
A hierarchical approach for resource allocation in hybrid cloud
environments

Zhe Liu1
• Changle Li1 • Weijie Wu2

• Riheng Jia3

Published online: 29 November 2016

� Springer Science+Business Media New York 2016

Abstract Cloud computing is a key technology for online

service providers. However, current online service systems

experience performance degradation due to the heteroge-

neous and time-variant incoming of user requests. To

address this kind of diversity, we propose a hierarchical

approach for resource management in hybrid clouds, where

local private clouds handle routine requests and a powerful

third-party public cloud is responsible for the burst of

sudden incoming requests. Our goal is to answer (1) from

the online service provider’s perspective, how to decide the

local private cloud resource allocation, and how to dis-

tribute the incoming requests to private and/or public

clouds; and (2) from the public cloud provider’s perspec-

tive, how to decide the optimal prices for these public

cloud resources so as to maximize its profit. We use a

Stackelberg game model to capture the complex interac-

tions between users, online service providers and public

cloud providers, based on which we analyze the resource

allocation in private clouds and pricing strategy in public

cloud. Furthermore, we design efficient online algorithms

to determine the public cloud provider’s and the online

service provider’s optimal decisions. Simulation results

validate the effectiveness and efficiency of our proposed

approach.

Keywords Stackelberg game � Resource allocation �
Hybrid cloud

1 Introduction

Online services are applied into many aspects of our daily

life. For example, people perform communication, shop-

ping, entertainment and professional activities over the

Internet. The online service providers (OSPs) need to

develop new technologies, aiming at providing QoS guar-

anteed service while at the same time, minimizing its

operating cost. In general, an OSP operates a number of

distinct services simultaneously, so it needs to answer

requests from various applications that differ a lot in pat-

tern. To this end, many OSPs develop private cloud sys-

tems so as to provision virtualized environment where each

service can be properly addressed.

However, private cloud is still not enough. Users’

requests can be of high variance over time. In general, we

can roughly classify the customers’ request patterns as

following two categories:

• Routine case: Normal and periodical user requests, such as

webpage browsing or video viewing, can be roughly

estimated over the time span according to their regularity.

• Burst case: Sudden increase in request amount can

incur a much higher burden, e.g., hundreds of times

higher, than the routine case.

& Changle Li

clli@mail.xidian.edu.cn

Zhe Liu

zliuxidian@gmail.com

Weijie Wu

wuwjpku@gmail.com

Riheng Jia

jiariheng@sjtu.edu.cn

1 State Key Laboratory of Integrated Services Networks,

Xidian University, Shaanxi 710071, China

2 Future Network Theory Lab, Huawei Technologies Co. Ltd,

Hong Kong, Hong Kong

3 School of Electronic Information and Electrical Engineering,

Shanghai Jiao Tong University, Shanghai 200240, China

123

Wireless Netw (2018) 24:1491–1508

https://doi.org/10.1007/s11276-016-1416-7

http://crossmark.crossref.org/dialog/?doi=10.1007/s11276-016-1416-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11276-016-1416-7&domain=pdf
https://doi.org/10.1007/s11276-016-1416-7

These requests can undoubtedly bring extensive revenue

for the OSP, but in the meanwhile, it brings huge burden

for the server to answer these requests. A naive way for an

OSP to cope with these requests is to prepare a very

powerful private cloud system, such that even when the

burst occurs, it can still answer all requests. However, this

approach is neither economically efficient nor robust. The

hardware and management cost is surely very high, and for

most of the time, the request amount is much lower than

the peak time, so many servers remain idle. Even if one

prepares such a system, it can hardly be guaranteed to work

normally at the peak time. In fact, there have been many

cases that online shopping sites crashed in shopping festi-

vals (e.g., the Black Friday in western countries or Double

Eleven in China, which draws much more requests than the

routine workloads [1]).

Alternatively, hybrid cloud is a promising solution to

this problem. Hybrid cloud means a combination of a

private cloud operated by the OSP, and a public cloud

system operated by a third-party cloud service provider

(CSP). To address the routine case, most requests can be

answered by the local private cloud; and for the burst case,

the OSP can resort those requests beyond its capacity to the

public cloud.

The fundamental questions of the hybrid cloud approach

are resource allocation and pricing. In particular, given the

request pattern of users, from the OSP’s perspective, it has

to decide how to build up a private cloud in terms of the

amount of each resource (e.g., CPU, memory, storage, etc.)

to be prepared; and facing the incoming requests, how to

properly distribute them into private/public clouds. From

the CSP’s perspective, it needs to decide how to set prices

to sell cloud services so as to maximize its profit.

These questions are non-trivial to answer due to the

following challenges. First, the stochastic nature of the

request arrival pattern makes it difficult to determine the

local resource arrangement. Second, since the arrival rate

of requests is very high in a large scale system, the resource

allocation algorithm must be dynamic and time efficient,

but finding the optimal allocation is a very complex

problem: even if we know the request distribution a priori,

it is still NP-complete. Last but not least, the CSP’s pricing

decision and the OSP’s allocation and purchasing decisions

are highly coupled, so we need have a deep understanding

on their economic correlations and dynamics. All these

challenges make the resource allocation and pricing prob-

lem in hybrid cloud an open question so far.

To tackle these challenges, we propose a hierarchical

approach to analyze the hybrid cloud framework. In par-

ticular, we use a Stackelberg game to capture the interac-

tions between the OSP and the CSP, based on which we

design algorithms to decide the OSP’s strategy in pur-

chasing the public cloud resources, as well as its allocation

mechanism for the incoming requests. We also design an

algorithm for the CSP to decide its pricing scheme that

approximately maximizes its profit. Due to the NP-com-

pleteness of each sub-problem, we design efficient and

effective approximation algorithms, and use theoretic

analysis and simulations to validate their high accuracy.

We believe this gives important guidelines to design

practical hybrid cloud systems.

To sum up, we design a comprehensive framework to

design resource allocation and pricing in hybrid cloud. Our

main contributions are:

• We reveal the interactions of OSP and CSP, and present

a hierarchical analytical framework for the hybrid

cloud.

• We propose approximation algorithms for resource

allocation and pricing, and show their efficiency and

accuracy both theoretically and empirically.

• Base on real-trace simulation, we show our design can

achieve satisfactory performance in practice.

This is the outline of this paper. In Sect. 2, we for-

mulate the hybrid cloud as a Stackelberg game model.

Section 3 proposes two approximation algorithms to

address the request distribution problem for the OSP.

Based on this, we derive the dynamic resource allocation

algorithm for the OSP in Sect. 4. In Sect. 5 we use an

approximation algorithm to decide the optimal pricing

scheme for the CSP. Real-trace evaluation is given in

Sect. 6. Section 7 discusses some possible extensions to

our framework. Section 8 states related work and Sect. 9

concludes.

2 System and game model

In this section, we present our system model and problem

formulation, provide background material on a game-the-

oretic model called the Stackelberg model, and finally

develop this game-theoretic model as a framework for

capturing the complex interactions between the OSP and

CSP in hybrid cloud environments.

2.1 System model and problem formulation

In this paper, we consider the hybrid cloud as a hierarchical

model (as shown in Fig. 1), which includes the users, OSP

and CSP in every individual layer. The primary process is

that the OSP collects requests and serves network users.

However, when requests cannot be fully satisfied in the

private cloud of OSP, they are resorted to the public cloud

in CSP. In what follows, we will give an overview of each

part of the system, and show mathematical analysis

respectively.

1492 Wireless Netw (2018) 24:1491–1508

123

2.1.1 Layer 1: users and OSP

Layer 1 depicts the interactions between network users and

OSP. In this layer, users request for network services and

try to access OSP’s computing resources. These requests

are heterogenous and meanwhile, they call for different

combination of computing resources to fulfill. After col-

lecting users’ requests, the OSP assembles its computing

resources and allocates them to serve users’ heterogenous

requests. This process happens in local area, i.e., only

between users and their corresponding OSP. Now we for-

mulate the interactions between users and OSP in follow-

ing paragraphs.

We assume that users’ requests can be classified into n

types. In reality, they can represent various applications.

Each request type requires a specific collection of different

computing resources, for example, CPU, memory and

storage. We can define R as the set of all request types, i.e.,

R ¼ R1; . . .;Ri; . . .;Rnf g; i ¼ 1; 2; . . .; n; ð1Þ

where Ri ¼ ri1; . . .; rij; . . .; rim
� �

is a type i request. Each

element rij denotes the amount of resource j required to

satisfy Ri.

Assume that the number of incoming request in type i,

i.e., Ri, is a random variable Ki in any given time t. Note

that the number of each incoming request is calculated in a

time interval rather than a time instant. Without loss of

generality, we formulate Ki to be an independent Gaussian

distribution1 as

Kt
i : Gt

i kið Þ ¼ 1
ffiffiffiffiffiffi
2p

p
rti

exp �
ki � lti
� �2

2 rtið Þ2

" #

�N lti; r
t
i

� �
; ð2Þ

where the parameter lti and rti are given distributions over

t, and they represent the request incoming patterns. We use

a truncated Gaussian distribution to characterize the num-

ber of incoming request, where Kt
i 2 kimin; kimax½ �, where

0 6 kimin � lti and kimax � lti. Since the probability Kt
i\0

or Kt
i [kimax can be neglected, we can still use a Gaussian

distribution to approximate Kt
i . Figure 2 shows lti in a

routine or burst case, respectively.

We use ut to represent the instantaneous amount of

incoming requests in all types, which can be formulated as

ut ¼ Kt
1; . . .;K

t
i ; . . .;K

t
n

� �
: ð3Þ

Now let us consider how to capture the property of the

private cloud system operated by the OSP. Let N be the

amount of resources possessed by this private cloud, then it

can be represented by

N ¼ N 1; . . .;N j; . . .;N m

� �
; j ¼ 1; 2; . . .;m; ð4Þ

where each element represents the amount of each resource

available in the private cloud, e.g., CPU, memory, storage,

etc. For each kind of resource, it is associated with a unit

operating cost, denoted by Pl ¼ pl1; . . .; plj; . . .; plm
� �

.

2.1.2 Layer 2: OSP and CSP

When requests cannot be fully satisfied in the private

cloud, they are resorted to the public cloud. The public

cloud of CSP allocates its own computing resources to

serve sorted requests and in the meanwhile, charges for its

leased resources to OSP. Finally, the OSP rents CSP’s

computing resource and serves resorted requests.

A classic methodology, vector bin packing [2, 3] pro-

visions an optimal combination of virtual machines (VMs)

to cover any given set of request demands. On measuring

the fee paid by the OSP to the CSP, we can view it as the

sum of fee paid for each kind of resource, where the unit

price vector is Pc ¼ pc1; . . .; pcj; . . .; pcm
� �

.

Now let us focus on the profit of the OSP and the CSP at

a particular time point t. We denote the allocation strategy

used to distribute incoming requests as A. Let It be the set

of requests from users at time t. The OSP allocates a subset

of these requests LtðAÞ to its private cloud, and the rest

CtðAÞ to the public cloud. Resource demand of It, LtðAÞ
and CtðAÞ are denoted as St

I , St
LðAÞ and St

CðAÞ, respec-

tively, each demand being a vector of resources needed to

satisfy the corresponding requests. Obviously, we have

It ¼ LtðAÞ
S

CtðAÞ and St
I ¼ St

LðAÞ þ St
CðAÞ. In essence,

LtðAÞ, CtðAÞ, St
LðAÞ and St

CðAÞ are functions of the

allocation strategy A. Given any deterministic A, the issue

of request allocation will be settled immediately.

Upon satisfying a request, the OSP owns a profit for this

service provided. We denote U t as the sum of this utility at

Fig. 1 Hierarchical system model

1 The reason why we choose the Gaussian distribution is discussed in

Sect. 7.2.

Wireless Netw (2018) 24:1491–1508 1493

123

time t. We can express the utility (or payoff2) of the OSP

and the CSP as

Pt
L ¼U t �NPl � St

CðAÞPc ¼ Pt
L Pc;N ;Að Þ; ð5Þ

Pt
C ¼St

CðAÞPc ¼ Pt
C Pc;N ;Að Þ; ð6Þ

where the OSP’s utility equals the utility of satisfying all

requests minus its cost, and the CSP’s utility equals its

revenue. The terms NPl and St
CðAÞPc are indeed scalar

products, and we have NPl ¼
Pm

j¼1

N jplj and St
CðAÞPc ¼

Pm

j¼1

StcjðAÞpcj, where StcjðAÞ is the element of St
CðAÞ.

We should note that the operating cost of OSP (i.e., Pl)

is used to maintain the running of private resources, for

example, CPU, memory and storage. In other words, the

cost indicates the power consumption. Table 1 lists

important notations introduced in this section.

2.2 Stackelberg’s model of duopoly

In game theory and economics terms, Stackelberg’s duopoly

game [4] was proposed to model the interaction between the

leader firm and follower firm. Considering a market in

which there are two firms and they produce the same kind of

good. Assume that Firm 1 is the leader firm who occupies

the majority of market share and Firm 2 is the follower to

Firm 1. Each firm’s strategic variable is its good output

respectively, and different with other game models, the

firms in Stackelberg game make their own decisions

sequentially rather than simultaneously. That is to say, Firm

1 (i.e., the leader) chooses its output and then, Firm 2 (i.e.,

the follower) handles its output by knowing Firm 1’s output.

It indicates that Firm 2’s strategy is a function which asso-

ciates its own output with each Firm 1’s output.

In order to find the subgame perfect equilibria, back-

ward induction is used in Stackelberg game. The basic idea

of backward induction is listed as follows:

• Step 1: find the outputs of Firm 2 that maximize its

profit, given any output of Firm 1;

• Step 2: find Firm 1’s output that maximizes its profit,

given the output strategy of Firm 2.

By applying backward induction, we can obtain the

subgame perfect equilibria of a Stackelberg game, and

guarantee some useful properties, for example, the first-

mover’s equilibrium profit and equilibrium outputs. Inter-

ested readers can refer to reference [4] for more details.

2.3 Game theoretic approach to hybrid cloud

system

In this paper, we use a Stackelberg game [4] to capture the

interactions between the OSP and the CSP, where the CSP

is the leader and the OSP is the follower. Meanwhile, the

OSP/CSP’s computing resource can be regarded as good in

market. We use this game theoretical model because in

reality, the CSP decides its public cloud resource sale

scheme first. Once the decision is made, the CSP usually

does not change it frequently. Based on this scheme, the

OSP decides its local resource preparation accordingly in

order to maximize its own utility. Thus, we can claim that

the two players in game move sequentially. Given the

allocation strategy A, Pt
L Pc;N ;Að Þ and Pt

C Pc;N ;Að Þ
are deterministic and therefore, we can omit the notation A
for simplicity in the rest of this paper. We formally

describe the game as follows.

• Players. The online service provider (OSP) and the

cloud service provider (CSP).

Table 1 Main notations

Notation Explanation

N Resources in the private cloud

R Set of request types

ut Instantaneous amount of incoming requests

Pl OSP’s unit operating cost

Pc Price for public cloud resources

It Set of users’ requests

Lt Subset of requests allocated to OSP

Ct Subset of requests allocated to CSP

St
I

Resource demand of It

St
L

Resource demand of Lt

St
C

Resource demand of Ct

Pt
L Utility of OSP

Pt
C Utility of CSP

(a) (b)Fig. 2 Examples of lti . a a

routine case b a burst case

2 In this paper, we use ‘‘utility’’ and ‘‘payoff’’ interchangeably.

1494 Wireless Netw (2018) 24:1491–1508

123

• Payoff. The payoff of the OSP is

PL Pc;Nð Þ ¼
Z

t

Pt
L Pc;Nð Þdt; ð7Þ

and the payoff of the CSP is

PC Pc;Nð Þ ¼
Z

t

Pt
C Pc;Nð Þdt: ð8Þ

We will formally describe these payoff functions in

later sections.

• Game strategy. The CSP decides the pricing strategy

Pc for the public cloud. The OSP decides the resource

N powered by the private cloud.

The solution to this game is called Stackelberg equi-

librium (or SE), which can be solved by applying the

backward induction [5] as follows.

1. Assume the CSP fixes Pc. The OSP solves the problem

N� Pcð Þ ¼ arg max
N

PL Pc;Nð Þ, where the item

N� Pcð Þ is the optimal resource allocation for OSP

given the pricing strategy Pc of CSP.

2. By knowing N� Pcð Þ, the CSP solves

P�
c ¼ arg max

Pc

PC Pc;N� Pcð Þð Þ.

Our following formulation will show that both payoff

functions are continuous with respect to the decision

variables, thus the two steps are both optimization prob-

lems over a compact set, so the existence of SE is guar-

anteed. Note that one may also meet the discrete case

when modeling a similar problem. The option to tackle

this point is approximating the discrete function with a

continuous one or modifying the payoff function to a

discrete manner.

Correspondingly, the next sections are organized in a

backward manner. In Sect. 3, we propose efficient

solutions to address A and decide Lt for any given N
and Pc. This serves as the basis of our game analysis.

Section 4 analyzes the OSP’s problem for any given

CSP’s strategy. Section 5 decides the CSP’s optimal

pricing scheme so as to obtain the Stackelberg

equilibrium.

3 Request distribution: private or public

Prior to solving the Stackelberg game, let us first consider

given the strategies of the OSP and the CSP, how can the

OSP allocate the incoming requests into the private and

public clouds so as to maximize its utility. In this section,

we formulate this problem into an optimization problem,

prove its NP-completeness, and then present two approxi-

mation algorithms for efficient solutions. In other words,

we focus on how to design a rational and efficient A in

following parts of this section.

3.1 The static optimization problem

Given private cloud resource N , an OSP needs to decide

which requests to be allocated in the private cloud for

processing, and which are resorted to the public cloud.

Note that due to the various nature of requests, they have

different ‘‘appropriateness’’ to be put in local. For example,

requests with sensitive information, high security require-

ment or high data transmission cost should be processed

locally with a high priority. In here, we use a notation kip to

represent this appropriateness of putting the p th request of

the i th type in the private cloud. Later we use Kt to rep-

resent the matrix consisting of elements kip. We use a

binary variable xip to denote whether this request is allo-

cated in the private cloud, i.e., xip ¼ 1 if yes or 0 otherwise.

In general, the OSP aims at solving the following problem,

denoted by OPT:

max
Pn

i¼1

PKt
i

p¼1

kipxip

subject to
Pn

i¼1

PKt
i

p¼1

rijxip 6 N j; 81	 j	m;

xip 2 0; 1f g:

ð9Þ

In this subsection, we treat OPT as a static optimization

at t, and based on this we will further determine the OSP’s

best choice in the next section. Now let us prove that OPT

is NP-complete.

Theorem 1 OPT is NP-complete.

Proof Given any solution to OPT, we can verify the

solution in a polynomial time. Thus OPT is NP.

Then we build OPT from the Binary Knapsack Problem

(BKP), one of Karp’s 21 NP-complete problems [6, 7]. The

decision of BKP is NP-complete and its optimization is

NP-hard. A dimensional extension of BKP leads to the

Multiple Knapsack Problem (MKP), which is at least NP-

hard [8, 9]. Suppose we have a knapsack with a limit of

N 1; . . .;N j; . . .;N m

� �
. Given a set of items, each with a

weight of ri1; . . .; rij; . . .; rim
� �

and a value of ki. Next we

determine an item collection to maximize its value under

the constraint of the sum of weights. Therefore, OPT

reduces to MKP and is thus NP-complete. h

Given that OPT is NP-complete, we design approxi-

mation algorithms to achieve the sub-optimality in an

efficient manner. In particular, we propose the greedy

mechanism and the load balancing mechanism. The first

one has an advantage in the low computational complexity,

while the latter is nearer to the optimality.

Wireless Netw (2018) 24:1491–1508 1495

123

3.2 A greedy sorting mechanism for OPT

Now we design the following Approximated Greedy

Sorting (APPGS) algorithm depicted in Algorithm 1. Let

Lt;Ctf g ¼ APPGS ut;Kt;Nð Þ be the output of this algo-

rithm. The algorithm consists of three steps:

• Step 1: Initialization. In this step, all user requests are

randomly arranged and denoted by the term mv.

• Step 2: Sorting. We sort the requests in a sequence such

that
k�vffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

j¼1
v2
vj

q is non-decreasing in v. We use I to

denote this sequence and m�
v to denote the index of each

request.

• Step 3: Allocation. We use the greedy algorithm to

generate Lt, the set of requests to process in the private

cloud, and also Ct, the set of requests to the public

cloud, as I � Lt.

We next analyze the time complexity of Algorithm 1.

Theorem 2 The time complexity of Algorithm 1 is

polynomial.

Proof Let the number of user requests be N. In Step 2, the

sorting process is of O N logNð Þ complexity. In Step 3, we

need to traverse N user requests, and its computational

complexity is O Nð Þ. In conclusion, the computational

complexity of Algorithm 1 is O N logNð Þ. h

The APPGS is based on one of our previous works, and

readers interested in the approximation ratio and other

details can refer to [10].

3.3 A load balancing mechanism for OPT

In this subsection, we present another approximation

algorithm with a better utility performance but a bit higher

complexity. We call it Approximated Load Balancing

(APPLB) algorithm, which derives from [11].

Let us use a toy example to illustrate the intuition of our

algorithm. We consider requests associated with two

dimensional resource requirements, i.e., CPU and storage.

In Fig. 3a, the private cloud accepts requests m1 and m2,

but the rest available resources are not enough for any other

incoming requests. But if the OSP chooses m1, m3 and m4

into the private cloud, its resource utilization ratio is higher

(see Fig. 3b). Thus, our objective is to design an algorithm

that maximizes the resource utilization in the private cloud.

(a) (b)

Fig. 3 Comparison of load decision. a unbalancing load b balancing load

Algorithm 1: APPGS Mechanism
Input: ϕt, Λt, N
Output: private set Lt, public set Ct

1 Initialization:
2 V =

∑n
i=1 Kt

i , mv = {rv1, rv2, . . . , rvm} (v = 1, 2, . . . , V), Lt = ∅, Ct = ∅, T = ∅
3 Sorting request list {m∗

1, m
∗
2, . . . , m

∗
V } such that λ∗

1√∑m
j=1 r2

1j

� λ∗
2√∑m

j=1 r2
2j

� . . . � λ∗
V√∑m

j=1 r2
V j

4 I = {m∗
1, m

∗
2, . . . , m

∗
V }

5 for v = 1 : V do
6 if T+ m∗

v � N then
7 Lt := Lt

⋃ {m∗
v}

8 T := T+ m∗
v

9 end
10 end
11 Return Lt,Ct = I − Lt

1496 Wireless Netw (2018) 24:1491–1508

123

Now we derive the request selection for m-dimensional

resource in a vector view. Each request can be denoted as

mv ¼ a1
ve1 þ . . .þ a j

vej þ . . .þ amv em

¼ a1
v ; . . .; a

j
v; . . .; a

m
v

� �
; v ¼ 1; 2; . . .;V

ð10Þ

where ej is the unit vector of the j th resource type. When

selecting the next request denoted by mvþ1, we minimize the

dot product hmv;mvþ1i. The intuition of our approach is shown

in Fig. 4, where we select the vector m2 by minimizing the dot

product hm1;m2i. Selection of m3 also follows the same rule.

Now let us depict the load balancing algorithm

Lt;Ctf g ¼ APPLB ut;Kt;Nð Þ.
In each outer for-loop, Algorithm 2 runs as follows:

• Step 1: Find requests who can be addressed by private

cloud into the set T.

• Step 2: We solve arg min
mh2T

hmv;mhi and place the result

into H. If more than one solution exist, choose the one

with the largest appropriateness. Denote our choice as h�.
• Step 3: Store h� into Lt, and update N , mvþ1, T and It

for the next loop.

Comparing with Algorithm 1, or APPGS, the APPLB

algorithm is more efficient in terms of the OSP’s payoff.

Although a bit more complex than APPGS, Theorem 3

shows that APPLB is still efficient in time consumption.

Theorem 3 The time complexity of Algorithm 2 is

polynomial.

Proof Assume the OSP has received N user requests. At

the v�-th loop round, we need to find the candidates who fit

the current resource constraint, i.e., traversing N � v�

residual requests. Until the termination time, the algorithm

runs for N þ N � 1ð Þ þ . . .þ 1 ¼ N2þN
2

times, where each

time is only a dot product computing. In conclusion, APPLB

has a polynomial computational complexity of O N2ð Þ. h

To summarize the two algorithms, APPGS has a lower

computational complexity while APPLB is nearer to the

optimality. In the remainder of this paper, we use them

as a combination, called APP: when the computational

size is not very large, we choose APPLB to obtain a

higher utility, but if the amount of requests is very large,

we opt to apply APPGS instead for better time effi-

ciency. In later sections, we will further use simulations

to validate the accuracy as well as efficiency of the two

algorithms.

Algorithm 2: APPLB Mechanism
Input: ϕt, Λt, N
Output: private set Lt, public set Ct

1 Initialization:
2 V =

∑n
i=1 Kt

i , mv = rv1e1 + . . . + rvmem (v = 1, 2, . . . , V), Lt = ∅, Ct = ∅, T = ∅, H = ∅,
It = {m1, . . . ,mV }, m0 = 0

3 for v = 0 : V − 1 do
4 for mj ∈ I do
5 if N − mj � 0 then
6 T = T

⋃ {mj}
7 end
8 end
9 H = argmin

mθ∈T
〈mv,mθ〉

10 θ∗ = argmax
θ∈H

λ (θ)

11 Lt := Lt
⋃ {θ∗}, N := N − θ∗

12 mv+1 := mv + θ∗, T := ∅
13 I := It − {θ∗}
14 end
15 Return Lt,Ct = It − Lt

Fig. 4 A simple diagram of vector selection

Wireless Netw (2018) 24:1491–1508 1497

123

4 OSP’s decision on the private cloud

Recall that in the previous section, we have established a

Stackelberg game model which requires a backward

induction to seek its solution. In this section, based on the

results in the previous section, we solve the second stage of

this game, i.e., the OSP’s decision on constructing the pri-

vate cloud. In short, we will solve N� Pcð Þ ¼
arg max

N
PL N ;Pcð Þ.

4.1 Decision of private cloud

Considering the APP algorithm in Sect. 3, we can rapidly

compute the private set Lt and the public set Ct as

Lt;Ctf g ¼ APP ut;Kt;Nð Þ: ð11Þ

Since It ¼ Lt

S
Ct, and St

I ¼ St
L þ St

C, we can simplify

Eq. (11) to be

St
L ¼ APP ut;Kt;Nð Þ ¼ APP N ;utð Þ: ð12Þ

Combining Eqs. (5) and (12), we obtain the OSP’s utility

as

Pt
L Pc;Nð Þ ¼U t �NPl � St

CPc

¼U t � NPl þ St
I � APP N ;utð Þ

� �
Pc

� �
:

ð13Þ

In Eq. (13), the terms Pl and Pc are constant and do not

change over time t. Although the terms U t and ut are time-

related, they only depend on the incoming requests of users

and are irrelevant to OSP’s resource N . This implies that

U t and ut can be regarded as constants when we derive the

optimal N . Therefore, the OSP’s utility is a function of N
for any given time t. For the OSP, the resources it need to

prepare in the private cloud is determined by

N� ¼ arg max
N

Z

t

Pt
L Pc;Nð Þdt: ð14Þ

Since U t and St
IPc are constants, we have

N� ¼ arg max
N

Z

t

APP N ;utð ÞPc �NPldt

¼ arg max
N

Z

t2 0;T½ �

Z

ut2H
APP N ;utð ÞPc �NPldutdt

¼ arg max
N

F N ;Pcð Þ;

ð15Þ

where F N ;Pcð Þ ¼
R
t2 0;T½ �

R
ut2H

APP N ;utð ÞPc �NPl

dutdt, H ¼ Gt
1 k1ð Þ;Gt

2 k2ð Þ; . . .;Gt
n knð Þ

� �
. In order to sim-

plify the calculation, we proceed to show

F ¼
Xm

j¼1

Z

t2 0;T½ �

Z

St
j

APPj N j;St
j

	

pcj �N jpljdSt

jdt

¼
Xm

j¼1

F j N j; pcj
� �

;

ð16Þ

where St
j denotes the j-th resource demand at time t, and

obviously, we have

St
j : Gj stj

	

¼ 1

ffiffiffiffiffiffi
2p

p
r̂tj

exp �
stj � l̂tj

	
2

2 r̂tj
	
2

2

64

3

75�N l̂tj; r̂
t
j

	

;

ð17Þ

where the parameter l̂j ¼
Pn

i¼1

rijlti, r̂j ¼
ffi
Pn

i¼1

r2
ij r

t
ið Þ2

s

.

If St
j\N j, then the OSP can fully address the resource

demand without purchasing public cloud resources. When

St
j > N j, the private cloud is fully utilized but still cannot

satisfy all demands, so public cloud is needed. We can

simply define APPj N j;St
j

	

as

APPj N j;St
j

	

¼

St
j

Pn

i

kimin 6 St
j\N j;

N j N j 6 St
j 6

Pn

i

kimax;

8
>><

>>:
ð18Þ

where kimim (kimax) denotes the minimal (maximal) number

of requests of type i.

We assume that l̂j and r̂j have certain distributions over

time t, but we do not specify any particular form for them.

We can still estimate the lower bound of F j N j; pcj
� �

.

Combining Eqs. (16), (17) and (18), we have

inf F j N j; pcj
� �

¼
pcjr̂tjffiffiffiffiffiffi

2p
p

Z T

0

q N j; t
� �

dt � pcj þ 2plj

2
N jT

� pcj

2

Z T

0

l̂tjdt; ð19Þ

where

q N j; t
� �

¼ exp � N j � l̂tj

	
2

=2 r̂tj

	
2
� �

� exp �
X

i

kimin � l̂tj

 !2

=2 r̂tj

	
2

2

4

3

5:
ð20Þ

Interested readers may prefer to our appendix for more

detailed derivations.

For any j, we take the derivative of inf F j N j; pcj
� �

and have

o inf F j N j; pcj
� �

oN j

¼ � pcj þ 2plj

2
T

þ pcjffiffiffiffiffiffi
2p

p
Z T

0

l̂tj �N j

	

r̂tj
exp �

N j � l̂tj

	
2

2 r̂tj
	
2

2

64

3

75dt:

ð21Þ

1498 Wireless Netw (2018) 24:1491–1508

123

Let the derivative equal zero and we can obtain the result

N�
j . In conclusion, the best arrangement for OSP is

N� ¼ N �
1; . . .;N

�
j ; . . .;N

�
m

n o
, where

N�
j ¼ arg max

N j

inf F j N j; pcj
� �

: ð22Þ

Up till now, we can see that for any given pcj, N�
j is deter-

mined by the above function. Since we remain general forms

of the distribution on l̂tj and r̂tj, it is hard for us to obtain any

closed-form solution. Specifically, our goal of this paper is to

build a theoretical game model to capture the interactions

between the OSP and CSP. In other words, we mainly focus

on the game-based framework in hybrid cloud systems. We

admit that one can still obtain the optimal F jðN j; pcjÞ with

some other methods, for example, by using the numerical

integration or re-formulating the system model. Analysis of

different methods to approach optimal F jðN j; pcjÞ is not

included in this paper, and considering the lower bound of

F jðN j; pcjÞ is easy to estimated relatively, we use this

method to determine N�
j . In what follows, we design an

algorithm to approach the optimality.

4.2 An approximation algorithm to OSP

The previous subsection presents a theoretical expression

of N�
. Runge–Kutta scheme [12] is an efficient method to

search the optimum, and is widely applied in practice.

Therefore, we propose an efficient and accurate algorithm

based on the Runge–Kutta scheme.

Let F j N j

� �
¼ o inf F j N jð Þ

oN j
and the previous problem turns

to finding zeros of F j N j

� �
. A fourth order Runge–Kutta

(RK4) scheme of F j N j

� �
is depicted as Algorithm 3.

Algorithm 3: N̂ ∗
j = RK4 (�j , pcj) Scheme

Input: initial-value �j (0) ,�′
j = f (Nj ,�j) , h, ε

Output: N̂ ∗
j

1 Initialization:L1 = L2 = �j (0) , N0 = 0
2 while |L2| > ε do
3 N0 := N0 + h
4 Calculate �j (N0)
5 a1 = f (N0,�j (N0))
6 a2 = f N0 + h

2 ,�j (N0) + h
2 a1

)

7 a3 = f N0 + h
2 ,�j (N0) + h

2 a2
)

8 a4 = f (N0 + h,�j (N0) + ha3)
9 L2 = L1 + h

6 (a1 + 2a2 + 2a3 + a4)
10 end
11 N̂ ∗

j = N0

12 Return N̂ ∗
j

In Algorithm 3, h is the step size and e is pre-fixed small

real value to control the termination of this algorithm. In

every loop of this algorithm, we calculate the intermediate

variables a1, a2, a3 and a4, and estimate a slope to calculate

the next iteration value. According to [12], the RK4 based

algorithm has an error bound of h5, and the total error

bound is as small as h4. When we apply a small value of h,

we can approach the result very close to the optimality.

5 CSP’s decision on pricing strategy

In the previous section, the OSP decides how it implements

its private cloud for any given public cloud resource pric-

ing strategy Pc. In this section, by knowing the OSP’s best

response, we answer what is the optimal pricing strategy of

the CSP, such that its profit can be maximized.

5.1 Problem formulation

Given the N̂ �
j in the previous section, the CSP needs to

solve P�
c ¼ arg max

Pc

PC Pc;N� Pcð Þð Þ. Therefore, we have

P�
c ¼ arg max

Pc

Z T

0

St
CPcdt

¼ arg max
Pc

Z T

0

St
I � St

L

� �
Pcdt

¼ arg max
Pc

Xm

j¼1

Z T

0

St
j � APPj N j;St

j

	
h i
pcjdt

¼ arg max
Pc

Xm

j¼1

Hj pcj
� �

:

ð23Þ

The previous section gives N j ¼ N̂ �
j pcj
� �

. Combining

Eqs. (17) and (18), we have

Hj pcj
� �

¼
Z T

0

Z N̂ �
j pcjð Þ

P
i

kimin

stj � stj

	

Gj stj

	

pcjdst

jdt

þ
Z T

0

Z P
i

kimax

N̂ �
j pcjð Þ

stj � N̂ �
j pcj
� �h i

Gj stj

	

pcjdst

jdt:

ð24Þ

Note that the first term equals 0, because the case

APPj N j;St
j

	

¼ St

j implies the OSP does not need to

purchase public resources. Then we can obtain the lower

bound of Hj pcj
� �

as

inf Hj pcj
� �

¼ pcjffiffiffiffiffiffi
2p

p
Z T

0

r̂tjx pcj; t
� �

dt

þ pcj

2

Z T

0

l̂tjdt � 1

2
N̂ �

j pcj

� �
pcjT;

ð25Þ

Wireless Netw (2018) 24:1491–1508 1499

123

where

x pcj; t
� �

¼ exp �
X

i

kimax � l̂tj

 !2

=2 r̂tj

	
2

2

4

3

5

� exp � N̂ �
j pcj
� �

� l̂tj

	
2

=2 r̂tj

	
2
� �

:

ð26Þ

Interested readers can find the detailed derivatives in the

appendix. The result we obtain is: the solution to the CSP’s

utility maximization problem is P�
c ¼ p�c1; . . .; p

�
cj;

	

. . .; p�cmÞ, where

p�cj ¼ arg max
pcj

inf Hj pcj
� �

: ð27Þ

5.2 Public pricing strategy

To further observe the feature of the solution to CSP, let us

first take the derivative of inf Hj pcj
� �

, so we have

d inf Hj pcj

� �

dpcj

¼ 1
ffiffiffiffiffiffi
2p

p
Z T

0

r̂tjx pcj; t
� �

dt

þ pcjffiffiffiffiffiffi
2p

p
Z T

0

r̂tjx pcj; t
� �0

dt þ 1

2

Z T

0

l̂t
jdt

� 1

2
N̂ �

j pcj
� �

T � 1

2
N̂ �

j pcj
� �h i0

pcjT:

ð28Þ

A direct idea for public pricing strategy is to

compute the price value such that the above equation

equals zero. However, it is very hard to obtain a

closed-form solution due to the complicated forms of

the formulas. Therefore, we apply an efficient and

accurate algorithm to approach the optimum. This

algorithm also follows the RK4 methodology and is

similar to Algorithm 3.

Let us present our approach in Algorithm 4, each iteration

of which follows the RK4 method. Different from Algorithm

3, this algorithm searches the optimum point of inf HjðpcjÞ.
Similarly this algorithm has an error bound of h5 in each step,

so the overall error bound is h4. By carefully choosing the

value of h, we can guarantee a very small error bound.

5.2.1 Summary

Up till now, we have proposed an integrated Stackelberg game

model and presented guidelines for the OSP and the CSP to

make their optimal decisions. In particular, the CSP decides

the pricing scheme as p�c1; . . .; p
�
cj; . . .; p

�
cm

	

for each of its

public cloud resources, and the OSP decides how to imple-

ment its private cloud system by deciding the amount of

resources it need to prepare, i.e., N�
1; . . .;N

�
j ; . . .;N

�
m

	

.

Due to the generality of problem formulation, as well as NP-

completeness of the resource allocation problem, we do not

provide closed-form solutions. Alternatively, we design effi-

cient and accurate algorithms, and derive the theoretic for-

mulas and bounds for these decisions.

Our goal in this paper is to build a Stackelberg game model

for the hybrid cloud system, aiming at capturing the interac-

tions between a single OSP and a single CSP. Future exten-

sions to this model could include more complex interactions

that may occur between multiple OSPs and multiple CSPs.

6 Performance evaluation

In this section, we use real-trace data to evaluate the per-

formance of our design. We first show the performance of

our designed algorithms APPGS and APPLB, and then

Algorithm 4: p̂∗
cj = RK4S (inf Hj (pcj)) Scheme

Input: initial-value inf Hj (0) , [inf Hj (pcj)]′ = g (pcj , inf Hj (pcj)) , h, ε
Output: p̂∗

cj

1 Initialization:L1 = 0, L2 = inf Hj (0) , p0 = 0
2 while |L2 − L1| > ε do
3 p0 := p0 + h
4 Calculate inf Hj (p0)
5 b1 = g (p0, inf Hj (p0))
6 b2 = g p0 + h

2 , inf Hj (p0) + h
2 b1

)

7 b3 = g p0 + h
2 , inf Hj (p0) + h

2 b2
)

8 b4 = g (p0 + h, inf Hj (pcj) + hb3)
9 L1 = L2

10 L2 = L1 + h
6 (b1 + 2b2 + 2b3 + b4)

11 end
12 p̂∗

cj = p0
13 Return p̂∗

cj

1500 Wireless Netw (2018) 24:1491–1508

123

compare the utility of the OSP and the CSP when using our

algorithms to decide their strategies.

6.1 Comparison of static allocation algorithms

We compare the OSP’s utility when using the APPGS and

APPLB algorithms, compared with its maximal possible

utility (denoted by OPT, and obtained by exhaustive

search). We assume that users’ requests can be classified

into three types, and each request type requires three dif-

ferent computing resources. We vary the request number

from 1 to 150, and the proportion of each request type is

fixed. Results are shown in Fig. 5, where we can see that

APPGS achieves 85:71% utility compared to the maximal

value, while APPLB achieves 92:65%. We run our algo-

rithms in a normal PC with 3.20GHz CPU, and the total

running time of APPGS and APPLB are 1.05 and

107.04 ms, respectively. Therefore, we can use APPLB for

a higher utility when computational time is allowed, or

APPGS for a faster calculation. In the following, we use the

combination of them, denoted by APP.

6.2 Private cloud utility

In this and the next subsections, we evaluate our Algo-

rithms 3 and 4. We consider an OSP with three different

type of services. Type 1 is a constant request over time.

Type 2 is a time-variant service with strong periodicity.

Type 3 represents a burst request (e.g., the Black Friday

flooding in online sale websites). The data traces are

depicted in Fig. 6, where the x-axis is the time domain and

y-axis represents the number of requests from users. Type 1

and Type 3 curves are artificially generated by us, while

Type 2 curve is a real-trace data we obtained from a par-

ticular online video service company, collected every

30 min from November 4 to 18, 2012. Due to the requests

from that company, we anonymize the company’s title, and

have normalized the values.

We consider three typical resources in cloud service,

i.e., the CPU, memory, and storage; and they comprise the

resource vector. Considering above type of services, we

give a rational assumption that R1 ¼ ð0:6; 0:6; 0:8Þ, R2 ¼
ð1:0; 1:0; 1:0Þ and R3 ¼ ð1:5; 1:0; 1:0Þ, respectively.

Checking the simple economic relation of computing cost,

we set the unit operating cost of OSP as Pl ¼ ð1:0; 0:8; 0:6Þ
and the CSP’s pricing strategy is Pc ¼ cPl, where c > 1.

The coefficient c implies the economic difference between

computing resources of OSP and CSP.

There are numbers of related works dealing with tasks

scheduling in hybrid cloud (see Sect. 8), but they have very

different settings, and their algorithms are not comparable

to ours due to different objectives. In here, we compare our

design with two baseline approaches. The algorithms we

consider are:

• Stackelberg Game Model (SGM): our approach.

• Always-Fit-Most scheme (AFM): the private cloud is

powerful enough to deal with all requests, even at the

peak time point.

• AVeraGe scheme (AVG): the private cloud deals with

half of total requests; the other half are resorted to the

public cloud.

Figure 7 shows the OSP’s utility in different schemes,

and the accumulative results are depicted in Fig. 8.

Although possessing a peak utility value, the AFM

scheme has the worst performance. The reason is that the

OSP has to preserve large number of idle resources, and it

is a huge waste for most of the time. The AVG

scheme does not consider the cost difference using private

and public cloud, and thus leads to a lower utility due to

high fee charged by the CSP. Our SGM scheme achieves

the greatest accumulative utility, and is obviously the best

of the three approaches.

6.3 Public cloud utility

In this subsection, we compare the pricing strategy of the

CSP using our approach with the optimal pricing scheme.

Since we need to use exhaustive search to find the opti-

mality, we apply a simplified setting: we consider only

Type 2 requests but omit the rest. We use Algorithm 4 to

Fig. 5 Comparison of static algorithms Fig. 6 Service types

Wireless Netw (2018) 24:1491–1508 1501

123

reach our solution, and exhaustive search to find the opti-

mal price. We present our results in Fig. 9. We find that

although our solution on the unit price is lower than the

optimal choice, however, the CSP’s utility under our

solution reaches 94:7% to the maximal possible value. To

summarize, via extensive simulations we validate that our

algorithms can achieve near-optimal solutions with low

time complexity.

6.4 Performance impact of c

In this subsection, we show how parameters affect the

private utility. Specifically, we compare the accumulative

utility with different coefficient, where c equals 1, 3, 5

respectively. Note that c ¼ 1 indicates that it is an ideal

case where the OSP pays same for leasing resources from

CSP with its local operating. The results are shown in

Figs. 10, 11, 12.

The SGM scheme obtains the best performance in above

three figures. The performance of AVG decreases with the

increase of coefficient c since it pays more to the CSP. In

particular, AVG’s utility coincides with that of SGM in

Fig. 10, and the reason is that the operating cost of OSP is

same as the cost to lease resources from CSP, i.e., c ¼ 1.

The AFM scheme is the worst when c ¼ 1 and c ¼ 3, while

it overtakes the AVG in Fig. 12 since it prepares sufficient

resources for the burst case. However, the AFM is inferior

to the SGM scheme especially in the routine case, which is

common in network service.

7 Discussion

In this section, we discuss some possible extensions to our

framework and deal with some issues of previous sections.

Fig. 7 Comparison of private utility

Fig. 8 Accumulative private utility

Fig. 9 Comparison of public utility

0 50 150 250 350 450 550 650
−50

0

50

150

250

350

Time

A
cc

um
ul

at
iv

e
U

ti
lit

y

SGM
AFM
AVG

Fig. 10 c ¼ 1:0

0 50 150 250 350 450 550 650
−20

0

40

80

120

160

Time

A
cc

um
ul

at
iv

e
U

ti
lit

y

SGM
AFM
AVG

Fig. 11 c ¼ 3:0

1502 Wireless Netw (2018) 24:1491–1508

123

7.1 Incomplete information game

In the previous sections, we assume that the CSP may

decide its pricing strategy to maximize its own profit by

knowing the OSP’s best response (see Sect. 5). In here, an

implicit condition is that the CSP can obtain the internal

information from the private cloud in the OSP. One may

argue how can this be achieved. One way is to do market

investigation. Through multiple probe, the CSP can esti-

mate the best response of the OSP under different

scenarios.

Another possibility is to use an imperfect information

game to model the interactions between the CSP and the

OSP, or the Bayesian Stackelberg game. Let us now ana-

lyze the hybrid cloud with a classical algorithm, i.e.,

DOBSS in [13]. For the leader CSP, its pure strategy j

indicates the unit price pcj, while the follower OSP’s pure

strategy i is N i, where i; j ¼ 1; 2; . . .;m. We denote the

CSP’s policy as y, which consists of a vector of its pure

strategies. The proportion of used j in policy y is denoted as

yj. For any OSP’s policy type l 2 L, xl illustrates its vector

of pure strategies, where the index set L contains all pos-

sible policies of the OSP’s.

Given a priori probability set H ¼ fhl : l 2 Xg, where

each element hl corresponds to each OSP’s policy, the CSP

solves the following problem to decide its pricing strategy:

maxy;x;a

P

j

P

l

P

i

hlPC j; ið Þyjxli

subjectto
P

j

yj ¼ 1;

P

i

xlj ¼ 1;

0 6 al �
P

j

PL j; ið Þyj 6 1 � xli
� �

M;

yj 2 ½0; 1�; xli 2 f0; 1g; l 2 R

ð29Þ

where al is the upper bound on the OSP’s utility given the

OSP’s policy l and the CSP’s policy y. We simply omit

details about this optimization problem since they are

similar to [13].

7.2 General request distribution

7.2.1 Poisson distribution approximation

In Sects. 4 and 5, we assume the number of incoming

request to be an independent Gaussian distribution. This

assumption is for analytical tractability, and it also repre-

sents some realistic properties of incoming request. Now

we will show why we use the independent Gaussian dis-

tribution to depict the request’s properties.

Given the request type Ri, the number of Ri over a time

interval is a discrete random variable that is often modeled

by a Poisson distribution, where i ¼ 1; 2; � � � ; n. In most

analytical cases, we want the corresponding distribution to

be a continuous one, whereas the Poisson distribution is

obviously discrete. A simple and direct idea is that we can

use some other distributions to approximate a Poisson

distribution, for example, the Gaussian distribution which

is widely applied in engineering statistics. In reality, we

have the following theorem.

Theorem 4 Suppose that Xi is the number of type Ri and

Xi �P kið Þ, we have that the variable

Ki ¼
Xi � kiffiffiffiffi

ki
p

is approximately a standard Gaussian random variable.

And the approximation is good for ki [5.

We simply omit the proof and interested readers may

refer to references [14, 15] for more details. Without of

generality, we extend the standard case to a general one,

i.e., Ki �N li; rið Þ. Based on this approximation, we can

use the Gaussian distribution to depict the incoming

request since ki [5 holds in our scheme and therefore, we

obtain the continuity correction.

We should also note that in some other scenarios, the

arrival rate of request is naturally modeled as a Gaussian

distribution and there is no need to apply previous approxi-

mation. For example, when staffing a calling center [16] or

modeling the arrival of public information [17]. In next part,

we will show how to deal with the situation where the request

distribution does not follow Gaussian.

7.2.2 Extend to general case

Previous parts make the Gaussian distribution to depict the

properties of incoming request. However, we cannot rule out

0 50 150 250 350 450 550 650
−20

0

30

60

90

120

Time

A
cc

um
ul

at
iv

e
U

ti
lit

y

SGM
AFM
AVG

Fig. 12 c ¼ 5:0

Wireless Netw (2018) 24:1491–1508 1503

123

possibilities that the request distribution does not follow

Gaussian. Now let us discuss how to address the general case of

request distribution. Suppose the number of request typeRi is a

random variable Ki �J i kið Þ. The definition and the instanta-

neous amount of incoming requests are the same as Eqs. (1) and

(3). Now we present a framework for the general situation.

• Step 1: Static Optimization. In this step, the OSP

allocates the incoming requests into the private and

public clouds, by applying the approximation algo-

rithms in Sect. 3. This can be expressed as

Lt;Ctf g ¼ APP ut;Kt;Nð Þ; ð30Þ

where Lt and Ct are the private and cloud set,

respectively.

• Step 2: OSP’s Construction. Based on the private set

Lt, the OSP can obtain the its own required resource

denoted as St
L. The OSP’s utility is

Pt
L ¼ U t �NPl � St

I � St
L

� �
Pc: ð31Þ

Therefore, the OSP can arrange its private cloud as

N� ¼ arg max
N

Z

T

Pt
Ldt: ð32Þ

• Step 3: CSP’s Decision. The CSP can compute its

required resource St
C when knowing the cloud set Ct.

Therefore, the CSP’s utility can be shown as

Pt
C ¼ St

CPcjN � ; ð33Þ

and it can update its pricing strategy as

P�
c ¼ arg max

Pc

Z

T

Pt
CjN �dt: ð34Þ

The above steps present a framework for general dis-

tributions of incoming request. It is difficult to obtain a

closed-form solution, but can be addressed by heuristic

algorithms. Deriving the heuristics of general cases is

beyond the scope of this paper.

8 Related work

The resource/request allocation problems in the cloud have

attracted a lot of attentions. Zhen et al. [18] presented a

virtualization system to dynamically allocate data center

resources and support green computing. Alicherry and

Lakshman [19] developed efficient resource allocation

algorithms in distributed clouds. The objective is minimizing

the latency between selected data centers. With a ranking

mechanism, Ergu et al. [20] modeled the task-oriented

problem of resource allocation in a cloud computing envi-

ronment. Dán et al. [21] considered the dynamic content

allocation problem for a content delivery system, which

combines cloud-based storage with low cost dedicated ser-

vers. In [22], Hao et al. proposed a non-prior method for

VMs allocation in a distributed cloud to decrease the network

cost. Shi et al. in [23] represented the first online combina-

torial and truthful auction mechanism to model dynamic

provisioning of VMs in a cloud paradigm.

Meanwhile, a number of research has been focusing on the

hybrid cloud system as well. In [24], Armbrust et al. showed

the hybrid cloud can achieve better performance than single

public or private cloud. Bittencourt et al. showed the main

characteristics of scheduling in [25], and proposed a cost

optimization algorithm for the hybrid cloud in [26]. Con-

cerning resource allocation and performance, Lee et al. pro-

posed a cluster-based architecture to allocate resources

in [27]. Authors in [28] discussed hybrid cloud management

with deadline constraints. Zhou et al. [29] addressed the pri-

vacy issue in a hybrid cloud, where sensitive data are kept in

trusted private cloud while insensitive data are moved to the

public cloud. Beloglazov et al. [30] proposed several resource

allocation policies and algorithms to realize Green IT.

Up till now, we have not found any work that combine

the design of resource allocation and hybrid cloud. Dif-

ferent from all these previous works, we consider an online

service application with specific request arrival patterns,

and design the combinatorial resource allocation and

pricing strategies in a hybrid cloud system.

9 Conclusion and future work

In this paper, we propose a hybrid cloud design to address

the heterogeneous and time varying requests in online

service applications. In particular, we use a Stackelberg

game model to capture the interactions between the public

cloud and the private cloud, based on which we answer (1)

for the online service provider, how to implement the

private cloud system in terms of local resource preparation,

and (2) for the public cloud provider, how to decide the

optimal prices for the cloud resources so as to maximize its

profit. We prove the NP-completeness of the resource

allocation problem, and propose efficient and effective

algorithms to approach the optimality. We show, both

theoretically and empirically, that our algorithms is time-

efficient and achieves near-optimal solutions. We believe

this gives important guidelines to design practical hybrid

cloud systems.

This paper is merely an initial work on the particular

topic of hybrid systems, and we only consider one OSP and

one CSP in the hybrid cloud system. Future extensions to

this paper could include more complex interactions that

may occur between multiple OSPs and multiple CSPs.

1504 Wireless Netw (2018) 24:1491–1508

123

Acknowledgements This work was supported by the National Nat-

ural Science Foundation of China under Grant Nos. 61271176,

61401334, 61571350 and 61402287, the Fundamental Research

Funds for the Central Universities (BDY021403), the 111 Project

(B08038) and Shanghai Yangfan Project (No. 14YF1401900).

Appendix 1: Derive the infimum of F j N j; pcj
� �

In Sect. 4, we combine Eqs. (16), (17) and (18), and thus

we obtain each dimensional F j N j; pcj
� �

in Eq. (35). Note

that we divide the F j N j; pcj
� �

into three individual parts,

i.e., A, B and C.

F j ¼
Z

t2 0;T½ �

Z

st
j

APPj N j;St
j

	

pcj�N jplj

h i
Gj stj

	

dst

jdt

¼
Z T

0

Z N j

P
i

kimin

stjpcj�N jplj

	

Gj stj

	

dst

jdt

þ
Z T

0

Z P
i

kimax

N j

N jpcj�N jplj
� �

Gj stj

	

dst

jdt

¼
Z T

0

Z N j

P
i

kimin

stjpcj�N jplj

h i
� 1
ffiffiffiffiffiffi
2p

p
r̂tj

exp �
stj� l̂tj

	
2

2 r̂tj
	
2

2

64

3

75dst
jdt

þ
Z T

0

Z P
i

kimax

N j

N jpcj�N jplj
� �

� 1
ffiffiffiffiffiffi
2p

p
r̂tj

exp �
stj� l̂tj

	
2

2 r̂tj
	
2

2

64

3

75dst
jdt

¼
Z T

0

pcjffiffiffiffiffiffi
2p

p
r̂tj

Z N j

P
i

kimin

stj exp �
stj� l̂tj

	
2

2 r̂tj
	
2

2

64

3

75dst
jdt

þ
Z T

0

N jpcjffiffiffiffiffiffi
2p

p
r̂tj

Z P
i

kimax

N j

exp �
stj� l̂tj

	
2

2 r̂tj
	
2

2

64

3

75dst
jdt

�
Z T

0

N jpljffiffiffiffiffiffi
2p

p
r̂tj

Z P
i

kimax

P
i

kimin

exp �
stj� l̂tj

	
2

2 r̂tj
	
2

2

64

3

75dst
jdt

¼
Z T

0

Adtþ
Z T

0

Bdt�
Z T

0

Cdt:

ð35Þ

We consider the error function in the probability anal-

ysis: erf zð Þ ¼ 2ffiffi
p

p
R z

0
exp �x2ð Þdx. Then A, B and C can be

computed as Eq. (36–38), respectively.

A ¼ pcjffiffiffiffiffiffi
2p

p
r̂tj

Z N j

P
i

kimin

stj exp �
stj � l̂tj

	
2

2 r̂tj
	
2

2

64

3

75dst
j

¼ pcjffiffiffiffiffiffi
2p

p
r̂tj

Z N j

P
i

kimin

stj � l̂tj þ l̂tj

	

exp �

stj � l̂tj

	
2

2 r̂tj
	
2

2

64

3

75dst
j

¼ pcjffiffiffiffiffiffi
2p

p
r̂tj

Z N j

P
i

kimin

ðstj � l̂tjÞ exp �
stj � l̂tj

	
2

2 r̂tj
	
2

2

64

3

75dst
j

þ pcjffiffiffiffiffiffi
2p

p
r̂tj

Z N j

P
i

kimin

l̂tj exp �
stj � l̂tj

	
2

2 r̂tj
	
2

2

64

3

75dst
j ð36Þ

¼
pcjr̂tjffiffiffiffiffiffi

2p
p exp � N j � l̂tj

	
2

=2 r̂tj

	
2
� �

�
pcjr̂tjffiffiffiffiffiffi

2p
p exp �

X

i

kimin � l̂tj

 !2

=2 r̂tj

	
2

2

4

3

5

þ
pcjl̂tj

2
erf N j � l̂tj

	

=
ffiffiffi
2

p
r̂tj

h i

�
pcjl̂tj

2
erf

X

i

kimin � l̂tj

 !

=
ffiffiffi
2

p
r̂tj

" #

;

B ¼ N jpcjffiffiffiffiffiffi
2p

p
r̂tj

Z P
i

kimax

N j

exp �
stj � l̂tj

	
2

2 r̂tj
	
2

2

64

3

75dst
j

¼N jpcj

2
� 2
ffiffiffi
p

p
Z
P
i

kimax�l̂t
j

ffiffi
2

p
r̂t
j

0

exp �s2
� �

ds

�N jpcj

2
� 2
ffiffiffi
p

p
Z N j�l̂t

jffiffi
2

p
r̂t
j

0

expð�s2Þds

¼N jpcj

2
erf

X

i

kimax � l̂tj

 !

=
ffiffiffi
2

p
r̂tj

" #

�N jpcj

2
erf N j � l̂tj

	

=
ffiffiffi
2

p
r̂tj

h i
;

ð37Þ

and with the last part

Wireless Netw (2018) 24:1491–1508 1505

123

C ¼ N jpljffiffiffiffiffiffi
2p

p
r̂tj

Z P
i

kimax

P
i

kimin

exp �
stj � l̂tj

	
2

2 r̂tj
	
2

2

64

3

75dst
j

¼N jplj

2
� 2
ffiffiffi
p

p
Z
P
i

kimax�l̂t
j

ffiffi
2

p
r̂t
j

0

exp �s2
� �

ds

�N jplj

2
� 2
ffiffiffi
p

p
Z
P
i

kimin�l̂t
j

ffiffi
2

p
r̂t
j

0

exp �s2
� �

ds

¼N jplj

2
erf

X

i

kimax � l̂tj

 !

=
ffiffiffi
2

p
r̂tj

" #

�N jplj

2
erf

X

i

kimin � l̂tj

 !

=
ffiffiffi
2

p
r̂tj

" #

:

ð38Þ

Conclude Eq. (36) to (38), we can derive Eq. (35) as

F j N j; pcj
� �

¼
Z T

0

A þ B � Cdt ð39Þ

Due to the generality of problem formulation, it is hard

to obtain an accurate formulas to Eq. (35). Instead, com-

bined with Eq. (35) and properties of erf zð Þ, we can obtain

the lower bound of F j N j; pcj
� �

as

inf F j N j; pcj
� �

¼
pcjr̂tjffiffiffiffiffiffi

2p
p

Z T

0

q N j; t
� �

dt

� pcj

2

Z T

0

l̂tjdt � pcj þ 2plj

2
N jT

6F j N j; pcj
� �

;

ð40Þ

where

q N j; t
� �

¼ exp � N j � l̂tj

	
2

=2 r̂tj

	
2
� �

� exp �
X

i

kimin � l̂tj

 !2

=2 r̂tj

	
2

2

4

3

5:
ð41Þ

Note that a natural assumption isP

i

kimin 6 l̂tj 6
P

i

kimax. Up till now, we obtain the infi-

mum of F j N j; pcj
� �

in Sect. 4.

Appendix 2: Derive the infimum of Hj pcj
� �

In Sect. 5, we formulate each dimensionalHj pcj
� �

as Eq. (24).

Note that the first term equals 0, because the case

APPj N j;St
j

	

¼ St

j implies the OSP does not need to pur-

chase public resources. Thus, we can rewrite Eq. (24) as

follows:

Hj pcj
� �

¼
Z T

0

Z N̂ �
j pcjð Þ

P
i

kimin

stj � stj

	

Gj stj

	

pcjdst

jdt

þ
Z T

0

Z P
i

kimax

N̂ �
j pcjð Þ

stj � N̂ �
j pcj
� �h i

Gj stj

	

pcjdst

jdt

¼ 0 þ
Z T

0

Ddt:

ð42Þ

Now we compute the term D as Eq. (43).

D ¼
Z P

i

kimax

N̂ �
j pcjð Þ

stj � N̂ �
j pcj
� �h i

Gj stj

	

pcjdst

j

¼ pcjffiffiffiffiffiffi
2p

p
r̂tj

Z P
i

kimax

N̂ �
j pcjð Þ

stj � N̂ �
j pcj
� �h i

exp �
stj � l̂tj

	
2

2 r̂tj
	
2

2

64

3

75dst
j

¼ pcjffiffiffiffiffiffi
2p

p
r̂tj

Z P
i

kimax

N̂ �
j pcjð Þ

stj � l̂tj

h i
exp �

stj � l̂tj

	
2

2 r̂tj
	
2

2

64

3

75dst
j

þ pcjffiffiffiffiffiffi
2p

p
r̂tj

Z P
i

kimax

N̂ �
j pcjð Þ

l̂tj � N̂ �
j pcj
� �h i

exp �
stj � l̂tj

	
2

2 r̂tj
	
2

2

64

3

75dst
j

¼
pcjr̂tjffiffiffiffiffiffi

2p
p

Z �

P
i

kimax�l̂t
j

 �2

2 r̂t
jð Þ2

�
N̂�
j

pcjð Þ�l̂t
jð Þ2

2 r̂t
jð Þ2

exp sð Þds

þ
pcj l̂tj � N̂ �

j pcj
� �h i

ffiffiffiffiffiffi
2p

p
r̂tj

Z P
i

kimax

N̂ �
j pcjð Þ

exp �
stj � l̂tj

	
2

2 r̂tj
	
2

2

64

3

75dst
j

¼
pcjr̂tjffiffiffiffiffiffi

2p
p exp �

P

i

kimax � l̂tj

 �2

2 r̂tj
	
2

2

6664

3

7775

�
pcjr̂tjffiffiffiffiffiffi

2p
p exp �

N̂ �
j pcj
� �

� l̂tj

	
2

2 r̂tj
	
2

2

64

3

75

þ
pcj l̂tj � N̂ �

j pcj
� �h i

2
erf

P

i

kimax � l̂tj
ffiffiffi
2

p
r̂tj

0

@

1

A

�
pcj l̂tj � N̂ �

j pcj
� �h i

2
erf

N̂ �
j � l̂tjffiffiffi
2

p
r̂tj

 !

:

ð43Þ

Similar to the previous derivations in Appendix 1, we can

have

1506 Wireless Netw (2018) 24:1491–1508

123

inf Hj pcj
� �

¼ pcjffiffiffiffiffiffi
2p

p
Z T

0

r̂tjx pcj; t
� �

dt

þ pcj

2

Z T

0

l̂tjdt � 1

2
N̂ �

j pcj

� �
pcjT

6Hj pcj
� �

;

ð44Þ

where

x pcj; t
� �

¼ exp �
X

i

kimax � l̂tj

 !2

=2 r̂tj

	
2

2

4

3

5

� exp � N̂ �
j pcj
� �

� l̂tj

	
2

=2 r̂tj

	
2
� �

:

ð45Þ

Up till now, we obtain the infimum of Hj pcj
� �

in Sect. 5.

References

1. How Alibaba catered to USD 3 billion sales in a day. http://www.

infoq.com/news/2012/12/interview-taobao-tmall.

2. de Castro Silva, J. L., Soma, N. Y., & Maculan, N. (2003). A

greedy search for the three-dimensional bin packing problem:

The packing static stability case. International Transactions in

Operational Research, 10(2), 141–153.

3. Panigrahy, R., Talwar, K., Uyeda, L., & Wieder, U. (2011).

Heuristics for vector bin packing. Microsoft: Technical Report.

4. Osborne, M. J. (2004). An introduction to game theory. Oxford:

Oxford University Press.

5. Wu, W., Lui, J. C., & Ma, R. T. (2013). On incentivizing upload

capacity in P2P-VoD systems: Design, analysis and evaluation.

Computer Networks, 57(7), 1674–1688.

6. Jünger, M., Liebling, T. M., Naddef, D., et al. (2009). 50 Years of

integer programming 1958–2008. NewYork: Springer.

7. Karp, R. M. (1972). Reducibility among combinatorial problems.

In Complexity of computer computations series. The IBM

research symposia series (pp. 85–103). Springer.

8. Fréville, A. (2004). The multidimensional 0–1 knapsack problem:

An overview. European Journal of Operational Research,

155(1), 1–21.

9. Puchinger, J., Raidl, G. R., & Pferschy, U. (2006). The core

concept for the multidimensional knapsack problem. In Evolu-

tionary computation in combinatorial optimization, series. Lec-

ture Notes in Computer Science (vol. 3906, pp. 195–208).

10. Li, C., Liu, Z., Geng, X., Dong, M., Yang, F., Gan, X., et al.

(2014). Two dimension spectrum allocation for cognitive radio

networks. IEEE Transactions on Wireless Communications,

13(3), 1410–1423.

11. Singh, A., Korupolu, M., & Mohapatra, D. (November 2008).

Server-storage virtualization: integration and load balancing in

data centers. In Proceedings of the ACM/IEEE conference on

supercomputing (pp. 1–12).

12. Jameson, A., Schmidt, W., & Turkel, E. (June 1981). Numerical

solution of the Euler equations by finite volume methods using

Runge Kutta time stepping schemes. In Fluid and plasma

dynamics conference (pp. 1–15).

13. Paruchuri, P., Pearce, J. P., Marecki, J., Tambe, M., Ordonez, F.,

& Kraus, S. (2008). Efficient algorithms to solve Bayesian

Stackelberg games for security applications. In ACM AAMAS (pp.

895–902).

14. Montgomery, D. C., Runger, G. C., & Hubele, N. F. (2009).

Engineering statistics (5th ed.). Hoboken: Wiley.

15. Montgomery, D. C., & Runger, G. C. (2010). Applied statistics

and probability for engineers (5th ed.). Hoboken: Wiley.

16. Whitt, W. (2006). Staffing a calling center with uncertain arrival

rate and absenteeism. Production and Operations Management,

15(1), 88–102.

17. Melvin, M., & Yin, X. (2000). Public information arrival,

exchange rate volatility, and quote frequency. The Economic

Journal, 110(465), 644–661.

18. Xiao, Z., Song, W., & Chen, Q. (2013). Dynamic resource allo-

cation using virtual machines for cloud computing environment.

IEEE Transactions on Parallel and Distributed Systems, 24(6),

1107–1117.

19. Alicherry, M., & Lakshman, T. (2012). Network aware resource

allocation in distributed clouds. In IEEE INFOCOM (pp.

963–971).

20. Ergu, D., Kou, G., Peng, Y., Shi, Y., & Shi, Y. (2013). The

analytic hierarchy process: Task scheduling and resource allo-

cation in cloud computing environment. The Journal of Super-

computing, 64(3), 835–848.

21. Dán, G., & Carlsson, N. (2014). Dynamic content allocation for

cloud-assisted service of periodic workloads. In IEEE INFOCOM

(pp. 853–861).

22. Hao, F., Kodialam, M., Lakshman, T. V., & Mukherjee, S. (April

2014). Online allocation of virtual machines in a distributed

cloud. In IEEE INFOCOM (pp. 10–18).

23. Shi, W., Zhang, L., Wu, C., Li, Z., & Lau, F. C. (June 2014). An

online auction framework for dynamic resource provisioning in

cloud computing. In ACM SIGMETRICS (pp. 71–83).

24. Armbrust, M., Fox, A., Griffith, R., et al. (2010). A view of cloud

computing. Communications of the ACM, 53(4), 50–58.

25. Bittencourt, L. F., Madeira, E. R. M., & da Fonseca, N. L. S.

(2012). Scheduling in hybrid clouds. IEEE Communications

Magazine, 50(9), 42–47.

26. Bittencourt, L. F., & Madeira, E. R. M. (2011). HCOC: A cost

optimization algorithm for workflow scheduling in hybrid

clouds. Journal of Internet Services and Applications, 2(3),

207–227.

27. Lee, G., Chun, B., & Katz, R. H. (2011). Heterogeneity-aware

resource allocation and scheduling in the cloud. In Proceedings of

HotCloud (pp. 1–5).

28. den Bossche, R. V., Vanmechelen, K., & Broeckhove, J. (2010).

Cost-optimal scheduling in hybrid IaaS clouds for deadline

constrained workloads. In International conference on cloud

computing (CLOUD) (pp. 228–235).

29. Zhou, Z., Zhang, H., Du, X., Li, P., & Yu, X. (2013). Prometheus:

Privacy-aware data retrieval on hybrid cloud. In IEEE INFOCOM

(pp. 2643–2651).

30. Beloglazov, A., Abawajy, J., & Buyya, R. (2012). Energy-aware

resource allocation heuristics for efficient management of data

centers for cloud computing. Future Generation Computer Sys-

tems, 28(5), 755–768.

Wireless Netw (2018) 24:1491–1508 1507

123

http://www.infoq.com/news/2012/12/interview-taobao-tmall
http://www.infoq.com/news/2012/12/interview-taobao-tmall

Zhe Liu received the B.Eng.

degree in Telecommunication

Engineering from Hebei

University, Baoding, China, in

2012, and is currently pursuing

the Ph.D. degree in Telecom-

munication Engineering, at

Xidian University, Xi’an,

China. His current research

interests include the dynamic

radio resource management in

cognitive radio networks, big

data, and information centric

networks.

Changle Li received the Ph.D.

degree in communication and

information systems from Xid-

ian University, China in 2005.

Since then, he conducted his

postdoctoral research in Canada

and the National Institute of

Information and Communica-

tions Technology (NICT),

Japan, respectively. He has been

a visiting scholar at the

University of Technology Syd-

ney (UTS) and is currently a

professor with the State Key

Laboratory of Integrated Ser-

vices Networks, Xidian University. He is an IEEE Senior Member

and his research interests include intelligent transportation systems,

vehicular networks, mobile ad hoc networks, and wireless sensor

networks.

Weijie Wu received the B.Sc.

degree in electronic and infor-

mation science and technology

from Peking University, Bei-

jing, China, in July 2008, and

the Ph.D. degree in computer

science from The Chinese

University of Hong Kong, Hong

Kong, in August 2012. He is

now a Researcher with Future

Network Theory Laboratory of

2012 Labs, Huawei Technolo-

gies Co. Ltd., Hong Kong.

Before that, he was an Assistant

Professor with Shanghai Jiao

Tong University, Shanghai, China, a Research Fellow with National

University of Singapore, Singapore, and a Postdoctoral Fellow with

The Chinese University of Hong Kong. His research interests include

computer networks from mathematical modeling and economic per-

spectives, network science, network economics, and network

optimization.

Riheng Jia received the B.E.

degree in electronics and infor-

mation engineering from the

Huazhong University of Science

and Technology, China, in

2012. He is currently pursuing

the Ph.D. degree in computer

science from Shanghai Jiao

Tong University. His research

of interests is in the area of

wireless networks and energy

harvesting communication.

1508 Wireless Netw (2018) 24:1491–1508

123

	A hierarchical approach for resource allocation in hybrid cloud environments
	Abstract
	Introduction
	System and game model
	System model and problem formulation
	Layer 1: users and OSP
	Layer 2: OSP and CSP

	Stackelberg’s model of duopoly
	Game theoretic approach to hybrid cloud system

	Request distribution: private or public
	The static optimization problem
	A greedy sorting mechanism for OPT
	A load balancing mechanism for OPT

	OSP’s decision on the private cloud
	Decision of private cloud
	An approximation algorithm to OSP

	CSP’s decision on pricing strategy
	Problem formulation
	Public pricing strategy
	Summary

	Performance evaluation
	Comparison of static allocation algorithms
	Private cloud utility
	Public cloud utility
	Performance impact of \gamma

	Discussion
	Incomplete information game
	General request distribution
	Poisson distribution approximation
	Extend to general case

	Related work
	Conclusion and future work
	Acknowledgements
	Appendix 1: Derive the infimum of {\mathcal {F}}_{j}\left({\mathcal {N}}_{j},p_{cj}\right)
	Appendix 2: Derive the infimum of {\mathcal {H}}_{j}\left(p_{cj}\right)
	References

