivers [20]. This

constraint protects the communication links of primary

users.

Let gij be the channel gain from the cognitive transmitter

j to the cognitive receiver i and it includes all path loss and

fading effects. Let Hi1 denote the channel from the primary

transmitter to the cognitive receiver i. T1 represents the

transmit power for the primary user. The SINR at the

receiver on the active link i can be written as

ri ¼
giipiP

j 6¼i gijpj þ Hi1T1 þ ni
ð2Þ

where ni is the background noise at the cognitive receiver i.

The SINR of cognitive user constitutes the QOS of the

user. Since the cognitive user adjusts it’s transmit power to

achieve the target SINR and maintain the desired QOS, we

must make sure the SINR at each cognitive receiver

achieves the value of its own target requirement. The

achieved SINR satisfies

ri � r
fixed
i ð3Þ

This constraint is the requirement that the ith received

SINR is above a given SINR target r
fixed
i for all i. In this

work, we want to provide a flexible power control scheme,

since it is addressed to QOS-flexible services [21], in such

a way that the fixed target SINR can be adjusted according

to a given performance criterion, which the fixed target

SINR modified to support the time-varying target SINR

ri � rti ð4Þ

where rti can be regarded as the minimum time-varying

SINR determined from the QOS constraints.

The constraints (4) can be equivalently represented as

R� Gð ÞP�N ð5Þ

where R is a diagonal matrix with 1
rt
1

; 1
rt
2

; . . .; 1
rt
M

, matrix

N ¼ H11T1þn1
g11

; H21T1þn2
g22

; . . .; HM1T1þnM
gMM

h i
, P ¼ p1; p2; . . .; pM½ �T ,

and the element of matrix G is

Gij ¼
gij

gii
; i 6¼ j

0; i ¼ j

(
ð6Þ

As we know that the performance of the green radio

systems are usually measured by energy efficiency metric

which presents the total SINR delivered to the destination

per joule of consumed energy, i.e.,

gEE ¼
P

i riP
i pi þ PC

ð7Þ

where gEE denotes the energy efficiency.PC presents the

circuit power consumption of the source in the transmit

mode.

Our goal is to maximize the energy efficiency of cog-

nitive user with the constraints on that the total interference

of cognitive users on primary user is below a given

threshold and each cognitive user achieves a predefined

SINR. This scheme is an energy efficiency algorithm

(EEA). To be specific, we can figure out this problem of

maximizing energy efficiency as the following fraction

programming

max

P
i riP

i pi þ PC

s:t: C1 :
P
i

pihi � IT

C2 : ri � rti

ð8Þ

In our proposed power allocation algorithm, we assume

that the instantaneous channel gains are perfectly estimated

at the receiver. In particular, since this problem is not

convex optimization, fractional programming approach is

proposed in [22].

3 Robust energy efficiency power allocation
algorithm

The channel gains in cognitive radio systems are imperfect

owing to many practical factors. The energy efficiency

power allocation algorithms without considering channel

uncertainty are not appropriate when we concern this fact,

since the allocated power by the traditional energy effi-

ciency power allocation algorithms will break the opti-

mization rules that assure the interference to primary user

and the SINR requirement of the cognitive users under

certain predefined threshold.

In addition, when new users enter the cell in the system

or the channel gains perturbations exist, the optimal

transmit power must be adjusted since the interference

generated by the cognitive users may be violated the

interference power threshold. When the interference power

at a primary receiver is greater than the interference

threshold, an outage event happens. The QOS of primary

user will not be guaranteed. An active primary link pro-

tection scheme introduces a protection factor e to the

interference power threshold. The introduction of e can
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cushion the perturbation of the channel gains, which is

modified the interference constraint C1 in (8) as
X

i

pihi � IT 1� eð Þ ð9Þ

where e[ 0 and it is a simple percentage. This margin

must be large enough such that the interference from

cognitive users does not larger than the threshold. In par-

ticular, the larger e, the better we can protect primary users.

Furthermore, e should be a time-varying variable according

to time-varying target SINR requirement. That is
X

i

pihi � IT 1� e tð Þð Þ ð10Þ

For our power allocation scheme, we call e tð Þ the

interference protection factor.

The SINR requirements for cognitive users should

remain feasible and near-optimal under the perturbation of

parameters in the nominal optimization problem. To

guarantee that active cognitive users continue to have

acceptable SINR when there are disturbances in the CRN, a

protection margin ni tð Þ is provided [20], i.e.,

ri � rti 1þ ni tð Þð Þ ð11Þ

where ni tð Þ is the protection margin for each user’s SINR.

ni tð Þ must large enough so that the SINR of each cognitive

user do not drop below the SINR target and cause SINR

outage. We use the term ‘‘robust’’ in the sense of safety

margin against SINR outage.

The proposed energy efficiency power control algorithm

is modified to a robust version which solves the following

power control problem subject to the time-varying

robustness settings

max
fr pið Þ
fc pið Þ

s:t: C3 :
P
i

pihi � IT 1� e tð Þð Þ

C4 : ri � rti 1þ ni tð Þð Þ

ð12Þ

where fr pið Þ ¼
P

i ri, and fc pið Þ ¼
P

i pi þ PC. The robust

energy efficiency algorithm (REEA) is formulated.

In the following section, we present robust power allo-

cation formulation in cognitive radio network by using

protection margins. We will enhance the interference

constraint and the target SINR constraint to deal with this

problem.

Robust optimization techniques based on the worst case

analysis are more appropriate. In our proposed scheme, we

take robustness into consideration through the introduction

of the protection factors e tð Þ and ni tð Þ to the constraints C3

and C4 respectively. Larger protection factors guarantee

that the interference power limits will not be violated and

the SINR for each user will achieve the predefined value

for larger perturbations.

Constraint C4 in problem (12) can be equivalently

written as

C40 :
rti 1þ ni tð Þð Þ

pi
� 1P

j6¼i Gijpj þ Hi1T1þni
gii

ð13Þ

We note that the problem (12) is nondeterministic

polynomial (NP)-hard. Therefore, we must have its trans-

formed forms that can provide an optimal solution. The

original maximization optimize problem can be reformu-

lated as a minimization problem so as to (12) can be

written as

min

P
i pi þ PCP

i ri
s:t: C3 :

P
i

pihi � IT 1� e tð Þð Þ

C40 :
rti 1þ ni tð Þð Þ

pi
� 1
P

j6¼i Gijpj þ
Hi1T1 þ ni

gii

ð14Þ

The global optimal solution is difficult to obtain since

(14) defines a non-linear fractional programming problem.

Fortunately, (14) can be transformed into an equivalent

parametric problem using fractional programming [23]. We

introduce a time-varying parameter aðtÞ by convex pro-

gramming, and then we obtain a new optimization problem

as

min
P
i

pi þ PC � a tð Þ
P
i

pi
P

j6¼i Gijpj þ
Hi1T1 þ ni

gii

0
BB@

1
CCA

s:t: C3 :
P
i

pihi � IT 1� e tð Þð Þ

C40 :
rti 1þ ni tð Þð Þ

pi
� 1
P

j6¼i Gijpj þ
Hi1T1 þ ni

gii

ð15Þ

where a tð Þ is for the target SINR requirement. If p� ¼
p�1; . . .; p

�
I

� �T
is Nash equilibrium of the robust game (15)

according to the particular value of a tð Þ given by

a� tð Þ ¼ f �r pið Þ
f �c pið Þ, p

� is also the optimal solution of (14) [17].

That is, we can analyze energy efficiency over (15), subject

to two constraints, which is equivalent to directly solve

(12).

We use the Lagrange dual algorithm to get the optimal

solution. The Lagrange function of the optimization prob-

lem in (15) for cognitive user i is

1808 Wireless Networks (2019) 25:1805–1814
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Li p1; . . .;pIð Þ ¼
X

i

piþPC � a tð Þ
X

i

piP
j 6¼i Gijpjþ Hi1T1þni

gii

 !

þ ki
X

i

pihi� IT 1� e tð Þð Þ
 !

þ
X

i

mi
rti 1þ ni tð Þð Þ

pi
� 1P

j 6¼i Gijpjþ Hi1T1þni
gii

 !

ð16Þ

where ki and mi are the Lagrange multipliers for two con-

straints in (15), respectively.

The points to meet the Karush–Kuhn–Tucker (KKT)

conditions are the optimal solutions since (15) is a convex

optimization problem. The KKT conditions [24, 25] for the

cognitive user i are as follows

0� pi?1� a tð Þ
P

j 6¼i Gijpj þ
Hi1T1 þ ni

gii

þ kihi �
tirti
p2i

� 0

0� ki?
P
i

pihi � IT 1� e tð Þð Þ� 0

0� ti?
rti 1þ ni tð Þð Þ

pi
� 1
P

j6¼i Gijpj þ
Hi1T1 þ ni

gii

� 0

ð17Þ

where ? signifies orthogonal of the corresponding

variables.

From the KKT conditions of (17), the maximum energy

efficiency occurs at a power level for which the partial

derivation of Li p1; . . .; pIð Þ with respect to pi is zero, i.e.,

p�i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rti 1þ ni tð Þð Þmi
1� a tð ÞP

j 6¼i
GijpjþHi1T1þni

gii

þ kihi

vuut ð18Þ

where ki and ti are the Lagrange multipliers for the con-

straints (14). These Lagrange multipliers can be updated by

ki ¼ ki þ b1
X

i

pihi � IT 1� e tð Þð Þ
 !( )þ

ð19Þ

ti ¼ ti þ b2
rti 1þ ni tð Þð Þ

pi
� 1P

j 6¼i Gijpj þ Hi1T1þni
gii

 !( )þ

ð20Þ

where x½ �þ¼ max x; 0ð Þ. b1 and b2 are iteration steps.

We shall further discuss the property of the protection

factor e tð Þ and ni tð Þ about the interference power and SINR

respectively. Our robust power allocation scheme is dif-

ferent from the robust model in Ref. [26]. We use the term

robust in the sense of safety margin against the outage.

In [26], let hi þ Dhið Þ denote the channel gain between

the cognitive transmitter i and the primary receiver, where

hi and Dhi are the nominal value and the corresponding

deviation part respectively. The first constraint in (8) can

be written as
X

pi hi þ Dhið Þ� IT ð21Þ

To be convenient for explanation, let Dhi ¼ j tð Þhi.j tð Þ
is percentage value. Re-writing (21) in percentage form
X

pihi 1þ j tð Þð Þ� IT ð22Þ

The interference power constraint at the primary recei-

ver is given by (10), it is also expressed as follows:

X
pi

hi

1� e tð Þð Þ � IT ð23Þ

The inequalities (23) and (24) indicate that e tð Þ has

relationship with j tð Þ, i.e.,

1þ j tð Þ ¼ 1

1� e tð Þ ð24Þ

According to (24), it is necessary that the protection

factor be at a value e tð Þ related to j tð Þ via

e tð Þ ¼ 1� 1

1þ j tð Þ ð25Þ

If the value e tð Þ is roughly equivalent to the 1� 1
1þj tð Þ

� �

for practical cognitive systems, our robust framework is

equivalent to the robust algorithm [26] when other con-

straints unchanged.

The constraint C4 of problem (12) can be converted into

the following form,

piP
j6¼i Gij 1þ ni tð Þð Þpj þ Hi1T1þni

gii
1þ ni tð Þð Þ

� rti ð26Þ

The SINR constraint has the same part as the robust

model [26] except 1þ ni tð Þð Þ. This indicates that these

algorithms have the same effect if the denominator of the

SINR constraint [26] times 1þ ni tð Þð Þ.

4 Simulation results

In this section, we provide simulation results to show the

impact of protection factor e tð Þ and protection margin ni tð Þ
on the energy efficiency attained with our optimal power

control. We also present the performance analysis of the

proposed algorithm for guaranteeing both interference

power and target SINR requirements to each cognitive

user. An ad hoc cognitive network is considered where a

cognitive system coexists with a primary system.

We assume that there are three cognitive links and one

primary link in the network. The simulation parameters

here are similar with those given in [27], the channel gain

hi is chosen randomly from the interval 0:16; 0:20½ �, with
uniform distributions. The transmit power for primary user

Wireless Networks (2019) 25:1805–1814 1809
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T1 and the interference power threshold IT are 0.8 and

0.315 mW respectively. The circuitry power consumption

is PC ¼ 0:2 mW, and the link gains g from the cognitive

transmitter j to the cognitive receiver i is

g ¼
0:9531 0:0454 0:0318

0:0494 0:9889 0:0547

0:0233 0:0498 0:9540

2
64

3
75 ð27Þ

In the first scenario, the target SINR requirement is rti ¼
3:52 dB for all users. Figure 2 depicts the convergence of

the total transmit power by the REEA algorithm with dif-

ferent e tð Þ and ni tð Þ ¼ 0. From Fig. 2, the total transmit

power of cognitive users increases with the increasing

parameter ni tð Þ under a fixed SINR protection factor, which

means that more transmit power is required to give the

cognitive users more protection under channel uncertainty.

Larger e tð Þ means higher channel uncertainty. Each cog-

nitive user requires higher transmit power to overcome the

impact of channel uncertainty.

The total transmit power for REEA with different SINR

protection factor are shown in Fig. 3. The e tð Þ is zero, and
other parameters are identical to previous scenario. It is

obvious that the REEA algorithm with the higher SINR

protection factor has higher total transmit power. The

higher total transmit power can ensure that the SINR of

each cognitive user is greater than the target SINR. In

addition, higher transmit power is required to avoid the

SINR at cognitive receiver below the target SINR under the

imperfect channel state information (CSI).

In the second scenario, the disturbance parameters

margin are e tð Þ ¼ 10% and ni tð Þ ¼ 5%. The power allo-

cation for the cognitive users for EEA and REEA based on

utility function is presented in Fig. 4. We find that similar

results are obtained when users update their transmit power

with different algorithm. The REEA algorithm and EEA

algorithm can converge to the equilibrium points quickly.

Additionally, the powers allocated by REEA algorithm are

less than those obtained by EEA algorithm, since there is a

trade-off between power consumption and robustness

consideration. As a result, each cognitive user requires

lower transmit power to guarantee the interference power

threshold from primary user, i.e., Eq. (10), and an accept-

able level of performance under worst case interference

conditions. Large e tð Þ offers more protection to the cog-

nitive users. From Eq. (18), the optimal transmit power of

each cognitive user relates to ni tð Þ by considering the

uncertainty of channel gain. ni tð Þ will increase under large

perturbations. Larger ni tð Þ means higher channel uncer-

tainty. Each cognitive user requires higher power to over-

come the impact of channel uncertainty. e tð Þ has greater

influence than ni tð Þ.While EEA algorithm does not

Fig. 2 The total transmit power of REEA with different interference

protection factor
Fig. 3 The total transmit power of REEA with different SINR

protection factor

Fig. 4 Transmit power allocated by two algorithms for rti ¼ 3:52 dB

1810 Wireless Networks (2019) 25:1805–1814
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consider the disturbance of the channel gains, hence the

transmit power is constant. When the channel uncertainty

happens, the unchanged powers of EEA algorithm may

violate primary users’ interference power threshold.

In this scenario, the target SINR has changed to rti ¼
5:11 dB at the twenty-first time-step. All other parameters

are the same as in the second scenario. The transmit power

for all users are shown in Fig. 5(a) which shows the

superiority of our robust REEA scheme because of lower

power consumption. When we give perturbed parameters

as GD ¼
P

j 6¼i DGij

�� ��2 � 0:0152 and hD ¼
P

i Dhij j2 � 0:052

for the consideration of practical situation where DGij and

Dhi denote the perturbation part to the channel gains of Gij

and hi respectively. The energy efficiency for EEA and

REEA algorithms is provided Fig. 5(b). REEA scheme has

higher energy efficiency since more number of bits is

delivered to the destination per joule of energy consumed.

In addition, as the target SINR increases, the optimal

transmit power by two algorithms for all users’ increases,

however, the energy efficiency of two schemes decreases.

And with the protection margin are captured in the con-

straints, the energy efficiency increases.

We compare the performance of the two schemes for

guaranteeing the target SINR requirement. Figure 6 shows

the evolution of received SINRs for all cognitive users

when target SINRs change at time slot 20. Solid line shows

the requirement imposed by the target SINR. REEA

algorithm is closer to the SINR requirements. Due to the

disturbance of the channel gains, the SINRs for REEA

scheme are lower than those of EEA algorithm, but they

satisfy the users’ needs. REEA offers the same disturbance

scene as EEA but with much less energy expenditure. And

from the perspective of energy efficiency, REEA algorithm

is superior to EEA algorithm.

Fig. 5 Transmit power and energy efficiency of REEA and EEA

schemes for different target SINR requirement. a Transmit power for

REEA and EEA algorithms. b Energy efficiency for REEA and EEA

algorithms

Fig. 6 SINR of REEA and EEA algorithms for different target SINR

requirement

Fig. 7 Interference power for REEA and EEA algorithms
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As mentioned previously, the interference power gen-

erated by cognitive users should be lower than the per-

missible interference power threshold. Figure 7 shows the

interference power of two schemes for different target

SINR. We find that REEA algorithm demonstrates good

robustness since the requirement on the interference power

is always met. However, EEA algorithm breaks the limit

when the target SINR increases, which implies that this

scheme is not appropriate in cognitive radio networks since

the interest of primary users is ruined. In fact, EEA

scheme stops iterating when the interference threshold is

violated.

When new users enter the network, the interference

power threshold of the primary users or the SINR of cog-

nitive users may be violated by this new interference. In

this scenario, we set the target SINR is rti ¼ 4:08 dB, the

interference protection factor is e tð Þ ¼ 10%, and the SINR

protection margin is ni tð Þ ¼ 7%. We suppose a new cog-

nitive user joins the network at twentieth time-slot. The

protection against the disturbance from the new user is

shown in Fig. 8. We find that the transmit powers of each

cognitive user for EEA and REEA algorithms are both able

to reach equilibrium in several time-slots. In order to

guarantee the target SINR requirement, each user must

adjust the transmit power when the new user comes for

both schemes. The optimal power of each user for REEA is

lower than that of the corresponding allocated power for

EEA scheme, since the proposed REEA scheme is a con-

servative algorithm which considers the worst situations.

Both the channel uncertainty between cognitive users

and primary users and the channel uncertainty between

cognitive users are considered in the proposed CRN. We

set the channel uncertainty parameters GD ¼ 0:022 and

hD ¼ 0:022 in the simulation, and the SINR of each user

and the interference power for two schemes are shown in

Fig. 9. We note that the transmit power of EEA scheme is

larger than that of REEA scheme from Fig. 9(a). Once we

get the optimal power from these two schemes, we

Fig. 8 Transmit power of REEA and EEA schemes when new user

enters the network

Fig. 9 SINR and interference power of REEA and EEA schemes

when new user enters the network. a SINR of each user. b Interference

power ofREEA and EEA schemes

Fig. 10 Energy efficiency of REEA and EEA schemes when new user

enters the network
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compare the actual interference generated by the schemes

to the primary network, respectively. In this way we will

see that EEA scheme cannot be used, since the interference

to the primary user is larger than the threshold in this case.

Moreover, more interference will impact the cognitive

users with the increasing number of SU. But in Fig. 9(b),

we find that REEA scheme performs well, since the

interference from cognitive users to primary user produced

by REEA is lower than the threshold.

Figure 10 shows the energy efficiency of the two

schemes. We know that the energy efficiency of REEA

scheme is superior to that of EEA scheme. When a new

user joins the networks, the power allocated to each user is

adjusted with rapid convergence speed, then the energy

efficiency of the two schemes will remain stable and

constant.

5 Conclusion

In this paper, we investigate the problem of energy effi-

ciency power allocation in underlay CRNs with protection

factors to enhance the interference power constraint and the

target SINR requirement constraint. The advantage of this

model is that it not only takes into account robustness for

power allocation but also the energy efficiency maxi-

mization. And we formulate the energy efficiency maxi-

mization problem as a fractional programming problem

with convex constraints. It was shown in our simulations

that our proposed algorithm can strictly guarantee the tar-

get SINR requirement for all users and provide satisfied

protection for primary user.
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