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Abstract In recent years, it has been witnessed a boom in

the development of mobile networks and a great increase in

the computing ability of mobile devices. The rapid

booming in client requests lead to some new challenges for

real-time on-demand data broadcasting: (1) the dynamic

diversity of the data characteristics; (2) the dynamic

diversity of real-time clients’ demand greatly increase the

volume of hot-spot data (the most access data); and (3) the

clients’ demands for high service quality. To date, the

current research has focused on the fixed-channel models

(i.e. the bandwidth and number of channels are

unchangeable) and algorithms. To adapt to the character-

istics of the real-time requests, an optimized channel split

method (OCSM) is proposed for automatic channel split

and data allocation in this paper. The experiments under-

taken in this study included two aspects: (1) determining

the different strategies under different data sizes and

deadlines; and (2) verifying the validity of the automatic

channel split and data allocation through a series of

experiments with the general performance matrics. The

results show that the proposed method outperforms some of

the state-of-the-art scheduling algorithms.

Keywords Data broadcast scheduling � Adaptive channel

split � Loss rate � Cluster � On demand

1 Introduction

Data broadcasting has the can propagate public information

such as stock quotes or real-time traffic information, plays an

important role in mobile communication [1]. This is because

it has the capability to allow clients to simultaneously access

hot-spot data. There are two famous research streams in the

data scheduling problem: push-based data broadcasting and

pull-based data broadcasting. Pull-based data broadcasting,

which is also known as on-demand data broadcasting

(ODDB), has become the research hotspot because it can

satisfy the users’ demands for high service quality. InODDB,

the server dynamically disseminates the data items with an

appropriate scheduling algorithm in response to the explicit

requests submitted by clients in real time. Timeliness is a

main bottleneck of ODDB [2]. Developing an efficient

algorithm [3, 4] to improve the channel utilization, reduce

the waiting time of clients, and maximize the quality of

service is the goal of ODDB research.

ODDB has been widely used in dynamic and large-scale

data dissemination because it can effectively reduce the

waiting and tuning time [5–8]. Most of the previous studies

of the data scheduling of ODDB have focused on the sin-

gle-channel architecture [9], and various algorithms have

been proposed, such as RxW [10] and SIN-a [11]. These

algorithms have shown outstanding performances in

reducing the system request loss rate, the average access

time, and the tuning time of clients. However, with the

development of mobile networks, the diverse user

requirements have intensified the need for multi-item

broadcasting. The single-channel architecture is not prac-

tical for multi-item broadcasting due to the disadvantages

of parallel broadcasting. In order to solve this problem, a

number of studies [12–21] have paid attention to the

architecture of fixed multi-channel broadcasting, and have
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proved that the scheduling of ODDB in a multi-channel

architecture is an NP-hard problem. Fortunately, a number

of algorithms for fixed multi-channel architecture have

been proposed, such as the near-optimal scheduling algo-

rithm (TOSA). The multi-channel architecture currently has

a wide applicability [22]. Although several effective

algorithms have been proposed based on this architecture,

they are all designed for particular mobile networks. In

other words, these algorithms are limited to a particular

network, and they lack resilience in a changing demand

environment.

Furthermore, neither single-channel ODDB nor fixed

multi-channel ODDB can adapt to a broadcast environment

where the data item characteristics are dynamic diversity

since the scattered hot-spot and rapid changes. Firstly, a

single channel of high-speed transmission is usually not

workable, because of the limitation of the physical

resources, such as the hardware communication capability

of mobile devices. Secondly, because of the scattered real-

time hot-spot data, multi-channel ODDB is more efficient

than single-channel ODDB. Multiple channels can merge

and coordinate with each other to provide a more flexible

service. Finally, adjusting the channels in real time

according to the characteristics of the data item can allow

the broadcast system to adapt to the fluctuating mobile

networks. To overcome the disadvantages of the above

algorithms, we study adaptive multi-channel ODDB and

propose an adaptive channel split and allocation method

named the optimized channel split method (OCSM) for

real-time and on-demand ODDB.

To the best of our knowledge, this is the first attempt at

the dynamic adjustment of channels for data broadcasting.

The main contributions of this paper are as follows.

1. A data item priority evaluation algorithm (RxW/SL) is

proposed for data item priority evaluation, which

synthetically takes into account the number of

requests, the waiting time, and the number of lost

system requests during the next item broadcasting

time. RxW/SL can comprehensively assess the priority

of the data item, which is the key parameter of the

weight average and size cluster (WASC) algorithm.

2. A data item clustering algorithm (WASC) is proposed

for data item characteristics mining and data item

clustering, which synthetically takes into account the

data item size, the channel size, and the data item

priority. WASC can mine the characteristics of the data

item and cluster the data items to provide the basis for

the channel split.

3. A channel split algorithm (CSA) is proposed for

channel splitting and data allocating, which splits the

channel into multiple sub-channels according to the

clustering results of WASC. The CSA can allocate data

items into the corresponding sub-channels for broad-

casting, so that it can improve the efficiency of the

broadcast system.

Besides the resource scheduling in ODDB, there are

many other studies considering scheduling in a specific

network. Such as resource scheduling in vehicular net-

works [23], downlink multiuser orthogonal frequency-di-

vision multiple-access networks (MU-OFDMA) [24, 25],

spectrum-sharing OFDMA femtocells network [26] and

cognitive small cell networks [27]. These scheduling

algorithms consider a specific network environment, allo-

cate resources by a specific communication technology.

Different from resource scheduling in ODDB, these algo-

rithms either consider point to point communication or

combine the resource scheduling with the physical char-

acteristics of communication technology.

The remainder of this paper is organized as follows.

Section 2 presents the related works. Section 3 describes

the ODDB system architecture. Section 4 introduces

OCSM. Section 5 discusses the optimal values of the

OCSM parameters and gives the experimental results.

Finally, Section 6 presents the conclusions and future

research directions.

2 Related works

There are two channel architectures in ODDB: single-

channel architecture and fixed multi-channel architecture.

Most previous studies of ODDB have mainly investigated

in the two architectures and great achievements have been

made.

For single-channel architecture, Xuan et al. [28] pro-

posed a broadcast on-demand model (BoD) based on the

earliest deadline first (EDF) algorithm, which can ensure

the bandwidth utilization and effectively control the access

time of clients. Fang et al. [29] proposed a deadline-con-

strained ODDB model and an aggregated efficient request

(ACR) algorithm to meet the clients’ requests before the

deadline of the data item. Kalyanasundaram and Velau-

thapillai [30] studied preemptive ODDB scheduling with

deadlines on a single broadcast channel, where the

requests’ length and deadline were taken into account and

two algorithms were proposed: BCast and its variant

BCast2. Ng et al. [31] proposed the most request served

(MRS) broadcasting model and variants with caching

strategies for a real-time information transmission system.

MRS considers the sensitivity of the data item size to the

bandwidth on the basis of most requests first (MRF) [32].

Dewri et al. [33] studied ODDB with a deadline constraint

and asserted that the response time of the requests, along

with the priority of the requests, should determines the
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efficiency of the scheduling. Aksoy and Franklin [10]

proposed the RxW algorithm considering the number of

requests and the longest waiting time. Wu and Lee [11]

proposed the slack time inverse number of pending

requests (SIN-a) algorithm with a deadline constraint,

which optimizes the system efficiency by a request dead-

line. Hu et al. [34] proposed the LxRxW algorithm, which

takes into account the number of lost requests during the

next item broadcasting time, the number of requests, and

the waiting time. All the above algorithms assume that the

size of the data items is fixed. Hu et al. [35, 36] further

studied ODDB scheduling with the consideration of the

data item size. This algorithm introduces the split strategies

and backpack theories into ODDB to deal with the incon-

sistency of the data item size. Despite the fact that the

single-channel architecture of ODDB has obtained

acceptable performances, it is restricted by the single

channel, so that it cannot broadcast in parallel to further

improve the broadcast efficiency.

In view of the disadvantages of single-channel data

broadcasting, many scholars have studied the fixed multi-

channel data broadcasting. FLAT [12], which randomly

allocates data items into channels, is the simplest push-

based multi-channel broadcasting algorithm. Anticaglia

et al. [13] studied how to minimize the average response

time for multiple broadcast channels and proposed a new

heuristic strategy called GREEDY, which combines the

novel characterization with the known greedy approach

and optimally partitions data among the channels. Waluyo

et al. [14] focused on the broadcast queue on the server to

minimize the access time. Chung et al. [15] studied multi-

channel ODDB with a deadline constraint and deduced the

minimum number of channels required in such a multi-

channel broadcast system. Lee et al. [16] provided an

analytical model and a cost formulation for exclusive

broadcast channels and exclusive on-demand channels.

They also derived a cost model for dynamic channel allo-

cation methods and proposed a channel adaptation algo-

rithm for optimizing the system performance. Gao et al.

[17] presented a global optimization method for multi-

channel data broadcast using the alphabetic Huffman tree

indexing scheme, which can deal with skewed access fre-

quencies very well. Lim [18] leveraged the overlapped

band (the frequency range that partially overlapped chan-

nels share within their channel boundaries) and proposed a

new signal processing mechanism for communication via

the overlapped band called signaling via overlapped band

(SOB), which can solve the overlap problem in multi-

channel broadcasting. Ali et al. [19] introduced an admis-

sion control scheme called item level admission control

(ILAC) for a multi-channel data broadcast system, which

ensures that clients can be informed in a timely manner.

ILAC regards multi-item queries with a deadline as

multiple dummy single-item queries with the same dead-

line, each of which consists of one of the requested data

items in the multi-item query. Hu and Chen [20] designed

an adaptive balanced scheme (ABS) that performs a

heuristic search in pursuit of a fair balance of access time

for hybrid data delivery in a multi-channel data broadcast

environment. Zheng et al. [21] concentrated on data allo-

cation methods for multi-channel broadcasting. They took

into the consideration the data item access frequencies, the

data item lengths, and the bandwidth of the different

channels to develop TOSA. TOSA is based on the idea of

two-level data allocation, i.e., a high-level optimization

step for allocating the data to the channels, and a low-level

optimization step to schedule the data within a channel.

Fixed multi-channel broadcasting can overcome the

shortcomings of single-channel broadcasting. However, it

cannot adapt to the real-time environment and provide a

more flexible service, which is of vital importance to

broadcast systems, to allow them to meet the changing

requests. In addition, a lot of studies focused on the fairness

in scheduling optimization [37–39]. Ma et al. [37] inves-

tigated a power control scheme for the uplink transmission

of spectrum-sharing femtocell networks based on cooper-

ative game theoretic framework, which can maintains

fairness among femtocell users and improves the spectrum

efficiency. Zhang et al. [39] proposed a resource allocation

scheme for orthogonal frequency division multiple access

(OFDMA)-based cognitive femtocells to maximize the

total capacity of all femtocell users and cotier interference

constraints with imperfect channel sensing.

In conclusion, there are currently no methods which can

adjust the channel number and size according to the real-

time broadcast environment. In this paper, we propose

OCSM by exploring dynamic channel adjustment, and we

attempt to mine the characteristics of the data by analyzing

the distribution of the request data, the request deadlines,

and the data size. Before the broadcast, OCSM first eval-

uates the data item priority with RxW/SL algorithm, then

clusters the data items with WASC by their size and pri-

ority, and finally splits the channel into multi sub-channels

and allocates data items by CSA.

3 System model

According to the previous studies of ODDB [40, 41], we

assume that the system consists of a server and a number of

clients. The server broadcasts data items within a set SC ¼
fc1; c2; . . .ci; . . .cng of n physical broadcast channels,

where n is dynamic. The server maintains a request queue

RQ ¼ fReq1;Req2; . . .Reqi;. . .ReqLg (where Reqi repre-

sents a request), a pending queue PQ ¼
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d1; d2; . . .di; . . .dNf g (where di represents the ith data item

in PQ), and a set of broadcast queue BQ ¼
fbq1; bq2;. . .bqx; . . .bqng (where bqx represents the x-th

broadcast queue and bqx ¼ fdx1; dx2; . . .dxi; . . .dxMg, dxi
represents the ith data item in the x-th broadcast queue).

Clearly, RQ consists of the clients’ requests. The server

retrieves data from the database to generate the PQ

according to RQ. Then uses OCSM to extract the data from

PQ and schedules the broadcast. When a client needs a data

item, it sends a request to the server via an uplink channel

with a deadline and then listens to the broadcast channel

until the desired data item is broadcast or the deadline is

exceeded. Each request is characterized by a three-tu-

ple,\ID, T, D[, where ID is the identifier of the requested

data item, T is the arrival time of the request, and D is an

absolute deadline. We assume that the size of the data item

is dynamic and clients request one data item at a time.

Clients can listen to all the channels simultaneously.

Specifically, Fig. 1 illustrates the workflow of the multi-

channel ODDB model based on OCSM. The system con-

sists of four parts: (1) accept (accepts the request and adds

it to the RQ); (2) fetch (fetches the data item and adds it to

PQ); (3) cluster (cluster PQ into multiple sub-queues); and

(4) split (splits the original channel into sub-channels).

The scheduling processes of OCSM are detailed in

Fig. 2.

4 Optimized channel split method

In the ODDB environment, the scheduling priority and size

are the important characteristics of the data item. Mining

the characteristics of the data item and finding the most

suitable broadcast channel is the key to adaptive channel

splitting. This paper utilizes the method of clustering to

mining data characteristics, which is widely applied in data

mining, and proposes the WASC algorithm. Based on the

above considerations, the CSA algorithm is proposed. This

section is devoted to describing OCSM. As shown in

Fig. 3, OCSM includes the RxW/SL, WASC, and CSA

algorithms. In this section we firstly detail the RxW/SL

algorithm, which evaluates the priority of the data item in

real time. Then detail the WASC algorithm, which mines

the characteristics of the data items and clusters the data

Fig. 1 The system model

Begin 

Fetch the di
requested by Reqi

Is di exist in 
BQ or PQ ?

Insert  di into PQ, 
create a request 

queue of di 

Add Reqi to the 
request queue of di 

Is broadcast cy-
cle Ki-1 over ?   

Schedule the BQ 
by OCSM

Is di finished ?    Delete di from BQ 

Broadcast di , t=t+1

Is t < T ?

Fig. 2 Flow chart of OCSM scheduling
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items. Finally we detail the CSA algorithm, which splits the

original channel and allocates data items.

4.1 RxW/SL

In this section, the algorithm RxW/SL is presented for data

item priority evaluation. The priority is an important

characteristic of the data item, and is the determining factor

of the broadcast queue. Let Wfdi denotes the priority of data

item i. A larger value of Wfdi implies a higher priority of di.

For ODDB, when applying data broadcasting to provide

information services with a time constraint, the loss rate

(LR) of requests and the average access time (AAT) are

considered. To improve the service quality of the broadcast

system, the common strategy is proposed to evaluate the

data item priority with a specific algorithm. The data item

with the highest priority is then chosen for broadcast.

Without considering the size of the data item, the SIN-a
[11] and LxRxW [34] algorithms provide efficient ways to

measure the priority.

To evaluate the priority of di with a dynamic data item

size, three factors are considered in RxW/SL based on

LxRxW: the number of requests denote by R, the longest

waiting time denote by W and the number of loss requests

in system denote by SL. Where the R quantify the popu-

larity of the data item, the W quantify the starvation of the

longest wait request and the SL quantify the system request

loss caused by the response of the data item. The influence

of the three factors on the priority of data item is analyzed

as follows.

• R: The number of requests R is the key indicator to

evaluate the heat of the data item, to reduce the overall

LR and AAT, the R must be taken into consideration.

Obviously, the higher value of R is, the higher heat of

the data items is, the higher priority of the data item is.

• W: To avoid starvation of cold pages and reduce the

overall AAT, and reduce the possibility of request loss,

the longest waiting time need be considered also. The

longer the W, the higher the priority of the data item.

• SL: The SL of di is acquired according to

SLdi ¼
PN

j¼1;j6¼i Ldj , where Ldj denotes the lost request

number of dj at the time of tdi , which represents the end

time of di. SL denotes the number of lost system

requests, to reduce the LR, the smaller SL is, the higher

the priority.

The conclusion that the R and W are in direct ratio to the

priority of data item and the SL is in inverse can be drawn

from above analyses. Finally, the priority measurement

algorithm RxW/SL is proposed, which takes the three fac-

tors into consideration to evaluate the priority of data items

accurately. Specifically, the priority Wfdi of di is acquired

by (1):

Wfdi ¼
Rdi �Wdi

SLdi
ð1Þ

while the value of SLdi might be zero in (1), then uses

Rdi �Wdi to evaluate the priority of di. Finally, Wfdi is

acquired by (2):

Wfdi¼

Rdi �Wdi

SLdi
if SLdi 6¼ 0

Rdi �Wdi if SLdi ¼ 0

2

4 ð2Þ

Let n be the number of data items, m be the number of

requests of di, the time complexity for the for the RxW/SL

to calculate SLdi is Oðn� mÞ. For a given SLdi , the RxW/SL

takes 1 time to calculate Wfdi , therefore, the time com-

plexity of RxW/SL is Oðn� mÞ.

4.2 Weight average and size cluster algorithm

As previously mentioned, the priority and data size are the

most important characteristics of the data items. In this

section we firstly analyze the effects of the data item pri-

ority and size on ODDB scheduling. Then we propose the

WASC. WASC fully mines the characteristics of the data

items existing in PQ, and then clusters PQ into a set FG ¼
fg1; g2; . . .gi; . . .gng of n data groups, with each data group

gi 2 FG being associated with a broadcast channel ci.

4.2.1 Clustering analysis

In ODDB, the data item priority and size and the channel

bandwidth are the most important factors. The effects on

the ODDB scheduling of the three above factors are ana-

lyzed as follows. To quantify the analysis results, we first

introduce the notation used in this section: (1) the original

channel C is split into a set SC ¼ fc1; c2; . . .ci; . . .cng of n

OCSM
RxW/SL

Assess the priority of the data items

WASC
Cluster the data items

CSA
Split the broadcast channel

Pending
Queue

Multiple
Sub-channels

Broadcast
Channel

Fig. 3 The OCSM model. First assess the priority of the data items

existing in the pending queue by RxW/SL; then mine the character-

istics of the data items and cluster the data items by WASC; finally,

split the broadcast channel by CSA and output the multiple sub-

channels
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sub-channels, where n is dynamic and determined by real-

time data item characteristics, ci represents the ith sub-

channel, the bandwidth of ci is Bwci , then

Bw ¼
Pi¼N

i¼1 Bwci ; and (2) Vci;K represents the broadcast

value of ci in the k-th broadcast cycle, which is acquired by

(3):

Vci;k ¼
Xi¼n

i¼1

Wfdi;ci;k ð3Þ

where Wfdi;ci;k represents the priority of di broadcast in ci,

k-the cycle. The sum of the system broadcast values sumVk

is then acquired by (4):

SumVk ¼
Xj¼N

j¼1

Vci;k ¼
Xj¼n

j

Xi¼n

i¼1

Wfdi;ci;k ð4Þ

Intuitively, the bigger sumVk, the higher the efficiency

of the ODDB scheduling.

1. Sizedi To find the suitable channel bandwidth for a

typical broadcast queue BQi, the relationship between

the data item size and the broadcast efficiency is ana-

lyzed as follows. Given two particular channel,

c1 and c2. Where Bw1 ¼ 3 and Bw2 ¼ 1. Given a set of

data items d1. . .d10, and the data size of d1. . .d5 is 3,

while the data size of d6. . .d10 is 1. The priority of

d1. . .d10 is 1. The broadcast cycle is set as 5 s. As

shown in Fig. 4(a), we cluster d1. . .d10 into two groups

of similar sizes, where one group consists of d1. . .d5

and the other consists of d6. . .d10. Then broadcast the

data items in the suitable channels. This strategy is

much more effective than allocating d1. . .d10 into

c1andc2 randomly. According to (4), sumVk ¼ 10.

Figure 4(b) shows the worst case of sumVk ¼ 9, where

3 units are wasted. This approach is an effective way to

cluster the data items with a similar size for broadcast

scheduling.

2. Wfdi To find the suitable channel bandwidth for a

typical broadcast queue BQi, the relationship between

the data item priority and the broadcast efficiency is

analyzed as follows. Given two particular channels,

c1 and c2, where Bw1 ¼ 1 and Bw2 ¼ 1. Given a set of

data items d1. . .d8, and the priority of d1. . .d4 is 5,

while the priority of d5. . .d8 is 1. The data size of

d1. . .d8 is 1. The broadcast cycle is 3 s. As shown in

Fig. 4(c), d1. . .d4 are allocated into c1andc2 evenly, as

well as d5. . .d8, and then broadcast in order within

c1andc2. There is no time for d7andd8 in this broadcast

cycle. Fortunately, the data items with a high priority

have broadcasting preference, and sumVk ¼ 22. How-

ever, if one channel full of high priority data items will

be harmful to the broadcast scheduling. Figure 4(d)

shows the worst cast, where d4 with a high priority is

not broadcast, and sumVk ¼ 18. This approach is an

effective way to allocate the data items into broadcast

channels with priority equalization for broadcast

scheduling.

In conclusion, clustering the data items with similar data

sizes can reduce the bandwidth waste between two

broadcast cycles and improve the bandwidth utilization.

Allocating the data items into broadcast channels with

priority equalization can help to increase the value of

sumVk in unit time by broadcast system.

4.2.2 Implementation of WASC

The process of WASC is as follows:

Step 1 Given a set D ¼ d1; d2; . . .di; . . .dNf g of N data

items, the improved knowledge discovery by accuracy

maximization (KODAMA) [42] algorithm is used to clus-

tering D with the data item size. The details of the

improved KODAMA algorithm are as follows: (1) let D as a

dataset consist of N samples, and then assign each sample

2

1

d4d7

d8d8

d1

d6 d7 d8 d9 d10

3

1 d4

(b)

d1 d2 d3d6d2 d3 d4 d5

1

1

(d)

d1 d2 d3

d5 d6 d7

(a)

(c)

d7 d8 d9

d1 d3 d5

d2 d4 d6

Fig. 4 Clustering analysis
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to a class defined in the class indicator vector

T ¼ ft1; t2; . . .ti; . . .tNg, where ti is the class label of the ith

sample. If T is not predefined, each sample is assigned to a

different class. A tenfold cross-validation procedure is

performed on the basis of the classes defined in T using k-

nearest neighbor (KNN), a supervised classifier. A record of

the predicted class labels for each sample is then stored in

ZT ¼ z1; z2; . . .zi; . . .zNf g, where zi is the predicted class

label of the ith sample. The global accuracy is calculated

by summing the number of correctly classified samples and

dividing this number by the total number of samples. The

obtained value is stored in the variable VT . (2) A new class

indicator vector V ¼ v1; v2; . . .vi; . . .vNf g is created by

randomly swapping some of the class labels of the mis-

classified samples with the predicted class labels stored in

ZT . A tenfold cross-validation procedure is performed on

the basis of the classes defined in V. The relative accuracy

value is then stored in AV and the predicted class labels are

stored in Zv ¼ z1; z2; . . .zi; . . .zNf g. If Av [AT , the value of

AT is changed to Av, vector T is changed to V, and vector

ZT is changed to Zv. Loop (2) until either AT becomes equal

to 100% or the maximum number of iterations is reached

(the default value is 20).

Step 2 After Step 1, each data item is assigned to a class

defined in T. The set D is clustered into several subsets

G ¼ g1; g2; . . .gi; . . .gn
2

n o
, where gi is the ith subset and n

is even. A new subset vector FG ¼ fg1;1; g1;2,

g2;1; g2;2; . . .gi;1; gi;2; . . .gn
2
;1; gn

2
;2g is created by dividing all

the sub-sets in G to balance the priority, where gi;1; gi;2
� �

is

created by dividing the gi in G. The whole priority of gi is

calculated by summing the data items’ priority in gi. The

obtained value is stored in the variable SWgi . For di in gi, if

SWgi;1 [ SWgi;2 , then allocate di to gi;1, else allocate di to

gi;2 and recalculate the value of SWgi;1 and SWgi;2 by

SWg ¼
P

di2g
Wfdi . Repeat this operation until all the data

items have been allocated to gi;1 or gi;2.

Let N denote the overall number of data items in D, a

tenfold cross-validation performed with KNN classifier has

thus a time complexity of Oð0:9 � N2Þ, WASC conse-

quently has a time complexity at most of

Oð0:9 � N2 �MÞ, where the M is the number of times that

the maximization of the cross validated accuracy is

repeated.

4.3 Channel split algorithm

WASC is proposed to mine the characteristics of the data

items. CSA is then proposed to find the most suit-

able broadcast channels and schedule the data items for

broadcast. Splitting the original channel in real time

according to the characteristics of the data items allows the

broadcast to adapt to the varying mobile networks and

improve the efficiency of the real-time ODDB system. The

pseudo-code of CSA is described in detail in Table 1.

Let n denote the number of sub-channels and m denote

the maximization number of data items in sun-channel, the

time complexity for the CSA to calculates the bandwidth of

sub-channels is Oðn� mÞ, the time complexity for data

assign is OðmÞ. CSA consequently has a time complexity at

most the of Oðn� mÞ.

5 Experiments and analysis

To verify the advantages of the dynamic multi-channel

architecture compared to single-channel architecture and

fixed multi-channel architecture, extensive experiments

were performed with different scheduling algorithms:

RxW [10], GREEDY [13], TOSA [21], and OCSM. The

RxW algorithm is based on single-channel architecture, and

GREEDY and TOSA are based on fixed multi-channel

architecture. OCSM is based on dynamic multi-channel

architecture. We also attempted to compare OCSM with

some of the state-of-the-art algorithms based on fixed

multi-chan-nel architecture. However, GREEDY and TOSA

are push-based algorithms. After studying a lot of litera-

ture, we found that there are very few pull-based algo-

rithms based on fixed multi-channel architecture. We

therefore changed GREEDY and TOSA to meet the

restrictions of the pull-based property. The major param-

eters used in the experiments and the performance metrics

are summarized in Section A. The experiments with the

K value of OCSM were conducted under different distri-

butions of data request and request deadline, which are

detailed in Section B. The experiments with OCSM under

different distributions of data request, request deadlines,

and data size are described in Sections C, D, and E,

respectively.

5.1 Experimental setup

5.1.1 Parameter settings

To simulate a real-world high-load on-demand data

broadcast environment, the real access logs from the 1998

World Cup website [43] are used in this experiment. This

log contains more than 7 million requests from more than

22,000 objects. The average request rate is 83 requests/s. In

order to simplify the experiments, we processed the

parameters before the experiments. The average deadline

was set as 60 s, and assigned using the distributions of

fixed, uni-form, and exponential. The average data item

size was set as 1 unit and assigned using the distributions of

normal, uniform, and Zipf. The request rate was set as 100
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re-quests/s. The running time was set as 3600 s. In total,

360,000 requests were made in a run-time cycle. The num-

ber of data items was set as 20,000. The number of sub-

channels split by OCSM was ranged from 4 to 6, to ensure

fair experi-ments, and the sub-channel number for RxW,

GREEDY, and TOSA was set as 5. The parameter settings

are listed in Table 2.

5.1.2 Performance metrics

For a real-time system, the LR is the primary performance

metric, and is defined as the ratio of the number of requests

missing their dead-lines to the total number of requests. It

measures the capability of the system in meeting the

deadlines of the requests. The primary goal of real-time

ODDB scheduling is to minimize the LR. The total number

of failed requests in the M broadcast cycles is

LM ¼
PM

k¼1

PN
i¼1 Leddi;k, where Leddi;k is the number of

failed re-quests in the k-th cycle. The total number of

successful requests in the M broadcast cycles is

SM ¼
PM

k¼1

PN
i¼1 Sdi;k, where Sdi;k is the num-ber of suc-

cessful requests in the k-th cycle. The LR is acquired by

(5):

LR ¼ Lk\M

Lk\M þ Sk\M

¼
PM

k¼1

PN
i¼1 Leddi;kPM

k¼1

PN
i¼1 Leddi;k þ

PM
k¼1

PN
i¼1 Sdi;k

ð5Þ

5.2 The K value of OCSM

OCSM extends the KNN algorithm [44] as a supervised

classifier in step 1 of WASC. As we all know, the value of K

directly affects the result of the KNN algorithm. Different

distributions of deadline and data request lead to different

characteristics of the data items. This section is devoted to

determining the value of K under different distributions of

deadline and data requests. It is generally believed that if N

samples need to be clustered, the setting of K ¼
ffiffiffiffi
N

p
can

obtain the optimal results. In this experiment, we set the

K values ranging from 10 to 100. Figure 5 shows the

broadcast scheduling performance of different K values

under different distributions of deadline (fixed distribution,

uniform distribution, and exponential distribution) and data

request (normal distribution, uniform distribution, and Zipf

distribution) by LR, AAT, and NSC (the number of classes).

Table 1 Pseudo-code of CSA

Table 2 Experiment parameter settings

Parameter name Distribution Default Variable

Broadcasting cycle – 20 s Y

Total bandwidth – 10 unit/s Y

Sub-channel number 5 Y

Run time – 3600 s N

Deadline – 60 s Y

Data item size – 1 unit Y

Request rate – 100 Y

Client number – 10,000 N

Initializing request number – 100,000 N

Total request number – 300,000 N

Number of data items – 20,000 N

Deadline distribution Uniform – Y

Data item size distribution Uniform – Y

Request distribution Zipf – Y
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On the basis of the results shown in Fig. 5, we can make

the following observations.

1. With the incensement of K value, the NSC shows a

declining trend. This phenomenon indicates that the

K value is the determining factor of clustering result,

the greater K value, the smaller the NSC.
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Fig. 5 The performance of different K values under different

distributions of deadline and data request (the x-axis is the value of K)
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2. Under all the combination of different distributions of

dead-line and data request, with the increments of

K value, AAT is stable first, and then presents the rising

trend, and then gradu-ally stabilized, which is because

the accuracy of supervised classifier reduces with the

increments of K value. It results in a poor broadcast

performance.

3. When the K value increased from 10 to 30, LR shows a

slight decline trend. However, when the K value

increased from 35 to 45, LR increased rapidly. Then,

LR remains at a high status.

Through the above analysis, we conclude that the value

of K has a significate influence on the performance of

OCSM. For the optimal OCSM performance, the sugges-

tions for the value of K under different deadline and data

request distributions based on the metrics of LR, AAT and

NSC are given.

There are strict timing constraints for real-time ODDB,

request with a specific deadline will become invalid if the

server fails to response it within the deadline. To maximum

satisfy the requests of the clients, the LR must be primary

consideration for the optimal K value selection. To ensure a

high quality of service, the AAT should be considered as

another important metric since it represents the wait of

clients. Finally, the NSC is less important compare to LR

and AAT since it could be solved by improving the com-

puting ability of the server. Therefore, the strategy of

optimal K value selection is presented in Strategy 1.

Based on the optimal K value selection strategy, the

suggested optimal value of K and the corresponding

number of sun-channels N as shown in Table 3.

5.3 Performance of OCSM under different data

request distributions

Experiments were carried out to compare the performance

of OCSM to RxW, GREEDY, and TOSA under different

data request distributions (Zipf distribution, uniform dis-

tribution, normal distribution). The probability density

function of the data request under a Zipf distribution is

pi ¼
1=ih

P20000
i¼1

1=i
h
; 1� i� 20000;

where pi the request probability of is di. We set h ¼ 1. The

deadline was set as a uniform distribution, with an average

value of 60 s. The data item size of RxW and GREEDY was

set as 1 unit. OCSM and TOSA were run under a uniform

distribution, with the average value set as 1 unit. The

K value in OCSM was set as 25 under a Zipf distribution,

Table 3 The best K values and

the number of sub-channels

under different distribution

conditions

Deadline distribution Data request distribution K value N value

Fixed distribution Normal distribution 22 6

Fixed distribution Uniform distribution 17 4

Fixed distribution Zipf distribution 20 6

Uniform distribution Normal distribution 11 4

Uniform distribution Uniform distribution 18 6

Uniform distribution Zipf distribution 25 7

Exponential distribution Normal distribution 22 5

Exponential distribution Uniform distribution 17 6

Exponential distribution Zipf distribution 20 6
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18 under a uniform distribution, and 11 under a normal

distribution. The experimental results are shown in Fig. 6.

As illustrated in Fig. 6, the LR of all algorithms

increases greatly as the request arrival rate increases from

20 to 80, and they increase slightly as the request arrival

rate increases from 80 to 180. This agrees with the intuition

that the higher the request rate is, the higher the system

load is, and the higher LR is. Specifically, the conclusions

are made as follows.

1. The LR of the push-based algorithms (GREEDY and

TOSA) are higher than pull-based at a low request rate.

This is because a push-based algorithm relies on the

priori knowledge of the clients’ requests. When the

requests cover most of the data items of push-based

broadcast, the performance of GREEDY and TOSA are

better than before.

2. The highest LR overall occur for uniform request

distribution and the lowest LR for Zipf distribution

because the only a small set of data items are accessed

frequently under Zipf.

3. OCSM achieve the lowest LR under Zipf distribution,

which confirms that OCSM clusters more accurate with

obvious data characteristics. At the low request rate for

the normal and uniform data request, the OCSM has

the lowers LR, while at the higher request rate, the

performance of OCSM is similar to TOSA.

4. By comparing the performance of each algorithm in

the three situations, we can see that the LR of all the

algorithms are greatest for the uniform distribution and

the smallest for Zipf distribution. This can be attributed

to the fact that it is more likely for a selected data item

to satisfy multiple requests before their deadlines as

the access pattern becomes more skewed. Under these

three request distribution, OCSM generally performs

best, especially under a Zipf distribution, where the

characteristics of the data items are obvious.

5.4 Performance of OCSM under different request

deadline distributions

Experiments were carried out to compare the performance

of OCSM to that of RxW, GREEDY, and TOSA under dif-

ferent request deadline distributions (uniform distribution,

exponential distribution, and fixed distribution). The data

item size of RxW and GREEDY was fixed as 1 unit. OCSM

and TOSA were run under a uniform distribution, with the

average value set as 1 unit. The data request distribution

was set as a Zipf distribution, and the request rate was set

as 100 requests/s. The K value in OCSM was set as 18

under a uniform distribution, 17 under an exponential

distribution, and 17 under a fixed distribution. The exper-

imental results are shown in Fig. 7.

As illustrated in Fig. 7, we can make the following

observation:

1. The LR of all algorithms decrease greatly as the

deadline increases from 10 to 85, and they decrease

slightly as the deadline increases from 85 to 200. This

result is expected because the longer deadline is, the

lower the timing constraint is, and the greater the

possibility the request will be satisfied. Specifically,

the conclusions are made as follows.

2. With the extension of the request deadline, the LR of

the two push-based scheduling algorithms, GREEDY

and TOSA, reduces more slowly than for the two pull-

based algorithms. This is because push-based algo-

rithms considers a static data access pattern and

disseminates data items cyclically according to a pre-
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defined schedule. Therefore, even if the deadline is

extended, the LR remains high.

3. The LR for the exponential deadlines is the greatest,

because of the possibility of occurrence of deadline I

will decrease with the increasing value of I under the

exponential deadline distribution. To some extent, the

characteristic of data items are more obvious in that

case, therefore, OCSM is still able to achieve the

lowest LR.

4. OCSM has lowest LR while in the uniform, because

the deadline distribution is relatively concentrated and

the characteristics of data items are obvious, which

makes the OCSM clustering more accurate. While,

when the request deadline is under a fixed distribution,

OCSM has no advantage in this case, the LR of OCSM

is higher than TOAS.

5.5 The performance of OCSM under a fixed

distribution of data item size

Experiments were carried out to compare the performance

of OCSM with that of RxW, GREEDY, and TOSA under a

fixed distribution of data item size. The data request dis-

tribution was set as a Zipf distribution, and the request rate

was set as 100 requests/s. The request deadline distribution

was set as a uniform distribution, with an average value of

60 s. The K value in OCSM was set as 18. On the basis of

the results shown in Fig. 8, we can make the following

observations:

1. Because RxW and GREEDY do not consider the data

item size, their performances are poor. With the

increase of the data item size, the LR of RxW and

GREEDY increases rapidly.

2. TOSA and OCSM consider the value of the data item,

and data items with a high value have a high broadcast

priority. With the increase of the data item size, they

still obtain a lower LR, and the performance of OCSM

is better than TOSA.

6 Conclusions and future work

The disadvantage of the single-channel architecture and

fixed multi-channel architecture lies in the fact that the

broadcast channel is fixed, so that it cannot adjust flexibly

to adapt to real-time client requests. In this paper, to

overcome this disadvantage, we have studied adaptive

multi-channel on-demand data broadcasting (ODDB) and

proposed an adaptive channel split and allocation method

named the optimized channel split method (OCSM).

Extensive experiments were conducted to evaluate the

performance of OCSM, allowing a number of conclusions

to be drawn as follows.
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1. In the case of the characteristics of the data items being

obvious, OCSM performs better than the other state-of-

the-art methods.

2. Compared to the single-channel broadcast scheduling

algorithms, OCSM applies the adaptive channel split

strategy, which can make full use of the parallel

broadcasting characteristic of the multi-channel system.

3. Compared to the fixed multi-channel broadcast

scheduling algorithms, OCSM has a stronger adapt-

ability and can perform better under different data

distributions.

Our future work will mainly focus on an index strategy

based on OCSM, with the aim being to reduce the tuning

time of clients, and to consider the situation where the

client request contains multiple data items.
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