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Abstract The emergence of small cells provides a cost-

effective way to satisfy users’ explosive traffic require-

ments. The massive deployment of small cells, neverthe-

less, causes severe inter-cell interference in Orthogonal

Frequency Division Multiple-Access -based cellular net-

works. As such, conventional interference management

strategies may be inefficient and interference alignment

(IA) has been proposed as a promising technology to cope

with inter-cell interference. To perfectly align all interfer-

ence in a reduced-dimensional subspace, IA transmitters

generally call for global channel state information (CSI)

across small cell networks through receivers’ feedback.

However, the number of total feedback bits scales as the

square of the number of small cells. Hence, IA achieves a

greater multiplexing gain at the cost of substantial over-

head. To enable a tradeoff between multiplexing gain and

overhead reduction, in this paper we present a new metric

termed average effective degrees of freedom (AEDoF),

which embodies the average degrees of freedom of small

cell networks with CSI overhead considered. Furthermore,

for reducing the computational complexity, we propose a

graph-based clustering algorithm to solve the formulated

AEDoF maximization problem. Simulation results verify

that our proposed algorithm is of low complexity and

achieves the maximum spectrum efficiency among several

existing clustering methods.

Keywords Interference alignment � Overhead � Degrees of

freedom � Graph-based � Clustering

1 Introduction

The explosive growth of mobile data traffic has triggered

an unrelenting demand for high capacity and ubiquitous

coverage of wireless networks. In this regard, small cell

networks, served by low-cost low-power small cell base

stations (SBSs), have been proposed as a promising solu-

tion to tackle this data tsunami. In general, types of small

cells include outdoor picocells as well as indoor femtocells.

Due to their short transmit–receive distance, small cells can

improve the network throughput with a more efficient

spectrum spatial reuse [1]. In addition, a vast amount of

data traffic can be offloaded from macrocells with the aid

of small cells. The massive deployment of small cells,

nevertheless, inevitably induces serious co-channel inter-

ference in Orthogonal Frequency Division Multiple-Access

(OFDMA)-based cellular networks.

Sub-channel assignment and interference alignment (IA)

are two potential interference management approaches in

small cell networks. As a representative of the conventional

interference management strategies, sub-channel assign-

ment could eliminate interference via assigning orthogonal

sub-channels to mutually interfering links, yet with an

underutilized spectrum efficiency, especially when small

cells are densely-deployed. Meanwhile, IA is a precoding

technique which aligns interference to a reduced-dimen-

sional subspace, so that the interference-free dimensions

remained for the desired signal can be maximized. Authors

in [2] have proved that each user can achieve 1 / 2 degrees

of freedom (DoF) in a K-user interference channel with IA,

which is K/2 times that with sub-channel assignment. As
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such, the total DoF IA achieves is proportional to the

number of transmit–receive user pairs. However, the size

of a single IA network could not be infinitely large for two

reasons. On one hand, a larger size of an IA network means

a tighter constraint to align all interference, which may

result in the failure to acquire a feasible precoding solution

[3]. On the other hand, global channel state information

(CSI) must be available at transmitters, and the amount of

CSI overhead is a quadratic function of the number of

small cells [4, 5]. Hence, if the size of an IA network is too

large, then the CSI overhead might be extremely high.

To guarantee the IA feasibility and retain the amount of

overhead within an acceptable range, some related works

have been conducted in [6–13]. Specifically, several clus-

tering-based IA approaches were proposed in [6–9]. The

case where some pre-selected clusters of base stations

inside a network collaborate to align interference was

studied in [6]. In [7], the network was divided into several

IA clusters, with interference among clusters treated as

noise. As such, the CSI overhead is significantly reduced,

whereas the proposed clustering method in [7] is of high

complexity. Moreover, the authors in [8] proposed a novel

partial IA scheme, where two interference link scheduling

algorithms were introduced to enhance the sum throughput

of multi-cell networks. In addition, the application of semi-

blind IA methods in clustered small cell networks was

investigated in [9], with the objective to minimize the

super-symbol length by grouping the users that can be

served in the same time slot. However, the semi-blind IA

scheme is difficult to realize, because the knowledge of

distinct channel coherence intervals is typically unavailable

at transmitters.

More specifically, clustered IA combined with conven-

tional interference management schemes was investigated

in [10–13]. The scheme of IA in conjunction with code-

division multiple access (CDMA) was proposed in [10]. In

this scheme, intra-cluster interference can be eliminated by

IA, while inter-cluster interference be mitigated through

low cross-correlation nature of the pseudo-noise codes.

However, the authors in [10] did not provide an effective

clustering method. Moreover, the authors in [11] incorpo-

rated opportunistic resource allocation (ORA) into IA, and

investigated the interactions and trade-offs between these

two strategies. Furthermore, a time division multiple access

(TDMA)-related IA approach was investigated in [12],

where three low-complexity algorithms were proposed to

partition users into orthogonal groups. Note that, IA is

exploited inside groups and TDMA is leveraged among

groups in [12]. However, the feasibility constraint for IA is

overlooked in both [11] and [12]. In addition, a joint sub-

channel assignment and IA optimization was solved to

maximize the number of satisfactory users in femtocell

networks in [13]. Nevertheless, in [13], the size of an IA

cluster is pre-determined and static, which is not adaptive

to the dynamic network topology.

All these aforementioned works make no quantitative

analysis to the impact of CSI overhead on IA performance.

But in reality, the payload transmission would be delayed

due to the existence of CSI overhead, which may result in a

great loss of the effective system throughput of small cell

networks [14, 15]. In this paper, we study the joint clus-

tered IA and sub-channel assignment scheme to cope with

the co-channel interference in small cell networks. Our

contributions can be summarized as follows.

– Based on the widely-used pilot model with analog

feedback for IA, we make a quantitative analysis to the

amount of CSI overhead, followed by the expression of

payload ratio. Meanwhile, the IA feasibility with CSI

overhead involved is also considered.

– We propose a new metric named average effective

degrees of freedom (AEDoF), which embodies the

average DoF of small cell networks with CSI overhead

considered. As such, maximizing the AEDoF could

enable the best tradeoff between multiplexing gain and

overhead reduction.

– For reducing the computational complexity, we pro-

pose a graph-based clustering algorithm to solve the

formulated AEDoF maximization problem. The basic

principle behind our proposed algorithm is to firstly

chordalize the given interference graph, and then

cluster partial small cells to perform IA, followed by

the final sub-channel assignment to all small cells.

The rest of this paper is organized as follows. Section 2

describes the network model and the pilot overhead model

with analog feedback for IA. The problem of the AEDoF

maximization is also formulated. Section 3 specifies the

graph-based algorithm with three sub-phases. The com-

parison of complexity between exhaustive search and our

proposed algorithm is also conducted. Section 4 provides

simulation results and performance comparisons. Finally,

Sect. 5 concludes this paper.

2 System model

A standard downlink of a small cell network is considered

where OFDMA is applied. Without loss of generality,

assume that the network is comprised of Ktot small cells,

each small cell serving only one user. When a user is

located in the coverage area of small cells, it is served by

the SBS from which it receives the strongest power. Each

SBS is equipped with M omni-directional antennas while

each small cell user (SUE) is equipped with N omni-di-

rectional antennas. The transmit power of each SBS is

identical. According to the exponential-decayed path loss

982 Wireless Netw (2018) 24:981–991

123



model [16], we can calculate Pj;i, which is the received

signal of SUE j from SBS i. Define Pthr as a threshold: If

Pj;i [Pthr ði 6¼ jÞ, the interference is considered as strong;

otherwise it can be treated as white noise. In this paper, we

mainly focus on eliminating the strong interference by

performing IA combined with orthogonal sub-channel

assignment. In addition, there is a macro-cell base station

(MBS) locating in the center of the network. The users out

of the coverage of small cells is served by the MBS. we

assume that the macro-cell is pre-allocated with distinct

frequency bands, which can not be reused by any small-cell

because the basic quality of service (QoS) requirements of

macro users must be guaranteed. Thereby this paper takes

no account of the cross-tier interference, and the co-tier

interference is the only barrier we try to break through. The

integral network model is depicted in Fig. 1.

In order to facilitate the analysis, we can transform

Fig. 1 to an interference graph, as shown in Fig. 2. In this

graph, vertices A� J denote small cells. If a small cell is

strongly interfered by another one, we draw an edge across

them. For instance, the user in small cell B locates close to

and is interfered by small cell A, C and D, and then the

edge AB, BC as well as BD are established.

2.1 IA feasibility

If at least three small cells interfering with each other are

selected to perform IA, they can be denoted as an IA

cluster. Suppose that each SBS sends d independent data

streams to its SUE. The received signal at SUE j is com-

posed of both interference from other SBSs and its inten-

ded signal, which can be written as

Yj ¼
XK

i¼1

ffiffiffiffiffi
Pf

d

r
Hj;iVisi þ Zj; ð1Þ

where K �Ktot is the number of small cells in this IA

cluster, Hj;i 2 CN�M represents the narrowband channel

matrix from SBS i to SUE j, Vi 2 CM�d represents the

precoding matrix of SBS i, si 2 Cd�1 is the data symbol

vector of SBS i, and Zj 2 CN�1 is the circularly symmetric

additive white Gaussian noise. The received signal Yj is

filtered by a unitary interference suppression matrix

Uj 2 CN�d. Pf is the forward link power.

The conditions for perfect IA can be stated as

U�
jHj;iVi ¼ 0; 8j 6¼ i ð2Þ

rankðU�
jHj;jVjÞ ¼ d; 8j ð3Þ

where (2) ensures interference aligned in a reduced-di-

mensional subspace, while (3) guarantees the required

dimensionality for the desired signal space. In general, a

generic system of multivariate polynomial equations is

solvable if and only if the number of equations does not

exceed the number of variables. Therefore, to make IA

feasible, we must ensure that the number of equations is no

larger than that of variables in (2) and (3). Along this line, a

necessary and sufficient condition for the IA feasibility

turns out to be [17, 18]

M þ N�ðK þ 1Þd: ð4Þ

Note that the maximum value of d is equal to
minðM;NÞ

2
[19].

In this case, the number of user-pairs in the IA cluster must

satisfy

K � 2ðM þ NÞ
minðM;NÞ � 1: ð5Þ

2.2 Pilot overhead model for IA

We introduce a typical pilot overhead model as in [4, 20].

Frequency Division Duplex (FDD) is employed, which

implies that the forward and reverse links occupy distinct

frequency bands. Thus, the forward and reverse links are

statistically independent. The IA transmission consists of

five steps: forward channel estimation, reverse channel

estimation, analog CSI feedback, precoded channel esti-

mation and payload transmission. We adopt a block-fading

channel model in which channels remain fixed for a period,

but vary independently from block to block. In addition,Fig. 1 Network model

Fig. 2 Interference graph
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suppose that Nb symbols can be transmitted during each

block and the IA solution is recomputed at the start of each

block.

For forward channel estimation, each SBS broadcasts an

orthogonal pilot sequence matrix spanning Npf ¼ KM

symbols. Then, each SUE estimates the forward channel

matrices corresponding to each SBS. Similarly, for reverse

channel estimation, each SUE broadcasts an orthogonal

pilot sequence matrix over Npr ¼ KN symbols to inform

SBSs of the reverse channel matrices. For analog CSI

feedback, the forward channel estimates are transmitted via

the reverse link by each SUE, using unquantized quadra-

ture-amplitude modulation over Nfb ¼ K2M symbols. And

for precoded channel estimation, each SBS sends orthog-

onal pilots along its precoder over Npd ¼ Kd symbols. Note

that the role of this step is to enable each SUE to learn the

precoded channels.

When ignoring the estimation error caused by noise,

SBSs could obtain perfect knowledge of CSI after the

aforementioned four steps. Then the remaining symbols are

reserved for payload transmission, as depicted in Fig. 3.

That is to say, the amount of CSI overhead is a quadratic

function of the number of user-pairs in an IA cluster. Then

the payload ratio can be expressed as

a ¼ 1 � gK2 � kK; ð6Þ

where g ¼ M=Nb, k ¼ ðM þ N þ dÞ=Nb. It follows that the

values of g and k are inversely proportional to the length of

a block. Since the payload ratio can not be less than zero,

the number of user-pairs in the IA cluster must satisfy

K �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 4g

p
� k

2g
: ð7Þ

2.3 Average effective degrees of freedom (AEDoF)

The degrees of freedom (DoF) indicates the number of

dimensions in which data streams can be independently

delivered over per sub-channel. It represents the perfect

multiplexing gain, yet without considering the transmission

delay caused by CSI overhead. Therefore, we propose a

new metric, named Average Effective Degrees of Freedom

(AEDoF), to incorporate the payload ratio into channel

multiplexing gain. The definition of AEDoF is given by

deff ¼
1

KtotL

XKtot

i¼1

aidili; ð8Þ

where L is the total number of sub-channels assigned, di is

the DoF achieved by small cell i, li is the number of sub-

channels assigned to small cell i, ai is the payload ratio of

small cell i. Note that the payload ratio of each small cell in

the same cluster is identical.

By quantifying the negative impact incurred by the

overhead, the AEDoF can reflect the network multiplexing

gain more accurately, and be regarded as a full combina-

tion of the transmission efficiency in time, frequency and

spatial domain. It is obvious that the application of IA

helps to reduce the number of sub-channels in demand to

satisfy users’ requirement, yet with a decline of payload

ratio. In the following, we propose a joint IA and sub-

channel assignment strategy to maximize the network

AEDoF, and it can be proved to be the best tradeoff

between multiplexing gain and overhead reduction.

2.4 Problem formulation

Let A ¼ fA1; . . .;An; . . .;ANAg be the set of all candidate

clusters in the interference graph, with the set of their

indexes denoted as N ¼ f1; . . .; n; . . .;NAg. According to

conditions (5) and (7), the size of a candidate cluster must

satisfy

3� jAnj � min
2ðM þ NÞ
minðM;NÞ � 1;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 4g

p
� k

2g

( )
: ð9Þ

A cluster combination consists of an arbitrary number of

candidate clusters. The set of all cluster combinations is

denoted as C ¼ fC1; . . .; Cm; . . .; C2NA g with Cm 	 A. The

optimization target is to maximize the network AEDoF by

selecting the optimal cluster combination to perform IA.

Note that, the small cells inside the combination perform

IA, while those outside the combination are assigned with

orthogonal sub-channels (Non-IA).

For the convenience of notation, we introduce an indi-

cator variable xn for each candidate cluster An. Let X ¼
fx1; . . .; xn; . . .; xNAg be the set of indicator variables.

8Cm 2 C, the indicator variable of cluster An is denoted as

xn ¼
1; An 2 Cm; n 2 N
0; An 62 Cm; n 2 N

�
ð10Þ

Thus, different cluster combinations in C correspond to

diverse outputs of X .

Let K ¼ f1; . . .;Ktotg be the set of small cells. We

assume that each small cell requires minðM;NÞ dimensions

for independent data streams; that is, 8i 2 K,Fig. 3 Overhead pilot model
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dili ¼ minðM;NÞ. Then the optimization problem can be

formulated as follows:

max
X

Ktot �
PNA

n¼1

xnð1 � aðnÞÞjAnj
� �

� minðM;NÞ

KtotLX
;

ð11aÞ

s:t: xnxn0 ¼ 0; 8n 2 N ; n0 2 N n n;An \ An0 6¼ ;;
ð11bÞ

xn ¼ f0; 1g; 8n 2 N : ð11cÞ

where jAnj is the size of cluster An, aðnÞ is the payload ratio

of each small cell in cluster An, LX is the necessary number

of sub-channels to satisfy users’ requirement when the

indicator vector X varies. Specifically, to ensure that each

small cell gets minðM;NÞ dimensions for independent data

streams, we should assign two sub-channels to each IA

cluster and one sub-channel to each non-IA small cell with

the assistance of multi-input multi-output (MIMO) [21].

Note that small cells that do not interfere with each other

can reuse sub-channels. Constraint (11b) guarantees any

two candidate clusters that have intersections can not per-

form IA simultaneously. Constraint (11c) restricts the

indicator variable for each candidate cluster to be binary.

Note that the overhead of IA is a quadratic function of

jAnj, while that of sub-channel assignment approximates to

zero. Therefore, aðnÞ can be given by

aðnÞ ¼
1; Non � IA

1 � gjAnj2 � kjAnj; IA

�
ð12Þ

It follows that (11a) is a 0–1 integer programming problem

and exhaustive search is a possible approach to solve it.

Nevertheless, the process to enumerate all the IA clusters

and their various combinations is exponentially complex.

In the next section, we will resort to a graph-based alter-

native, which is of low complexity.

3 Graph-based algorithm

The algorithm can be divided into three phases:

A. Chordalize the given interference graph and enumerate

all the maximal cliques. B. Select one IA cluster combi-

nation with Multistep locally clustering (MLC) sub-algo-

rithm. C. Assign sub-channels to small cells.

3.1 Phase A

First, we introduce several definitions for a graph [22].

Clique: A set of pairwise adjacent vertices.

Maximal clique: A maximal set of pairwise adjacent

vertices.

Maximum clique: The maximum set of pairwise adjacent

vertices.

Clique number: The maximum size of a set of pairwise

adjacent vertices.

Chromatic number: Minimum number of colors to color

all the vertices.

Chordal graph: An undirected graph in which any cycle

with more than three edges has at least one chord.

In a general undirected graph, the number of maximal

cliques is exponential and there exists no polynomial-time

algorithm to enumerate them. By contrast, a chordal graph

with n vertices has no more than n maximal cliques, which

can be enumerated in polynomial time. Furthermore, a

chordal graph’s chromatic number is equal to its clique

number, and this property is a foundation of our following

analysis [22].

In view of this, we can chordalize the interference graph

by adding a minimal set of virtual edges firstly, with the

classical method named minimal triangulation [23]. Fig-

ure 4 depicts a simple case of chordalization, in which AD

and CG are two added virtual edges.

After the chordalization, we can enumerate all the

maximal cliques following the triangulating direction in

polynomial time.

3.2 Phase B

The chordal graph of an interference graph G ¼ ðV; EÞ is

denoted as G0 ¼ ðV; E0Þ, where V is the set of vertices, E is

the set of edges in the original interference graph and E0 is

the set of edges in the chordalized graph. We further define

xðG0Þ as the clique number of G0.
Candidate clusters are subsets of the maximal cliques.

Although we have found all the maximal cliques in poly-

nomial time, the process to substitute all the combinations

of candidate clusters to the objective function still has

exponential complexity. In this part, we propose a heuristic

method termed MLC sub-algorithm with low complexity.

Basically, the MLC sub-algorithm is a reverse recursion

method. The candidate cluster combinations explode in a

large quantity, while the number of required sub-channels

can never be larger than the clique number of G0, i.e.,

L�xðG0Þ must hold. That is to say, multiple cluster

combinations map one result of the number of required

sub-channels. Hence, rather than enumerate all the candi-

date cluster combinations one by one, we resort to enu-

merating the number of required sub-channels and then

Fig. 4 A simple case of chordalization
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backward deriving the optimal cluster combination. The

derivation is described as follows: Firstly, let L ¼ xðG0Þ
and choose one cluster combination through multiple local

iterations to drive the max-sum resource requirement down

to L. Then let L ¼ L� 1 and repeat the previous step, until

L ¼ 0 or no cluster combination can meet the conditions.

Finally, we select the one with the maximum AEDoF over

all the cluster combinations which have been chosen at

different L. In summary, the MLC sub-algorithm presents

an approach to select the optimal cluster combination in G0

to perform IA, as illustrated in Algorithm 1.

Several requisite explanations to Algorithm 1 are given

as follows.

– Resource requirement: Resource requirement refers to

the number of sub-channels each node requires; that is,

each non-IA small cell requires one sub-channel, while

each IA cluster requires two sub-channels. Hence,

different IA cluster combinations results in different

configurations of resource requirement. In particular, the

maximum sum resource requirements over all the max-

imal cliques is named max-sum resource requirement.

– Transition graph: If cluster An is selected to perform

IA, the small cells inside An can be integrated into one

node and they require two sub-channels in total. This

cluster suffers the aggregation interference of its each

member. Following the aforementioned rules, we can

transform an interference graph GT to a transition graph

uðGTÞ. Note that a chordal graph’s transition graph

remains chordal [13]. Besides, the maximal clique with

the max-sum resource requirement Rx in uðGTÞ is

denoted as CT
x . Furthermore, we define R as the set of

candidate clusters which can drive Rx down to L by

performing IA. For example, Fig. 5(a) is a transition

graph in which no cluster performs IA; Fig. 5(b) is a

transition graph in which fB;C;D;Eg and fH; I; Lg are

selected to perform IA. A�N are labels of small cells

and each number surrounded by a circle represents the

resource requirement of each node.

– Weighting: In step 13, w1, w2 and w3 are the non-

negative weighting factors for three heuristic features of

RðjÞ, satisfying w1 þ w2 þ w3 ¼ 1. y1ðjÞ, y2ðjÞ and y3ðjÞ
are the indicator variables. If RðjÞ has no intersection

with other maximal cliques, then y1ðjÞ ¼ 1; otherwise,

y1ðjÞ ¼ 0. If Rj does not increase the sum resource

requirement of its neighboring maximal cliques, then

y2ðjÞ ¼ 1; otherwise, y2ðjÞ ¼ 0. y3ðjÞ is the local

AEDoF of CT
x when RðjÞ is selected to perform IA.

Algorithm 1 Multistep Locally Clustering (MLC)

sub-algorithm
1: Initialization: L = ω(G ), i = 1.

2: while L ≥ 1 do

3: Ci = ∅, GT = G

4: Construct the transition graph ϕ(GT )

5: if Rx ≤ L then

6: L = L − 1, i = i + 1, goto step 2

7: else

8: if R = ∅ then

9: Goto step 23

10: else

11: Wmax = 0, jopt = 1

12: for j = 1 : sizeof(R) do

13: W (j) = w1y1(j) + w2y2(j) + w3y3(j)

14: if W (j) > Wmax then

15: Wmax = W (j), jopt = j

16: end if

17: end for

18: Ci = Ci ∪ R(jopt)

19: GT = ϕ(GT ), goto step 4

20: end if

21: end if

22: end while

23: Map C = {C1, . . . , Ci−1} into sets of indicator variables

24: Output X with the maximum AEDoF

(a)

(b)

Fig. 5 a Transition graph 1. b Transition graph 2
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3.3 Phase C

After the clustering, we need to assign sub-channels to all

small cells. The principle behind the assignment is to guar-

antee that each IA cluster obtains two sub-channels and each

non-IA small cell acquires one sub-channel. Meanwhile, any

two neighboring nodes in the transition graph must occupy

different sub-channels. Mathematically, the assignment can

be formulated as a vertex-coloring problem and minimum

coloring approach can be leveraged to solve it [22].

After the three phases above, all the small cells are free

from interference and the network achieves the maximum

AEDoF. Unfortunately, the graph-based algorithm is not

always optimal for two reasons. On one hand, the chordl-

ization leads to a conservative allocation of sub-channels.

On the other hand, the MLC sub-algorithm is a heuristic

search method, which sometimes only enables a sub-opti-

mal solution.

3.4 Complexity analysis

If exhaustive search is used to solve (11a), the complexity

reaches Oð2jVjjEjÞ. With respect to our proposed algorithm,

the complexity analysis consists of three parts. For phase

A, the complexity of chordalization is OðjVjjEjÞ and that of

enumerating maximal cliques is OðjVjÞ. For phase B, the

MLC sub-algorithm runs in time OðjVj2Þ. For phase C, the

sub-channel assignment scheme runs in time OðjVjÞ. Taken

together, our proposed algorithm has a polynomial com-

plexity of OfjVjðjEj þ jVj þ 2Þg.

4 Simulation results

In this section, we evaluate the performance of our pro-

posed algorithm with different block lengths and small cell

densities respectively. In addition, for performance com-

parison, the following five clustering methods are

presented:

1. SM1: Min-WLI—The method in which the interfer-

ence level is differentiated by weights, with the

clustering objective of minimizing the aggregated

inter-cluster interference, as described in [7].

2. SM2: Non-IA—The method in which no cluster is

selected to perform IA and sub-channel assignment is

the only way to cope with interference, as described in

[24].

3. SM3: Random—The method in which IA clusters are

randomly selected.

4. SM4: Max-DoF—The method in which IA overhead is

not in consideration, with the objective to maximize

the total DoF of the network, as described in [13].

5. SM5: Max-AEDoF—The method in which our pro-

posed algorithm is applied to maximize the AEDoF.

4.1 System parameters

Consider a typical scenario of small cell networks, con-

sisting of 20 randomly-deployed outdoor picocells, each

picocell serving only one user. As in [25], we give some

basic parameter settings in our simulation: Each pico sta-

tion is equipped with four antennas while each user two

antennas. The pico transmit power is 24 dBm, with the

carrier frequency of 2 GHz. The path loss is give by

98:4 þ 20lgðRÞ, where R is the transmit–receive distance

in kilometers. Meanwhile, the shadowing standard devia-

tion is 10 dB, rayleigh fading standard deviation is 10 dB,

and noise figure is 9 dB. For each user, the interference

threshold Pthr is set to -98.5 dBm.

4.2 Effects of block length

Since g ¼ M=Nb with M being a fixed value, the effect of

block length Nb can also be evaluated by the different

settings of g. Figure 6 depicts the different clustering

results with different g when applying our proposed algo-

rithm. 20 picocells are randomly deployed in an area of

3km � 3km. If we set g ¼ 0:01, there are two clusters

containing six picocells are selected to perform IA, as

illustrated in Fig. 6(a). For the identical scenario, no cluster

is proper for IA if we set g ¼ 0:05 , as shown in Fig. 6(b).

More clusters bring in more overhead, which results in a

decline of payload ratio. Therefore, greedily selecting

clusters to perform IA is not the best choice for the AEDoF

maximization. Especially when channel matrices are fast-

changing [20], the clustering strategy should be more

conservative. Simulation results in Fig. 6 demonstrate that

our proposed clustering algorithm is adaptive to the vari-

ation of block length, and may do help to design network

for operators.

We illustrate the AEDoF obtained with our proposed

algorithm versus g with different pico transmit powers, as

depicted in Fig. 7. In this part of simulation, 20 picocells

are randomly deployed in an area of 2km � 2km. As shown

in Fig. 7, under the premise that each SUE is covered by at

least one picocell, a smaller transmit power results in a

better performance. This is due to the fact that the inter-

ference would be reduced in this case. When the transmit

power is 16 dBm, the AEDoF keeps constant with the

increase of g. The reason is that the interference is so weak

that there is no need to perform IA. When the transmit

power is 20–28 dBm, the performance curve is a multi-

piece polyline. The AEDoF decreases with the increase of

g until IA is no longer beneficial to the AEDoF
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maximization. Different clustering results correspond to

different slopes of the curve. Therefore, once our proposed

algorithm is combined with a reasonable power

optimization category, the network performance may have

a further enhancement.

Figure 8 compares the spectrum efficiency of five

clustering methods versus g. In this part of simulation, 20

picocells are randomly deployed in an area of 2km � 2km.

As observed, with the increase of g, SM2 keeps a constant

spectrum efficiency due to the fact that there is no picocell

performing IA in SM2. SM3 underperforms SM2 due to its

blind selection. Both SM1 and SM4 are designed without

taking overhead into account. Hence, Even if g increases,

their selection results remain unchanged. Indeed, the

amount of overhead has great influence on the actual per-

formance. As a result, the performance of SM1 and SM4

linearly degrades with the increase of g, until the payload

ratio of each selected cluster goes down to zero. Since our

proposed algorithm is adaptive to the variation of g, the

curve of SM5 is a three-piece polyline, corresponding to

three different clustering results. Therefore, it is deserved

that SM4 underperforms SM2 when g is large, whereas

SM5 can never perform worse than SM2. Meanwhile, SM1

has the worst performance among all theses methods

because it always selects the clusters with the top size.

Thereby the considerable overhead causes a drastic per-

formance degradation.

4.3 Effects of cell density

We illustrate the AEDoF obtained with our proposed

algorithm versus area of region in different settings of g, as

depicted in Fig. 9. The area of region represents the size of

square-shaped space where 20 picocells are deployed. A

larger area of region means a lower cell density. For each

value of area, we take an average over 100 simulation

results. As observed, all the curves ascend with the increase

of area. This is due to the fact that a lower cell density

creates a more interference-free scenario. We can also see
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that a smaller g results in a better performance, which is

consistent with the previous simulation results in Fig. 8.

Figure 10 compares the spectrum efficiency of five

clustering methods versus area of region, with g ¼ 0:01.

For each value of area, we take an average over 100 sim-

ulation results. As anticipated, all the curves ascend with

the increase of area. There is no doubt that SM1 achieves a

poor performance together with SM3. Moreover, we note

that SM2 and SM4 are close to each other in terms of

spectrum efficiency. SM2 performs slightly better than

SM4 in small areas because the interference is so serious

that IA performance is greatly impacted by substantial

overhead. Nevertheless, with the increase of area, the

performance of SM4 improves faster than that of SM2 due

to the fact that the impact of overhead is reduced. Finally,

Although SM5 still takes the lead in all these clustering

methods, its superiority declines with the increase of area.

Especially when the area becomes infinitely large, the

spectrum efficiency of all these clustering methods can

approximate the theoretical maximum because there is no

interference at all in such low cell density.

Figure 11 compares the number of iterations between

two optimization algorithms: exhaustive search and our

proposed algorithm, with g ¼ 0:01 and area of region being

the variable. For each value of area, we take an average

over 100 simulation results. Figure 11 verifies that the

number of iterations for exhaustive search is too large to

run in polynomial time, especially when the area is small.

This is because the denser the network is, there would be

more available cluster combinations. Rather, the number of

iterations of our proposed algorithm keeps polynomial

stably, which is consistent with our complexity analysis

above.

Figure 12 depicts the total number of picocells selected

to perform IA by our proposed algorithm, with g ¼ 0:01

and area of region being the variable. For each value of
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area, we give 100 simulation results, which are all depicted

in color-blocks along the Y-axis. The colorbar on the right

side of Fig. 12 represents the number of selected picocells.

In general, the number of selected picocells decreases with

the increase of area, which is consistent with our antici-

pation. That is to say, to improve the AEDoF of denser

networks, more small cells are required to perform IA.

5 Conclusions

In this paper, the joint clustered IA and sub-channel

assignment scheme has been studied. First, we presented a

new metric to reveal the average DoF of small cell net-

works named AEDoF, with taking CSI overhead into

account. To better quantify the impact of overhead on the

AEDoF, a typical pilot overhead model for IA was also

introduced. Then we proposed a graph-based algorithm for

clustering partial small cells to perform IA, aiming at the

AEDoF maximization. The algorithm consists of three

phases: chordalization, clustering with MLC sub-algorithm

and sub-channel assignment. In the end, we evaluated the

impact of block length and small cell density on the per-

formance of our proposed algorithm with simulations.

Meanwhile, Performance comparison was also made

among several existing clustering methods to show that our

proposed algorithm is efficient to achieve the best tradeoff

between multiplexing gain and overhead reduction with

polynomial complexity. Future work is in progress to study

the maximum number of satisfactory users in small cell

networks with considering IA overhead.
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