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Abstract The radio spectrum sensing has been an impor-

tant issue of research in cognitive radio networks over the

last decade and the appropriate selection of threshold plays

a crucial role in the process of spectrum sensing. The

conventional channel sensing methods generally employ a

fixed threshold, which is either based on the principle of

constant false alarm rate (CFAR) or the principle of con-

stant detection rate (CDR). The sensing performance of

these schemes degrades under low signal to noise ratio

(SNR) and noise uncertainty. The problem of noise

uncertainty occurring in energy detection (ED) based

spectrum sensing method can be overcome by using

covariance-based spectrum sensing scheme. However, the

performance of covariance based spectrum sensing

degrades at low SNR. This paper proposes a covariance-

based channel sensing method, where the adaptive

threshold is selected in an intelligent manner to minimize

the probability of error with sufficient protection to primary

user (PU). First, an adaptive threshold is derived by con-

sidering both probability of detection and probability of

false alarm such that the total decision error probability is

minimized. This adaptive threshold is then considered

along with two other thresholds based on CFAR and CDR

schemes, for the final selection of threshold such that the

protection to PU is maximized. The proposed approach

also provides the minimum number of samples required for

reliable spectrum sensing. As shown by the simulation

results, the proposed scheme exhibits better detection

performance compared to ED based schemes as well as the

existing covariance-based detection method in terms of

probability of detection and probability of decision error.

Keywords Cognitive radio � Spectrum sensing �
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1 Introduction

Over the last decade, the exponential growth of wireless

communication technologies and surge of data services

have given rise to an ever-increasing demand for spectrum

resources. This has resulted in scarcity of frequency spec-

trum, which is a limited natural resource. Interestingly, the

recent study of spectrum utilization carried out by Federal

Communication Commission (FCC) has indicated that

most of the spectrum is underutilized in vast temporal and

geographical dimensions due to the fixed spectrum allo-

cation methodology [1, 2]. Therefore, to resolve the con-

flict between spectrum underutilization and spectrum

scarcity problem, the ‘‘Cognitive radio’’ (CR) technology is

considered as a viable option [3, 4]. The cognitive radio has

the ability to sense the huge swath of spectrum in external

radio frequency environment and adapt itself by changing

its communication parameters such as transmission power,

carrier frequency and bandwidth accordingly [3, 5]. In CR,

the unlicensed secondary user (SU) borrows the spectrum

from licensed primary user (PU) or shares the spectrum

with PU networks to increase the utilization of unused

spectrum without interfering with the PU [3–5]. To ensure

this, the SU has to dynamically detect the presence of

licenced users [4, 5].
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The performance of a CR networks heavily depends on

its ability to sense the frequency spectrum. There are var-

ious spectrum sensing techniques available in the literature

such as energy detection (ED) [6–11], matched filter

detection (MF) [12, 13], cyclostationary feature detection

[14, 15], maximum–minimum eigenvalue detection

[16, 17] and covariance-based detection [18–23] methods.

There are three different paradigms for spectrum sharing

in the CR network, namely underlay, overlay and inter-

weave [24]. In the underlay approach, the SU can always

access the licensed spectrum by transmitting the signal at a

very low power level so that the interference to the PU

remains below the prescribed limit [25, 26]. In the overlay

approach, however, SU also helps in PU’s transmission

while accessing the spectrum. In this mode, PU shares the

information about signal codebook and message with the

SU [27, 28]. In the interweave approach, the SU exploits

the unused frequency spectrum band of the licensed PU in

an opportunistic fashion [27]. The covariance based spec-

trum sensing scheme proposed in this paper can be used

with overlay and interweave approaches of spectrum

sharing for cognitive radio networks.

Many spectrum-sensing methods require the information

about the spectrum utilization factor of licensed user

[9, 23]. Therefore, spectrum occupancy measurements are

very useful in CR system design and can be utilized to

increase spectrum sensing accuracy. In the literature sev-

eral spectrum occupancy models are studied to estimate the

behavior of PU’s spectrum utilization [29–34]. The

covariance-based spectrum sensing approach proposed

here also exploits the information about SNR and the

spectrum occupancy by PU to obtain more reliable sensing

performance.

The rest of the paper is organized as follows. Works

related to spectrum sensing are reviewed in Sect. 2, and

related issues are discussed. The spectrum sensing model

and the conventional methods based on ED and covariance

matrix are briefly described in Sect. 3. The proposed

covariance-based adaptive threshold spectrum-sensing

method and scheme for intelligent selection of threshold

are presented in Sect. 4. The simulation results of the

proposed scheme and a comparison with ED and existing

covariance-based approaches are presented in Sect. 5.

Finally, overall findings of this study are concluded in

Sect. 6.

2 Related work

The spectrum sensing is a vital component in CR networks.

Recently, various spectrum-sensing methods have been

proposed in the literature [7–23]. Among these methods,

the energy detection [7–11] is widely used as it does not

require prior knowledge of PU’s signal characteristics and

is also easy to implement. However, as shown by several

studies [35, 36], its performance severely degrades at low

SNR and is not robust to noise uncertainty. In order to

improve the performance at low SNR, authors discussed a

spectrum-sensing algorithm in [10], which is based on

three consecutive events. This algorithm, named as three-

event ED (3EED), takes the decision in one sensing event,

considering also the event immediately before and the one

immediately after it. It exploits the knowledge of duty

cycle of the PU’s activity for tracking the changes in the

PU’s state. However, this scheme is not able to address the

problem of noise uncertainty. Also, these methods require

an estimate of noise power [7, 9, 10], which in practice, is

very challenging to obtain [35]. The matched filtering

(MF)-based scheme [12, 13] can perform well at low SNR

and with noise uncertainty but requires prior information of

licensed user. Similarly, the cyclostationary detection

method [14, 15] needs the knowledge of the PU’s cyclic

frequency. Therefore, both MF and cyclostationary-based

detection methods are not suitable for blind spectrum

sensing. To overcome the problem of noise uncertainty, the

maximum eigenvalue detection method [16, 17] and

covariance-based method [18–23] have been proposed. The

covariance-based spectrum sensing methods use the sta-

tistical covariance of signal and noise, which are usually

different. This property is exploited to decide whether PU

is present or not [18–22]. Among other schemes based on

this principle, the weighted-covariance-based spectrum

sensing [22] exploits the spatial/temporal correlation of PU

signal. The graph-theory based detection scheme is dis-

cussed in [23], which maps received data to the graph-

related data sheets and examines the corresponding adja-

cency matrix and associated matrix converting the problem

of spectrum sensing into classical problem of graph theory.

The performance of all these existing covariance-based

spectrum sensing methods degrade at low SNR, as they do

not consider other factors such as signal to noise ratio and

spectrum utilization ratio of PU.

In every spectrum sensing scheme, the decision about

the presence or absence of a licensed user is based on a

threshold, which is computed by using some test statis-

tic. Most of the spectrum sensing techniques consider a

constant false alarm rate to obtain a suitable value of

threshold for decision making. The performance of

spectrum sensing greatly depends upon the value of

threshold used in the sensing scheme. The conventional

spectrum sensing methods use a fixed threshold

[7, 10, 18, 21], which does not ensure sufficient protec-

tion to PU. Also, the performance of these methods

severely deteriorates at low SNR. It is very difficult to

achieve pre specified values of both probability of

detection and probability of false alarm with a single
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value of threshold [37]. To address this issue a number of

adaptive threshold-based techniques have been intro-

duced [8, 9]. In [25] an optimal threshold is obtained

through tradeoff between probability of detection and

probability of false alarm by employing a weighted

function. Sobron et al. [8] have discussed an adaptive

spectrum sensing scheme using a cost function that

consists of the aggregate information about absence or

presence of PUs.

These schemes exhibit an improved performance at

low SNR due to adaptive nature of the threshold

employed. However, in case of noise uncertainty, the

performance severely deteriorates [36]. Although the

conventional covariance-based method can effectively

address the problem of noise uncertainty, its perfor-

mance at low SNR is not good [20, 21]. Therefore, the

work presented in this paper attempts to develop a

spectrum sensing algorithm, which can effectively

overcome the challenges of noise uncertainty as well as

that of low SNR. To achieve this goal, the proposed

method named as covariance-based adaptive threshold

(CAT) utilizes the information about PU’s activity and

SNR. The spectrum utilization factor of licensed user is

obtained using the statistical spectrum occupancy model

presented in [34] that employs first and second order

parameters derived from statistical characteristic of fre-

quency spectrum, and predicts spectrum occupancy with

high accuracy. Further, the overall probability of deci-

sion error is minimized to obtain the adaptive threshold,

which ensures better performance at low SNR. The

proposed scheme is also robust against noise uncertainty

as the test statistics used in the scheme are based on

signal covariance like other conventional covariance-

based spectrum sensing scheme.

The proposed work of CAT scheme is further extended

to provide sufficient protection to PU along with mini-

mization of decision error. The new scheme, named as

covariance-based adaptive threshold with intelligent

selection (CAT-IS), intelligently selects the decision

threshold from a set of three values of threshold obtained

using three different criteria, namely constant false alarm

rate (CFAR), constant detection rate (CDR) and the pro-

posed CAT. The threshold obtained using CDR criterion is

best suited to provide sufficient protection to licensed user.

The threshold obtained under CFAR criterion ensures the

maximum utilization of spectrum by SU for given value of

CFAR. The threshold obtained by CAT scheme achieves

minimum probability of decision error. The proposed

CAT-IS scheme varies the number of samples used in

sensing to achieve the goal of minimization of decision

error with sufficient protection to PU.

3 Spectrum sensing preliminaries

In this section, first of all, the commonly used spectrum

sensing model is described. Then, a brief review of com-

monly used ED and covariance-based spectrum sensing

technique is presented. Also, the notation adopted in this

paper is described in Table 1.

3.1 Spectrum sensing model

Let the frequency band to be sensed by the SU be centred

at frequency fc having a bandwidth W. The received signal

can be expressed as the following hypotheses [8, 13, 18]:

H0 : xðnÞ ¼ gðnÞ ð1Þ
H1 : xðnÞ ¼ sðnÞ þ gðnÞ ð2Þ

where xðnÞ is the sample of signal received by the SU, sðnÞ
is the sample of PU’s transmitted signal with zero mean

and variance r2s , and gðnÞ is additive white Gaussian noise

(AWGN). The noise samples are assumed to be indepen-

dent and identically distributed (IID) with zero mean and

variance r2g. Thus, the signal to noise ratio (SNR) is

n ¼ r2s

.
r2g.

The hypothesis H0 indicates that the PU is absent

whereas the hypothesis H1 represents that PU is present.

The performance of spectrum sensing can be measured in

terms of probability of detection ðPdÞ i.e. a busy frequency

band is detected to be busy, and probability of false alarm

ðPf Þ that an idle frequency band is detected to be busy. To

achieve the maximum throughput of SU, Pf should be as

small as possible, whereas to provide protection to PU, Pd

should be high [37].

3.2 Energy based spectrum sensing

In ED-based spectrum sensing, following test statistic is

used [6–11]:

TðxÞ ¼ 1

N

XN
n¼1

xðnÞj j2 ð3Þ

where N is the number of samples used in test statistic.

The test statistic TðxÞ of (3) has the Chi square distri-

bution. However, when N is large, it can be approximated

by Gaussian distribution using the central limit theorem

[6, 7]. In conventional energy based spectrum sensing for a

given value of probability of false alarm, the threshold k
can be expressed as described in [7, 24–28] by:

k ¼ r2g

ffiffiffiffi
2

N

r
Q�1ðPf Þ þ 1

 !
ð4Þ
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where Pf is probability of false alarm and the Q-function is

described as: QðzÞ ¼
R1
z

1ffiffiffiffi
2p

p e�
x2

2 dx.

3.3 Covariance-based spectrum sensing method

The signal received at SU has the following covariance

matrix [18–21]:

RxðNsÞ ¼

gð0Þ gð1Þ . . . gðL� 1Þ
g�ð1Þ gð0Þ . . . gðL� 2Þ
..
.

..

.

..

.

..

.

. . .

. . .

..

.

..

.

g�ðL� 1Þ g�ðL� 2Þ . . . gð0Þ

2
6666666664

3
7777777775

ð5Þ

where Ns denotes the number of samples used for com-

putation of sample covariance matrix. The element gðlÞ of
the covariance matrix RxðNsÞ is computed as:

gðlÞ ¼ 1

Ns

XNs�1

m¼0

xðmÞx�ðm� lÞ ð6Þ

with l ¼ 0; 1; . . .; L� 1; where L represents the smoothing

factor [18, 20, 21].

The threshold used in the covariance absolute value

(CAV) spectrum sensing scheme [18], is defined as:

c ¼
1þ ðL� 1Þ

ffiffiffiffiffiffi
2

Nsp

q

1� Q�1ðPf Þ
ffiffiffiffi
2
Ns

q ð7Þ

Table 1 Notation adopted in

this paper
Symbol Definition

H0 Null hypothesis indicating absence of PU

H1 Alternate hypothesis indicating presence of PU

xðnÞ Sample of signal received by the SU

sðnÞ Sample of PU’s transmitted signal

gðnÞ Sample of additive white Gaussian noise

r2g Variance of noise

r2s Variance of PU’s transmitted signal

n Signal to noise ratio (SNR)

Pd Probability of detection

Pf Probability of false alarm

TðxÞ Test statistic used for spectrum sensing

k Threshold in ED-based detection

N;Ns Number of used sensing samples

RxðNsÞ Autocorrelation matrix of received signal at SU

RsðNsÞ Autocorrelation matrix signal transmitted by PU

RgðNsÞ Autocorrelation matrix of noise

L Smoothing factor

rijðNsÞ Element of matrix RxðNsÞ at the ith row and jth column

T1ðNsÞ, T2ðNsÞ Test statistics in covariance-based schemes

c Threshold for covariance-based detection

cPf
Threshold for CFAD-based scheme

cPd
Threshold for CDR-based scheme

� L Overall correlation strength among the consecutive L samples

Pe Probability of decision error

a Spectrum utilization factor of PU

ce Threshold in CAT scheme

Pth
f

Maximum allowable value of Pf

Pth
d

Minimum allowable value of Pd

c�f Value of threshold used in CFAR-based scheme

c�d Value of threshold used in CDR-based scheme

c� Value of threshold used in CAT-IS-based scheme

B Noise uncertainty factor in decibel (dB)
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4 Proposed method for intelligent selection
of threshold for covariance-based spectrum
sensing

The performance of spectrum sensing in a cognitive radio

system is characterized by Pd and Pf . The conventional

spectrum sensing methods use a fixed threshold which can

be based on constant false alarm rate (CFAR) or on con-

stant detection rate (CDR). If the cognitive radio network is

to be designed to ensure PU’s safety, the CDR method is

best suited and a high value of the target detection proba-

bility is chosen for threshold calculation. The higher the

target Pd , higher the protection to PU from SU transmis-

sion. Whereas, if design priority of CR network is to

maximize the spectrum efficiency of the secondary user,

the CFAR method is used and the target Pf is kept very

small. The lesser the value of target Pf , more the chances

of spectrum band being utilized by the SU. In addition to

above two techniques, threshold can also be obtained by

minimizing the overall probability of error. In this paper,

an adaptive threshold is derived and an algorithm of

intelligent selection of threshold is presented. The adaptive

threshold based on minimization of overall probability of

error can take into account both Pd and Pf to ensure that

the interest of both PU and SU are taken care of. The

derivation of proposed adaptive threshold based on this

criteria is presented in part B of this section. It has been

observed that the value of Pd in this method degrades at

low SNR.

In order to overcome this problem, an intelligent

selection of threshold is proposed, which selects the opti-

mum value of threshold from the three possible values of

threshold based on above criteria. This method effectively

maintain the desirable value of Pd with minimum value of

overall probability of error.

4.1 Computation of thresholds for covariance-based

CFAR and CDR schemes

Let the auto-correlation matrix of the signal received at SU

be expressed as:

RxðNsÞ ¼ RsðNsÞ þ RgðNsÞ ð8Þ

where RxðNsÞ, RsðNsÞ and RgðNsÞ represent the autocorre-

lation matrices of the received signal at SU, signal trans-

mitted by the licensed user, and noise, respectively.

It is assumed that the noise is additive white Gaussian

with zero mean and r2g variance, hence Eq. (8) can be

expressed as:

RxðNsÞ ¼ RsðNsÞ þ r2gIL ð9Þ

where IL is an identity matrix of size L� L.

Then, if PU’s transmitted signal sðnÞ is absent i.e.

RsðNsÞ ¼ 0, the off-diagonal elements of RxðNsÞ are all

nulls. Whereas, if signal sðnÞ is present and signal samples

are correlated, RxðNsÞ will have significant values of off-

diagonal elements.

In this method following test statistics are computed:

T1ðNsÞ ¼
1

L

XL
i¼1

XL
j¼1

rijðNsÞ
�� �� ð10Þ

and

T2ðNsÞ ¼
1

L

XL
i¼1

rijðNsÞ
�� �� ð11Þ

Here, rijðNsÞ represents the element of matrix RxðNsÞ at the
ith row and jth column. Therefore, if there is no signal

T1ðNsÞ=T2ðNsÞ ¼ 1; and in the presence of signal

T1ðNsÞ=T2ðNsÞ[ 1. Thus, the ratio T1ðNsÞ=T2ðNsÞ forms

the test statistic TðNsÞ, to detect the presence of signal in

CFAR and CDR based methods as explained below.

1. In CFAR based scheme, the threshold is computed for

the specified value of Pf . The Pf under the hypothesis

H0, it can be expressed as:

Pf ¼ PðT1ðNsÞ� cPf
T2ðNsÞÞ ð12Þ

Now the associated threshold cPf
is obtained in [14] as:

cPf
¼

1þ ðL� 1Þ
ffiffiffiffiffiffi
2

Nsp

q

1� Q�1ðPf Þ
ffiffiffiffi
2
Ns

q ð13Þ

2. If the CR network is designed to guarantee the PU’s

safety against the interference of SU by using the CDR

method with certain target detection probability, then

under hypothesis H1, it can be expressed as:

Pd ¼ PðT1ðNsÞ� cPd
T2ðNsÞÞ ð14Þ

For a very large number of samples Ns and a low SNR,

probability of detection ðPdÞ can be obtained as shown in

[18] by the following expression:

Pd ¼ 1� Q

1
cPd

þ � Ln
cPd ðnþ1Þ � 1
ffiffiffiffiffiffiffiffiffiffi
2=Ns

p
0
@

1
A ð15Þ

where � L,
2
L

PL�1

l¼1

ðL� 1Þ alj j, is the overall correlation

strength among the consecutive L samples and al is the

normalized correlation among the signal samples, expres-

sed as:
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al ¼ E sðnÞsðn� lÞ½ �
�
r2s :

For the present case, the expression (15) can be utilized

to compute the threshold ðcPd
Þ which can ensure a given

probability of detection as given below:

cPd
¼

1þ � Ln
ðnþ1Þffiffiffiffi

Ns

2

q
Q�1ð1� PdÞ þ 1

ð16Þ

4.2 Proposed adaptive threshold based

on minimization of overall probability of error

The tradeoff between Pd and Pf can be exploited to derive

an adaptive threshold for spectrum sensing which mini-

mizes the overall probability of decision error ðPeÞ. For this
purpose, the following expression is used:

minðPeðcÞÞ ¼ min PðH0ÞPf þ PðH1Þð1� PdÞ
� �

ð17Þ

where the probabilities PðH0Þ and PðH1Þ, respectively,

indicate the absence and presence of PU. The argument in

(17) includes two types of errors: (1) deciding H1 in place

of H0 (2) deciding H0 instead of H1. The adaptive threshold

can be obtained by minimizing the following objective

function.

PeðcÞ ¼ ð1� aÞPf þ að1� PdÞ ð18Þ

Substitution of Pf and Pd from (13) and (15) into (18)

yields:

PeðcÞ ¼ð1� aÞ 1� Q

1
c 1þ ðL� 1Þ

ffiffiffiffiffiffi
2

Nsp

q� �
� 1

ffiffiffiffi
2
Ns

q

0
B@

1
CA

0
B@

1
CA

þ aQ
1
c þ

� Ln
cðnþ1Þ � 1ffiffiffiffiffiffiffiffiffiffi
2=Ns

p
 !

ð19Þ

Let U ¼
1
c 1þðL�1Þ

ffiffiffiffiffi
2

Nsp

pð Þ�1ffiffiffi
2
Ns

p and V ¼
1
cþ

�Ln
cðnþ1Þ�1ffiffiffiffiffiffiffi
2=Ns

p Then

PeðcÞ ¼
ða� 1Þffiffiffi

p
p

Z 1

Uffiffi
2

p
e�z2dzþ affiffiffi

p
p
Z 1

Vffiffi
2

p
e�z2dzþ 1� a

ð20Þ

For a known value of a, the total decision error probability

PeðcÞ is a convex function of threshold c.
The probability of error in (19) can be minimized by

setting the derivative equal to zero, which leads to the

following expression:

c2 ln
ð1� aÞ

a

1þ ðL� 1Þ
ffiffiffiffiffiffi
2

Nsp

q

1þ � Ln
ðnþ1Þ

2
4

3
5 4

Ns

þ c �2ðL� 1Þ
ffiffiffiffiffiffiffiffi
2

Nsp

r
þ 2� Ln
ðnþ 1Þ

	 


� ðL� 1Þ2 2

Nsp
þ 2ðL� 1Þ

ffiffiffiffiffiffiffiffi
2

Nsp

r	

� � 2
Ln

2

ðnþ 1Þ2
� 2� Ln
ðnþ 1Þ

#
¼ 0

ð21Þ

Equation (21) can be written as:

c2Aþ cBþ C ¼ 0 ð22Þ

where

A ¼ ln
ð1� aÞ

a

1þ ðL� 1Þ
ffiffiffiffiffiffi
2

Nsp

q

1þ � Ln
ðnþ1Þ

2
4

3
5 4

Ns

;

B ¼ �2ðL� 1Þ
ffiffiffiffiffiffiffiffi
2

Nsp

r
þ 2cLn
ðnþ 1Þ

	 

and

C ¼� ðL� 1Þ2 2

Nsp
þ 2ðL� 1Þ

ffiffiffiffiffiffiffiffi
2

Nsp

r	

� c2Ln
2

ðnþ 1Þ2
� 2cLn
ðnþ 1Þ

#

ð23Þ

Let

a ¼ ðL� 1Þ
ffiffiffiffiffiffiffiffi
2

Nsp

r
� cLn
ðnþ 1Þ

	 

and

b ¼ ðL� 1Þ
ffiffiffiffiffiffiffiffi
2

Nsp

r
þ cLn
ðnþ 1Þ þ 2

	 
 ð24Þ

Then, it is easily observed that: B ¼ �2a and C ¼ �ab.

Now, Eq. (22) can be expressed as:

c2A� 2ac� ab ¼ 0 ð25Þ

The solution of Eq. (25) can be given as:

c1 ¼
a

A
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ab

a

� �s" #
and

c2 ¼
a

A
�1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ab

a

� �s" #

The value of c, selected to represent the threshold is

positive i.e. c ¼ c1 and is described by:
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ce ¼
ðL� 1Þ

ffiffiffiffiffiffi
2

Nsp

q
� � Ln

ðnþ1Þ

� �

ln
ð1�aÞ

a

1þðL�1Þ
ffiffiffiffiffi
2

Nsp

p

1þ �Ln
ðnþ1Þ

	 

4
Ns

2
664

3
775

�1þ 1þ
ðL� 1Þ

ffiffiffiffiffiffi
2

Nsp

q
þ � Ln

ðnþ1Þ þ 2
� �

ðL� 1Þ
ffiffiffiffiffiffi
2

Nsp

q
� � Ln

ðnþ1Þ

� �
0
B@

2
64

ln
ð1� aÞ

a

1þ ðL� 1Þ
ffiffiffiffiffiffi
2

Nsp

q

1þ � Ln
ðnþ1Þ

2
4

3
5 4

Ns

1
A

0:53
75

ð26Þ

where � L represents the overall correlation strength among

the consecutive L samples.

The parameter !L can be obtained by using the test

statistics T1ðNsÞ and T2ðNsÞ. Under hypothesis H1, � L can

be obtained from off-diagonal elements of the RxðNsÞ. It
can be observed that

lim
Ns!1

E T1ðNsÞ � T2ðNsÞð Þ ¼ 2r2s
L

XL�1

l¼1

ðL� 1Þ alj j ð27Þ

where al denotes the correlation among signal samples.

Therefore, the overall correlation strength among the

consecutive L samples can be estimated at SU as:

� L ¼ T1 Nð Þ � T2 Nð Þ
SNRr2g

ð28Þ

where � L is computed by using N samples, which also

includes the samples of the previous sampling intervals.

Thus, N[ [Ns.

4.3 Proposed scheme of intelligent selection

of threshold

The performance of the scheme based on the adaptive

threshold introduced in part B can be further improved by

adopting an intelligent strategy for the selection of a

threshold, which takes into consideration the strengths of

methods based on CFAR and CDR principles. The pro-

posed scheme ensures sufficient protection to PU as well as

minimizes the probability of overall decision error. For

reliable spectrum sensing, the threshold ðcÞ should be

selected in such a way that probability of false alarm Pf ðcÞ
is below a given specified value Pth

f and the probability of

detection PdðcÞ is above a given specified value Pth
d . Since

PdðcÞ and Pf ðcÞ both decrease with increase in threshold c,
the above requirements translate into the following

conditions:

c� c�d and c� c�f ð29Þ

where c�d and c�f denote values of threshold required to

satisfy the given values of probability of detection ðPth
d Þ

and probability of false alarm ðPth
f Þ, respectively. That is,

Pd c�d
 �

¼ Pth
d and Pf c�f

� �
¼ Pth

f ð30Þ

If c�d � c�f , then any value of c which lies in the interval

c�f ; c
�
d

h i
can satisfy the requirements of probability of

detection and probability of false alarm. If c�d � c�f , then

there is no feasible value of c, which can satisfy both these

requirements. However, in this case a suitable threshold can

still be selected if the condition c�d � ce is satisfied. Under

this condition the choice of threshold as ce, can ensure

sufficient protection to PU and minimizes the probability of

overall error, which in turn implies reduction of Pf also.

The process of selection of optimum threshold is shown in

the in the following flow chart:

Thus, in the proposed scheme, first of all, the threshold

c�f , c�d and ce are computed using (13), (16) and (26),

respectively for a given sample size Ns. Then c�d � c�f is true

and ce lies in the interval c�f ; c
�
d

h i
, the choice of threshold

as ce will satisfy the given requirement of Pth
d and Pth

f . If the

condition c�d � c�f is not satisfied or if ce does not lie in the

interval c�f ; c
�
d

h i
than the condition c�d � ce is evaluated and

if found true, the threshold can still be selected as ce. It can
be noted that in this case the given requirement of Pth

f is not

satisfied. However, the protection of PU is ensured with

minimum value of Pf through minimization of overall

probability of decision error. When the condition c�d � ce is
also not found true, there is a need to increase the sample

size by including some new samples through re-sensing.

For example, the number of sample may be increased to

2Ns by combining the samples of previous intervals. By

increasing the sample size the conditions c�d � c�f ; c
�
d � ce or

both may be satisfied so that the selection of an appropriate

threshold becomes feasible.

Therefore, for reliable spectrum sensing the condition

c�d � ce should be satisfied, where both c
�
d and ce are function

of number of samples ðNsÞ. The minimum number of

samples required for reliable spectrum sensing is the value

of Ns that satisfies c�d ¼ ce. That can be easily obtained using
(15) and (26) by employing some numerical technique.

4.4 Proposed covariance-based spectrum sensing

using Intelligent Selection of Threshold

The algorithm of the proposed scheme for spectrum sens-

ing named as covariance based adaptive threshold with

intelligent selection (CAT-IS) is summarized below:
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Step 1 Choose the smoothing factor L and the number of

samples ðNsÞ
Step 2 Compute the autocorrelation of received signal

using Eq. (6) and form the sample covariance matrix using

(5)

Step 3 Compute the test statistics

T1ðNsÞ ¼
1

L

XL
i¼1

XL
j¼1

rijðNsÞ
�� �� and

T2ðNsÞ ¼
1

L

XL
i¼1

rijðNsÞ
�� ��

where rijðNsÞ represent the elements of the sample

covariance matrix RxðNsÞ
Step 4 Obtain the overall correlation strength ð� LÞ among

the consecutive L samples by using (28) and, using a period

of 30 sensing intervals

Step 5 Calculate the optimal decision threshold c� for

specified spectrum utilization ratio a using flowchart given

in Fig. 1

Step 6 Obtain the test statistic

TðNsÞ ¼
T1ðNsÞ
T2ðNsÞ

ð31Þ

Step 7 Take the sensing decision as:

D ¼ 1 TðNsÞ� c�

0 TðNsÞ\c�

�
ð32Þ

Here, the sensing decision D ¼ 0 implies that the PU is

not present, whereas sensing decision D ¼ 1 indicates that

PU is present.

In general, the computational complexity of any

covariance-based spectrum-sensing method is higher than

that of ED-based method. It can be easily observed that in

the covariance-based spectrum sensing scheme computa-

tion of autocorrelation matrix involves LNs þ L2 multipli-

cations and additions. However, in the proposed spectrum

sensing approach when the condition c�d � ce; is not satis-
fied then the number of samples is increased as:

Nnew
s ¼ Ns þ DNs ð33Þ

where Nnew
s is the updated number of samples after re-

sensing and DNs represents the increase in the number of

samples. The covariance matrix of received signal is

updated as:

Rx Nnew
s

 �
¼ hRx Nsð Þ þ 1� hð ÞRx DNsð Þ ð34Þ

where h ¼ Ns= Ns þ DNsð Þ
In addition to the covariance matrix, the proposed

scheme also compares the thresholds for optimal selection.

However, the computational efforts required for this are not

significant in comparison with efforts required for com-

putation of covariance matrix. The computational com-

plexity increases as O Nsð Þ in both the existing covariance-

based technique and the present approach.

It can also be noted that the number of samples Ns is

kept fixed in [18], whereas in the present approach it

varies with SNR. At low SNR, the present scheme re-

quires larger number of samples than in the existing

scheme. Whereas, at high SNR it is less than that used by

the existing covariance-based method. Thus, the overall

computational complexity of the proposed method is same

as that of [18].

5 Simulation results and discussions

In this section, simulation results are presented to demon-

strate the performance of the proposed covariance based

adaptive threshold (CAT) spectrum sensing method and the

covariance based adaptive threshold with intelligent

selection (CAT-IS) spectrum sensing scheme. For com-

parison, existing schemes viz conventional ED-based

spectrum sensing method, 3EED-based scheme and

covariance absolute value (CAV)-based [18] spectrum

sensing methods are also simulated.

The CR system model is simulated using MATLAB 8.1

and for performance analysis results are obtained by

averaging 1000 Monte-Carlo runs. The statistical spectrum

occupancy model presented in [34] is employed to estimate

the PU’s activity, which is varied in the range of 10–80%.

The technique of [34], which estimates the utilization

factor of PU, provides good accuracy (*91%) of spectrum

prediction. The number of samples ðNsÞ in a sensing

interval, used in the simulation is 15,000 and smoothing

factor is chosen is L ¼ 5. The maximum allowable

Yes 
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Yes 

No 

No 

No * *,e f d

* *
d f

Calculate 
* *,f d and e

Increase sample size 
( )sN  by re-sensing 

*
d e

*
e

Fig. 1 Flow chart for the proposed scheme of intelligent selection of

threshold
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probability of false alarm and minimum allowable proba-

bility of detection is fixed at 0.1 and 0.9, respectively.

The variation of threshold value with SNR for proposed

covariance-based adaptive threshold (CAT) scheme under

different values of spectrum utilization factor ðaÞ is shown
in Fig. 2 for Ns ¼ 10; 000. From this figure, it is observed

that the threshold varies with SNR to minimize the decision

error probability whereas the threshold of existing CAV

method is constant. Figure 2 is magnified into Fig. 3 to

capture the variation of threshold at low SNR. It is noted

that as the utilization ratio of PU increases, it requires

smaller value of adaptive threshold to achieve the reliable

spectrum detection, and vice versa. This is not possible in a

fixed threshold-based scheme such as CAV method [18].

The variation of the thresholds c�f ; c
�
d and ce with SNR is

shown in Fig. 4 for Ns ¼ 25; 000. From this figure, it is

observed that the value of threshold ce, in covariance-based
adaptive threshold (CAT) method, varies with SNR to

minimize the decision error probability in the same way as

threshold in CDR based method ðc�dÞ varies with SNR to

satisfy the requirement of given probability of detection

i.e.Pth
d ¼ 0:9; whereas the threshold c�f of existing CFAR-

based scheme [18] is constant.

Figure 4 is magnified in Fig. 5 to clearly observe the

variation of thresholds at low SNR. It is noted that the

condition ce 2 c�f ; c
�
d

h i
is satisfied at n� � 14:5dB with

sample size of 25,000. At n\� 19:5dB it is observed that

c�d\ce, indicates that the optimal threshold does not exist.

However, spectrum sensing can still be performed in reli-

able manner to minimize the error in spectrum sensing and

achieve a given value of probability of detection if the

number of samples is further increased either through re-

sensing or by increasing the sampling frequency.
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Figure 6 shows the variation of threshold values with

number of samples for CDR-based scheme and CAT-based

proposed method at SNR ¼ �16dB. The minimum number

of samples required for reliable spectrum sensing may be

obtained from the intersection of curves of CDR and CAT-

based thresholds. For examples, the minimum number of

samples required at SNR ¼ �16dB is 5500, as shown by

Fig. 6. The variation of optimum number of samples

required for reliable spectrum sensing with signal to noise

ratio is shown in Fig. 7. It can be observed that as the SNR

increases fewer samples can provide reliable spectrum

sensing.

Figure 8 shows the plot of probability of detection with

SNR. From this figure, it is observed that proposed

covariance-based adaptive threshold (CAT) scheme per-

forms better than existing CAV method as well as ED-

based schemes in absence of any noise uncertainty. The

probability of detection is further improved when the

threshold is selected in an intelligent manner by using the

proposed CAT-IS scheme, especially at low SNR

ðn\� 14dBÞ.
For example, the proposed CAT-IS technique achieves a

value of Pd at SNR = -16.5 dB as 0.954 under the

interweave paradigm. Whereas, CAT, CAV, 3EED and

ED-based schemes achieve the Pd as 0.911, 0.809, 0.7154

and 0.688, respectively. In order to demonstrate the

applicability of the proposed techniques under overlay

approach the CAT-IS scheme is also implemented using

this approach as a typical example. The CAT-IS technique

performs better in overlay approach than interweave as in

overlay approach PU shares the information about signal

codebook and message with the SU [20–22]. This improves

the accuracy of the parameters such as PU’s utilization

factor and correlation factor of PU’s transmitted signal

used in the proposed technique. A similar improvement in

the performance of CAT scheme may also obtained under

overlay approach of spectrum sharing.

In practice the estimated noise power may be different

than the actual noise power, therefore some uncertainty is

involved in the estimation of noise. If the estimated noise

power is assumed to be r̂2g ¼ br2g, then the noise uncer-

tainty factor [35, 36] is defined as:

B ¼ maxf10 log10 bgdB ð33Þ

where, it is assumed that b is uniformly distributed in an

interval of �B;B½ �. In literature, it is assumed that the noise

uncertainty factor of 1 dB to 2 dB is normally observed in

practice.

For a noise uncertainty of 2 dB, the variation of Pd with

SNR is plotted in Fig. 9. From this figure, it can be

observed that at high SNR (SNR[-18 dB) the
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performance of ED-based method deteriorates most in

comparison with other methods under noise uncertainty.

However, at low SNR (SNR\-12 dB) the probability of

detection remains almost constant Pd 	 0:5ð Þ for ED-based
method. In the proposed CAT scheme, the adaptive nature

of threshold significantly improves the performance of

conventional covariance based (CAV) method especially at

low SNR. The proposed CAT and CAT-IS both perform

better than CAV and ED schemes at low SNR. When

interweave approach is used the better performance of

CAT-IS scheme is attributed to appropriate selection of

number of samples. When overlay approach is used, the

performance of CAT-IS significantly improves in case of

noise uncertainty also.

Figure 10 shows the variation of probability of error

ðPeÞ with SNR for noise uncertainty of 2 dB. This fig-

ure reveals that the performance of ED-based spectrum

sensing schemes severely deteriorates under noise uncer-

tainty. The CAT-IS scheme outperforms all other schemes.

The best performance is observed when the overlay

approach is used due to availability of accurate information

about correlation factor and PU’s spectrum utilization ratio.

In general, the proposed covariance based adaptive

threshold spectrum sensing (CAT) scheme performs sig-

nificantly better than the existing covariance-based method

(CAV) at low SNR even under noise uncertainty, and its

performance is much better than ED-based spectrum

sensing. This is due to the ability of the proposed algorithm

to effectively utilize the information available in terms of

spectrum utilization ratio of PU and SNR. Also, the per-

formance of CAT scheme is further improved in CAT-IS

method, as threshold is chosen in an intelligent manner by

appropriately selecting the number of samples.

As discussed in Sect. 4, the proposed method has similar

computational complexity as that of [18]. This fact is also

verified by the simulation time required for implementation

of these two methods. For example, at SNR ¼ �16dB the

simulation time required for proposed scheme is 38% les-

ser than that required by [18]. Whereas, at SNR ¼ �19dB

the proposed method requires 29% more simulation time

than that required by the CAV-based spectrum sensing

scheme. It is therefore, expected that during the practical

implementation also the delay incurred by the proposed

method will be similar to that in case of [18]. Thus, it can

be concluded that the improvement in the performance is

achieved by the proposed method without any increase in

computational complexity or delay.

6 Conclusion

In this paper, a scheme for spectrum sensing using an

intelligent selection of threshold is presented. The selection

process employs three different criteria, namely CFAR,

CDR and overall probability of error. First, an adaptive

threshold that minimizes the total decision error probability

is derived. The closed form expression of the adaptive

threshold is based on the statistical covariance matrix of the

received signal and varies with spectrum utilization of PU

and SNR. The proposed covariance based adaptive

threshold (CAT) spectrum sensing scheme significantly

improves the performance of existing covariance-based

technique and effectively overcomes the problem of noise

uncertainty of ED-based spectrum sensing scheme.

Second, to further improve the performance of the

spectrum sensing technique, two other thresholds based on

CFAR and CDR criteria are also included in the selection
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process along with the adaptive threshold. The resulting

covariance based adaptive threshold with intelligent

selection of threshold (CAT-IS) scheme effectively

enhances the performance of CAT technique especially at

low SNR and maintains the given probability of detection.

The proposed spectrum sensing schemes have computa-

tional complexity similar to that of existing CAV method.

The applicability of the proposed technique is demon-

strated under both interweave and overlay approaches of

spectrum sharing. Simulation results have shown that the

CAT-IS scheme yields the maximum probability of

detection and minimizes probability of overall decision

error when compared with existing CAV, conventional ED,

3EED and CAT-based spectrum sensing methods.
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