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Abstract Recently, it is widely believed that significant

coverage and performance improvement can be achieved

through the deployment of small cells in conjunction with

the well-established macro cells. However, it is expected

that the high density of base stations in such heterogeneous

cellular networks will give rise to multiple design problems

related to both co-tier (small-to-small) and cross-tier (be-

tween small and macro cells) interference. Fortunately,

cooperation between base stations will play a major role to

cope with these problems and hence to enhance the users’

data rates. In this paper, we consider a two-tier cellular

network comprised of a macro cell underlaid with multiple

small cells where both co-tier and cross-tier interference

are taken into account. We study the scenario where the

small cell base stations seek to maximize a common

objective by forming multiple clusters through cooperation.

These base stations have also to allocate power to their

associated users and, at the same time, control the total

aggregate interference caused to the macro cell user which

has to be kept below a threshold prefixed by the macro cell

base station. We consider two utility functions: the overall

sum rate of the small cell network and the minimum data

rate of the small cell users. We formulate the studied

problems as mixed integer nonlinear optimization

problems and we discuss their NP hardness. Therefore, due

to the complexity of finding the optimal solution, we

design heuristic algorithms which resolves efficiently the

tradeoff between computational complexity and perfor-

mance. We show through simulations that the designed

heuristics approach the optimal solution (obtained using

the complex exhaustive search algorithm) with highly

reduced computational complexity.

Keywords Heuristic algorithms � NP hard � Power
allocation � Small cell networks

1 Introduction

Heterogeneous and small cell networks (HetSNets) con-

stitute an enormous paradigm shift affecting the way cel-

lular networks are designed [1]. Base stations of different

sizes, carrier frequencies and transmit powers are added

continuously to underlay the well-established macro cell

base stations. In the near future, this increase in the number

of heterogeneous base stations may lead to networks where

each wireless device has its own base station [1]. However,

the high density of base stations will give rise to numerous

research challenges. A major capacity limitation in wire-

less communications in general, and in HetSNets in par-

ticular, is interference. The latter can be mitigated (or

reduced) through cooperative techniques [2]. In fact, in

two-tiered networks adequate cooperation between small

cell base stations (SBSs) can increase considerably their

performance by operating as a virtual multi-input-multi-

output (MIMO) array. Furthermore, when these base sta-

tions have cognitive capabilities, they can coexist (in the

same frequency band) with macro cell transmissions, by
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limiting the degree of interference they may cause through

power control [3].

Since the seminal work of Yoo and Goldsmith [4], zero

forcing beamforming (ZFBF) has received a large research

interest. In fact, the study in [4] showed that ZFBF can

asymptotically achieve the same sum rate as the optimal

dirty paper coding while reducing significantly the imple-

mentation complexity. However, the computational com-

plexity of ZFBF significantly increases when the number of

active users in the system becomes large. In fact, before the

emergence of HetSNets, ZFBF was extensively investi-

gated in the context of multiple users served by a power

constrained multiantenna base station. Hence, most

research efforts on ZFBF have focused on devising low

complexity scheduling schemes for multiuser MIMO sys-

tems [4, 5]. When SBSs in a HetSNet are able to cooperate,

they can use ZFBF in a distributed fashion. In this case,

each set of SBSs willing to cooperate can form several

disjoint ‘‘clusters’’. Many new constraints have to be con-

sidered: (1) a per base station power constraint instead of a

sum power constraint (similar to the per antenna power

constraint in multiuser MIMO [6]), (2) an interference

management between clusters (named as inter-cluster

interference in this paper) and (3) an interference constraint

imposed by the macro cell transmission.

Using distributed linear precoding, and ZFBF in par-

ticular, in HetSNets has become a hot research topic that is

attracting increasing interest [7–14]. The first research

work to study a per antenna power constraint is presented

in [6]. The authors showed that the power allocation

problem under this new constraint is a convex problem that

can be hence solved in polynomial time. The work in [7]

tackled a problem with the same constraint for fully

cooperating multicells. The authors designed the optimal

precoder for weighted sum rate maximization. Assuming a

similar model, the precoder proposed in [8] maximizes the

overall sum rate of the system. The authors in [9] proposed

a new linear precoding scheme for sum rate maximization

in cooperative multicell systems. The proposed

scheme performs well for low and medium signal-to-noise

ratio (SNR). More recently, Nguyen et al. [10] studied a

system where the precoding is performed on a per cell

basis. Two scenarios have been compared: a scenario

where the base stations do not cooperate, i.e. each base

station compute its precoding matrix based on its own

interest, and a scenario where the base stations cooperate to

compute precoding matrices that maximize a common

objective. The works in [11] and [12] formulate the energy

efficiency problem in multicell networks with ZFBF as a

nonlinear fractional program and use the well-known

Dinckelbach method to solve it. Other precoders for small

cell transmissions in a two tiered network are proposed in

[13] and [14]. The designed precoders aim to suppress

completely the interference towards the macro cell users

according to an overlay paradigm without cooperation

between the base stations.

Coalitional game theory was extensively used in order to

design distributed algorithms to solve the coalition formation

problem. Based on the concept of recursive core, the authors

of [15] propose a distributed merge-only algorithm in order

to form the coalitions. The proposed algorithm tries to con-

struct a recursive core where no SBS has an incentive to

deviate from its corresponding coalition. However, the

authors assume that once a base station commits to join a

given coalition, it cannot change this decision in the future

even if it finds a better outcome. Though this assumption

simplifies the algorithm design and converges to a recursive

core, it prevents the small cell network from approaching a

social optimum. In [16], the authors investigate the same

problem using a similar system model based on a different

solution concept, namely the epsilon-core. They propose a

distributed coalition formation algorithm taking into account

the deviation overhead, i.e. the overhead required at base

station in order to change its coalition. In [17], the authors

study the coalition formation problem in a femtocell network

that use interference alignment as an interference manage-

ment technique. The authors design a distributed algorithm

which operates iteratively in order to converge to a recursive

core. In [18], the authors develop a distributed algorithm

which forms overlapping coalitions in a two-tiered network.

Hence, each base station may join multiple coalitions. The

authors assume an orthogonal frequency-division multiple

access (OFDMA) network with no precoding. Although

these distributed algorithms are all shown to converge to a

stable solution concept where no base station has an incen-

tive to deviate, the final convergence state may be far from

the optimal sum rate of the overall network. Therefore,

centralized coalition formation and power allocation

schemes are indispensable for approaching the optimal

performance.

The rest of the paper is organized as follows. The con-

tribution is summarized in Sect. 2. Section 3 presents the

system model. Section 4 formulates the problem, presents

the utility functions and discuss the hardness of the asso-

ciated problems. Section 5 describes the proposed clus-

tering and power allocation heuristic algorithms. Section 6

presents the numerical results and the computational

complexity of the proposed algorithms and finally Sect. 7

draws some conclusions.

2 Contribution of the work

Unlike works described in the introduction, this work

proposes a centralized scheme controlling a network of

small cells where the SBSs are ready to form one or
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multiple clusters and cooperate to either maximize a

common objective such as the overall sum rate of the

system or ensure fairness by maximizing the minimum data

rate. Therefore, we propose to use a multiuser MIMO

precoding scheme in order to reduce the negative impact of

co-tier interference in HetSNets. Hence, the SBSs are

disposed in several clusters and the interference in each

cluster is totally suppressed using the ZFBF precoding

scheme. Also, the interference caused to the macro cell

transmission, which is considered as a primary transmis-

sion, is kept below a prefixed interference threshold. A

cluster is hence regarded as a multiuser MIMO network

where SBSs form a virtual big base station with multiple

antennas serving multiple users. Further, each cluster

operates as a secondary transmission in a cognitive

underlay scheme. The clusters are formed and the power is

allocated in such a way that both inter-cluster and cross-tier

interference are minimized and hence the system utility is

maximized. The problem is first formulated as an opti-

mization problem and the complexity of solving it opti-

mally is briefly discussed. In fact, we find that the problem

is NP-hard which motivates us to design suboptimal but

computationally efficient algorithms. Three greedy

heuristics are presented and their performance is assessed

through simulations. The computational complexity of the

three algorithms is also evaluated and benchmarked against

the complexity of finding the optimal solution.

3 System model

The considered network is made up of N small cell base

stations (SBSs). Each SBS is initially associated with

exactly one small cell user (SU). We denote by ‘n the link

formed by SBS n and its associated SU n. The small cells

coexist with a macro cell where a macro base station

(MBS) is serving one user (MU) over one frequency band.

We consider the downlink channel for all transmissions.

All the SBSs are transmitting over the same frequency

band as the MBS and are distributed randomly in the same

geographical area. Hence, each SU n suffers from two kinds

of interference, namely co-tier interference that is caused by

the SBSs other than n and cross-tier interference caused by

theMBS transmission. In order to lower the impact of co-tier

interference on the performance of the small cell network,

SBSs seek to form clusters. The SBSs belonging to the same

cluster can use a distributed beamforming so they can totally

eliminate interference inside the cluster. We propose to use

the well-known ZFBF [4] as the beamforming technique.

When the clusters are formed each SU may be served by

more than one SBS and one SBS can serve more than one

SU. Unfortunately, co-tier interference is not eliminated and

the SUs are still suffering from inter-cluster interference that

is caused by the SBSs belonging to other clusters. On the

other hand, the MU may suffer from cross-tier interference

caused by the SBSs transmissions. Hence, each SBS has to

control its transmit power so that the small cell network

remains transparent to the macro cell transmission. It is also

assumed that the SBSs are connected to the core network

using a reliable and fast backhaul network. The algorithms

presented in this paper are centralized. They require the

availability of the parameters, on which the clustering and

power allocation decisions rely, at a central entity. These

parameters include the channel coefficients or the distances.

Therefore, we assume that the fast and reliable backhaul

allows to make these parameters available with negligible

delays at this central point. Anyhow, the impact of imperfect

knowledge of channel state or the distances is evaluated and

discussed in Sect. 6.

The received signal at SU n can be written as:

yn ¼ hnxþ gMn
ffiffiffiffiffi

c0
p

a0 þ zn; ð1Þ

where hn is the (1� N) channel vector between the N SBSs

and user n, x is the (N � 1) transmitted vector of signals

from all the SBSs, gMn denotes the channel coefficient

between the MBS and user n, a0 and c0 denote respectively
the transmitted signal and power to the macro user and zn is

the additive white Gausssian noise (AWGN) at user n with

zero mean and variance r2zn .

Assuming that SBS n belongs to cluster Sk (i.e. n 2 Sk),

the nth element of x is given by:

xn ¼
X

m2Sk
wnm

ffiffiffiffiffi

cm
p

am; ð2Þ

where wn ¼ ½wnm�m2Sk is the (1� jSkj) beamforming vector

for user n (j � j is the cardinality of the set),
ffiffiffiffiffi

cm
p

is the

portion of power allocated to user m and am is the trans-

mitted signal to user m. Since ZFBF is used, the beam-

forming vector wn is the column corresponding to SBS n in

matrix Wk which is the pseudo-inverse of matrix Hk.

Matrix Hk is formed by the channel vectors of all users in

the set Sk, i.e. Hk ¼ ½hn�m2Sk .
Thanks to the ZFBF, the received signal at SU n can be

rewritten as:

yn ¼
ffiffiffiffiffi

cn
p

an þ
X

m0 2 Sj

j 6¼ k

hnwm0
ffiffiffiffiffiffi

cm0
p

am0

þ gMn
ffiffiffiffiffi

c0
p

a0 þ zn:

ð3Þ

The first term in the right hand side of (3) represents the

desired signal whereas the second term represents the inter-

cluster interference which can be reduced by adequately

forming the clusters and assigning power portions. Unfor-

tunately, this kind of interference cannot be totally sup-

pressed and will be treated as noise. Finally, the third term
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represents the cross tier interference signal coming from

the macro transmission. Therefore, the achievable data rate

at user n is given by:

Rn ¼ log2 1þ cn
r2zn þ

P

m0 2 Sj

j 6¼ k

jhnwm0 j2cm0 þ jgMn j
2c0

0

B

B

B

B

@

1

C

C

C

C

A

:

ð4Þ

The main notations are summarized in Table 1.

4 Problem formulation

Improving the system performance cannot be realized

without finding efficient solutions to the following two

main problems: (1) the clustering problem, i.e. how the

SBS-SU links are disposed into clusters and (2) the power

control and allocation problem, i.e. how much power can

be used by each SBS subject to the interference constraint

imposed by the macro cell transmission and how each SBS

allocates this power among the SUs belonging to its cluster.

In this section, we formulate the joint clustering and

power control and allocation problem as a mixed integer

nonlinear optimization problem. Two system utilities are

studied, namely the system sum rate utility and the mini-

mum rate utility.

4.1 Sum rate utility

When all SBSs seek to maximize a common interest, the

objective function is the overall sum rate of the system.

The problem can be formulated in this case as a problem

involving both binary variables corresponding to the clus-

tering decision and continuous variables representing the

power allocation.

We first define the following binary variables:

xnm ¼
1 if ‘n and ‘m are in the same cluster

0 otherwise:

�

The achievable data rate at user n can be written as:

Un ¼ log2 1þ cn
r2zn þ

PN
m¼1ð1� xnmÞjhmnj2sm þ jgMn j

2c0

 !

;

ð5Þ

where hmn is the mth element of vector hn denoting the

channel coefficient between SBS m and user n with

sm ¼
X

N

q¼1

xmqjwmqj2cq: ð6Þ

Each variable cn denotes the power allocated to user n,

and subject to the following constraint:

X

N

m¼1

xnmjwnmj2cm �Pmax
n 8n 2 f1. . .Ng ð7Þ

where Pmax
n is the maximum amount of power available at

SBS n for transmission.

Further, the portions of power allocated to SUs are

subject to an interference constraint imposed by the macro

transmission. Hence, the aggregate interference caused by

all the SBSs to the MU must be kept below the prefixed

threshold Ith. Therefore, the following constraint has to be

respected by the small cells:

Table 1 List of notation
Notation Description

N Number of small cell base stations (SBSs)

Number of small cell users (SUs)

‘n Link formed by SBS n and its SU n

hn ¼ ½hmn�Nm¼1
Channel vector between all the N SBSs and user n

wn ¼ ½wnm�m2Sk Beamforming vector for SU n

gMn Channel coefficient between the MBS and user n

gSn Channel coefficient between SBS n and MU

cn Portion of power allocated to SU n

c0 Transmit power of the MBS

r2zn Variance of AWGN at SU n

Sk Notation for a typical cluster

Rn Achievable data rate at SU n

Pmax
n Maximum amount of power available at SBS n

Cmax Maximal number of small cells admissible in each cluster

Ith Interference threshold at the MU
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X

N

n¼1

X

M

m¼1

xnmjwnmj2cm

 !

� jgSnj
2 � Ith ð8Þ

where gSn denotes the channel coefficient between SBS

n and the MU.

The next constraints must be added to ensure that the

values of the binary variables are consistent with the

formed clusters, e.g. if link n and link m are in the same

cluster (i.e. xnm ¼ 1) and link m and link q are in the same

cluster (i.e. xmq ¼ 1), then link n and link q are also in the

same cluster (i.e. xnq ¼ 1):

xnq � 1� xnm þ xmq 8n;m; q 2 f1. . .Ng3 ð9Þ

xnq � 1þ xnm � xmq 8n;m; q 2 f1. . .Ng3 ð10Þ

xnq � xnm þ xmq � 1 8n;m; q 2 f1. . .Ng3 ð11Þ

The following constraints ensure that the number of

links in each cluster does not exceed a prefixed limit Cmax,

the maximal number of small cells admissible in each

cluster:

X

N

m¼1

xnm �Cmax 8n 2 f1. . .Ng; ð12Þ

and finally, we must have:

xnm ¼ xmn 8n;m 2 f1. . .Ng2 ð13Þ

xnm 2 f0; 1g 8n;m 2 f1. . .Ng2 ð14Þ

cn � 0 8n 2 f1. . .Ng ð15Þ

where the first two constraints ensure the consistency of

the definition of the binary variables xnm while the third

one ensures that no user obtains a negative amount of

power.

Therefore, the sum rate maximization problem can be

written as follows:

Maximize
X

N

n¼1

Un

subject to ð7Þ�ð15Þ:
ð16Þ

The formulation given by (16) is computationally very

hard to solve since it involves both binary and continuous

variables. Also, due to the nature of ZFBF, we cannot

compute the matrix channel inverse before fixing the bin-

ary variables (i.e. making the clustering decision). Hence,

the optimal solution to problem (16) can be only found by

performing an exhaustive search over all the possible

clustering decisions. For each possible formation, we must

perform a separate power allocation by solving the fol-

lowing nonlinear optimization problem:

Maximize
P

K

k¼1

P

n2Sk
Rn

subject to
P

m2Sk
jwnmj2cm�Pmax

n 8n2 Sk;8k

P

K

k¼1

P

n2Sk

P

m2Sk
xnmjwnmj2cm

 !

� jgSnj
2

 !

� Ith

cn�0 8k;8n2 Sk

ð17Þ

where Rn is given by (4) and K is the number of clusters in

the considered clustering decision.

Unfortunately, the number of possible clustering deci-

sions grows exponentially with the number of small cells in

the system. Hence, such optimal solution cannot be

implemented even for small numbers of SBS-user links.

Furthermore, the power allocation problem can be proven

to be NP-hard based on a polynomial time reduction from

the maximum independent set problem in a similar way to

the proof of Theorem 1 in [19]. The NP-hardness of the

power allocation problem makes the problem of joint

clustering and power allocation under the sum rate utility

even more harder and an optimal brute force solution

impossible to implement.

4.2 Minimum rate utility

When fairness among users is an important design issue,

then maximizing the overall sum rate of the system is not

suitable since some users may experience starvation.

Instead, we propose to maximize the minimum user rate.

The problem can hence be formulated as follows:

Maximize min
1� n�N

Un

subject to ð7Þ�ð15Þ:
ð18Þ

By introducing an auxiliary variable noted s, the mini-

mum rate problem can be rewritten as:

Maximize s

subject to ð7Þ�ð15Þ

s r2n þ
X

N

m¼1

ð1� xnmÞjhmnj2sm

 !

� cn 8n 2 f1. . .Ng

s� 0:

ð19Þ

Once again, similar to the case of sum rate utility, we have

to perform an exhaustive search over an exponentially

increasing number of clustering decisions. However, once

the clustering is performed , the power allocation becomes

polynomially solvable because of the linearity of its objec-

tive function and constraints (considering the variable s as a
parameter and performing a binary search over its value).
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5 Proposed algorithms

Due to the high complexity of finding the optimal solution of

the proposed problem for both utility functions, as discussed

in Sect. 4, we present in this section low complexity greedy

algorithms based on simple but efficient selection criteria.

The proposed algorithms adopt the same main structure and

differ only in the selection criteria. These algorithms start by

a clustering phase by selecting in a greedy fashion one link

at each iteration and adding it to its ‘‘best’’ choice cluster

(the superlative ‘‘best’’ refers to a local choice due to the

greedy nature of the algorithms). Once the clusters are

formed, the algorithms proceed to the power allocation by

solving either problem (17) for maximizing the system sum

rate or problem (19) for maximizing the minimum data rate.

5.1 Greedy clustering algorithms

In the following, we detail three simple heuristic algo-

rithms for the phase of clustering.

5.1.1 Heuristic 1: Highest SNR first (HSF)

This first heuristic algorithm starts by putting in the first

cluster the link that experiences the highest SNR among all

the available links. It then adds the link that causes most

interference to the firstly chosen link. If the cluster is not

entirely filled, the algorithm adds the link that causes the

most aggregate interference to the links already in the first

cluster. The algorithm continues in the same fashion until the

cluster is completely filled. It then proceeds to the second

iteration by putting in the second cluster the linkwith highest

SNR chosen from the remaining links (i.e. the ones not in

cluster 1). The algorithm proceeds in the same way and

terminates when all the links are assigned to clusters. The

different steps of heuristic 1 are detailed in Algorithm 1.

5.1.2 Heuristic 2: Highest interference first (HIF)

This heuristic starts by putting in the first cluster the two

links which cause the highest amount of interference to

each other. Just like HSF, the algorithm adds the link that

causes the most aggregate interference to the already added

links. Then, it continues in the same way until the cluster is

full. The algorithm forms other clusters in the same fashion

it has formed the first one and terminates when no link

remains unassigned. The structure of this heuristic is sim-

ilar to HSF and thus it can be described using Algorithm 1.

5.1.3 Heuristic 3: Neighbouring links first (NLF)

The third heuristic is based only on the separating distances

between users and the interfering SBSs. It starts by

assigning to the first cluster the two most neighboring links,

i.e. the two links a and b where the distance between SBS a

and user b or the distance between SBS b and user a is the

smallest. If Cmax [ 2, the algorithm adds another neigh-

boring link, i.e. the one having the nearest SBS to the users

of the first two links or the one having the nearest user to

the SBSs of the first two links. The algorithm continues

adding links in the same fashion until no more places are

available in the first cluster. Algorithm 1 can be easily

adapted to describe the steps of NLF.

5.2 Phase 2: Iterative power allocation

The next phase is the power allocation which is common for

the three proposed clustering heuristics. Once the clusters are

formed, each algorithm solves the power allocation problem

[given either by (17) or (19)]. As discussed before, the

problem of maximizing the minimum rate utility is a para-

metric linear problem and thus can be optimally solved using

any optimization tool in polynomial time. However, the

problem of maximizing the sum rate utility is NP-hard due
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especially to the interdependence between the clusters (i.e.

making the objective function non-separable). Hence, we

propose to solve the power allocation for problem (17) in an

iterative fashion by computing the transmit powers of SBSs

in one cluster in each new iteration. Furthermore, con-

straint (8) is common for all the clusters and hence it must be

separated in order to solve independently the power alloca-

tion problem for each cluster. Hence, instead of constraining

the aggregate interference caused by all the clusters, each

cluster will have its own constraint. More specifically, its

corresponding tolerable interference level must not exceed

the threshold Ith=K (i.e. the original interference threshold

divided by the number of clusters). Therefore, for each

cluster Sk a problem in the following form has to be solved

Maximize
P

n2Sk
R0
n

subject to
P

m2Sk
jwnmj2cm �Pmax

n 8n 2 Sk

P

n2Sk

P

m2Sk
jwnmj2cm

 !

� jgSnj
2 � Ith

K

cn � 0 8n 2 Sk

ð20Þ

where the rate R0
n includes only the previously computed

intra-cluster interference as it will be discussed next.

The algorithm starts by computing the transmit power of

SBSs in a chosen cluster (e.g. finding cn for all n 2 Sj) by

fixing the transmit power of SBSs of the other clusters to their

maximal values (e.g. putting cm for all m 2 Sk with k 6¼ j).

Clearly, the problem to solve at each iteration is a convex

optimization problem which can be solved using the well-

knownwaterfillingmethodwhen jSjj ¼ 2 (as presented in [6])

or requiring a numerical optimization tool when jSjj[ 2.

Each iteration involves solving a new convex optimization

problem where the transmit power of SBSs of the already

considered clusters are taken equal to their computed values,

while the other values of transmit power (not computed yet)

are taken equal to their maximal values. When the algorithm

performs exactly K iterations and computes the transmit

powers of all the SBSs, it restarts taking as input the computed

portions of power. As it will be discussed in the next section,

running the algorithm for only two iterations is enough to

obtain a tangible sum rate improvement. Running more iter-

ations adds only more computational complexity without

significant performance improvement.

6 Simulation results

This section investigates the performance of the proposed

heuristic algorithms through computer simulations per-

formed using MATLAB where the power control

optimization problem is solved using the fmincon function.

As a benchmark, we use the optimal performance obtained

by the highly complex exhaustive search algorithm. We

consider a two tier network where the MBS is located at the

center of a square area having a size of 1000 m 9 1000 m.

The macro cell user is located randomly within an area of

100 m 9 100 m having the MBS as its center. We also

consider a small cell network where N links are randomly

located according to a uniform distribution in the same

geographic area. An example of network made up of ten

small cells disposed in four clusters is shown in Fig. 1. All

the small cell links have the same separation distance

between the SBS and its corresponding user which is

chosen to be dmm = 100 m. The channel coefficients are

modeled as hnm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K0 � ðdmn=d0Þ�a
p

� bmn, where K0 ¼
103 is a constant capturing the system and transmission

effects, dmn is the distance between SBS m and user n,

d0 ¼ 1 m is the reference distance, a ¼ 4 is the path loss

exponent and bmn is a random Gaussian variable with zero

mean and unit variance (the coeffiecients gMn and gSn are

modeled similarly). The noise spectral density at each user

is chosen to be N0 ¼ 10�10 W/Hz as in [20], the maximum

power available at each SBS m is Pmax
m ¼ Pmax ¼ 0:1 W

and the transmit power of the MBS is c0 ¼ 0:2 W. We

regenerate randomly the locations of the SBSs, SUs and

MU at the beginning of each simulation run. The value of

the objective function is obtained by averaging over 103

simulation runs for the optimal solution because of its high

complexity and over more than 104 simulation runs for the

proposed heuristics. Since we present average values, we

verified that the number of simulation runs is high enough

such that the resulted value converges and any additional

runs will not result in any significant change to the esti-

mated average value as presented in Fig. 2. In fact, the

figure shows the convergence of two average values for the

achievable sum rate presented later in Fig. 8.

Figure 3 plots the performance of the proposed heuris-

tics when varying the number of iterations of the power

allocation phase. We notice that adding a second iteration

to the power allocation phase improves the achievable sum

rate independently of the employed clustering heuristic.

However, adding more iterations (beyond two) does not

help improving the performances as the curves stagnate

after two iterations.

Figures 4 and 5 compare the achievable average rate per

user using the three proposed clustering heuristics to the

optimal solutions found by the highly complex exhaustive

search. Figure 4 shows the results for a network where the

macro cell transmission imposes an interference threshold

of Ith ¼ 20N0, whereas Fig. 5 shows the results for a net-

work consisting only of small cells. We notice from the

two figures that HIF outperforms the two other heuristics
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for all values of N. The HIF heuristic achieves sum rate

close to the exhaustive search algorithm with a relatively

tight performance gap between 2 and 4 %. However, in the

presence of macro cell transmission, the performance gap

between the optimal exhaustive search solution and HIF

gets slightly larger, e.g. it goes from 2.1 (when no macro

cell transmission) to 3.5 % (when Ith ¼ 20N0) for N ¼ 6.

We can also observe from these figures that the perfor-

mance gap between HIF and NLF heuristics is very small

and does not exceed 1 %. NLF is based only on the

information about the distances separating the SBSs and

the users and does not require any information about the

channel gains to obtain the clustering. Hence, this heuristic

is interesting to implement thanks to its limited information

requirements. Finally, we notice that as N increases, the

performance of HSF degrades because the impact of

interference becomes important.

Figure 6 shows the performance of the three proposed

heuristics when varying the level of tolerable interference

at the macro cell user. Two network sizes are considered:

N ¼ 6 (lower curves) or N ¼ 8 (upper curves). As expec-

ted, when the macro cell communication tolerates more

interference, the SBSs can increase their transmit power

and hence improve the overall system sum rate. Also, we

notice that when the value of Ith is very large, the inter-

ference constraint becomes inactive and the power portions

allocated to the small users are only limited by the maximal

powers available at the SBSs. Figure 6 shows also that the
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three heuristics performs differently when varying the

value of Ith. In fact, although for small values of Ith, the

three heuristics have almost the same performance, large

values of Ith favors the HIF and NLF heuristics over the

HSF heuristic. This advantage becomes important as

N becomes larger.

We plot in Fig. 7 the average rate per user of the three

proposed heuristics when varying the maximal number of

small cells admissible in each cluster Cmax. We consider a

network with N ¼ 20 small cells. In the case when no

interference threshold is imposed (upper curves), increas-

ing the value of Cmax results in a performance increase for

the three heuristics. We also notice that as Cmax increases

the performance of the HSF heuristic approaches the

performance of the other two heuristics. This is due to the

decrease of the impact of inter-cluster interference since

when Cmax gets larger, the system forms less clusters. On

the other hand, when the macro cell imposes a threshold of

Ith ¼ 20N0 (lower curves), the performance of the heuris-

tics saturate beyond Cmax ¼ 5. Hence, forming larger

clusters does not improve the achieved performance since

the clustering choice is constrained by the level of inter-

ference caused to the macro cell communication.

Figure 8 plots the sum rate achieved by the three

heuristics when varying the maximum transmit power

available at each SBS Pmax
n , n ¼ 1; . . .;N. The figure also

presents the impact of channel state estimation error that

may be caused by estimation noise or outdatedness on the

performance of the three heuristics. The estimation error

model is similar to Wang and Lau [21] where the estimated

channel coefficients are modelled as:

hbmn ¼ hmn þ Dhmn; 8ðm; nÞ 2 f1; . . .;Ng2

where hmn is the actual channel coefficient and Dhmn is the
estimation error coefficient given by a complex Gaussian

variable with zero mean and variance r2Dh. In Fig. 8, we

consider a network composed of N ¼ 12, an interference

threshold of Ith ¼ 25N0 and r2Dh ¼ 0 (for the upper curves)

or r2Dh ¼ 0:01 (for the lower curves). We notice that for

both values of r2Dh, the performance of the three heuristics

increase as the transmit power gets larger. However, this

increase saturates when Pmax
n approaches 1W. In fact, the

interference threshold imposed by the macro cell trans-

mission prevents any performance improvement even when

increasing the transmit SBS power. More precisely, at a

Pmax
n of 1W, the interference constraint is satisfied with

equality and the power constraints are no longer active.

3 4 5 6 7 8 9 10 11 12
5

6

7

8

9

10

11

12

13

Number of SBSs

A
ve

ra
ge

 ra
te

 p
er

 u
se

r(
bp

s/
H

z)

HSF heuristic
HIF heuristic
NLF heuristic
Optimal exhaustive search

Fig. 5 Average rate per user comparison for different values of N

with Cmax ¼ 3 and no interference limit

5 10 15 20 25 30
35

40

45

50

55

60

65

70

Interference threshold at the macro−user ( × N
0
)

A
ch

ie
va

bl
e 

su
m

 ra
te

 (b
ps

/H
z)

HSF heuristic
HIF heuristic
NLF heuristic

N=6

N=8

Fig. 6 Sum rate comparison varying Ith

2 3 4 5 6
4

4.5

5

5.5

6

6.5

7

Maximum cluster  size

A
ve

ra
ge

 ra
te

 p
er

 S
U

 (b
ps

/H
z)

HSF heuristic
HIF heuristic
NLF heuristic

I
th

=20N
0

No macro cell

Fig. 7 Average rate per small cell user versus the maximum cluster

size

Wireless Netw (2017) 23:2509–2520 2517

123



Furthermore, as expected, Fig. 8 illustrates the high impact of

an erroneous channel state estimation on the system perfor-

mance. However, we notice that the shapes of the curves

remain almost the same even with the presence of estimation

errors. The performance degradation is generally due to intra-

cluster interference induced by the error termDhmn. This error
impacts directly the channel inversion and prevents ZFBF

from completely suppressing intra-cluster interference.

Therefore, the results already presented in this section can be

seen as upper bounds of the more practical model where

imperfect channel state information is assumed.

Figure 9 shows the impact of localization estimation

errors on the performance of NLF when varying the

number of SBSs in the network. We assume a simple error

model where the erroneous coordinates of each SU n are

modelled as xbn ¼ xn þ Dxn and ybn ¼ yn þ Dyn, where

ðxn; ynÞ are the actual coordinates of SU n and Dxn and Dyn
are uniformly distributed variables taken in the interval

½�DD;þDD�. As expected, algorithm NLF is sensitive to

localization estimation errors since its decision relies on

distances between SBSs and SUs. This sensivity becomes

more important as the density of the network increases.

Anyhow, the performance gap between the two curves in

Fig. 9 is limited and stays below 3.5 % even for N ¼ 12.

We compare in Fig. 10 the execution times of the three

proposed heuristics to the exhaustive search algorithm exe-

cution time. We notice that the proposed algorithms have

very similar execution times which are dominated by the

time needed to perform the matrix channel inversion (which

belongs to OðN3Þ). We can also observe that even for a rel-

atively small network with N ¼ 10, the exhaustive search

algorithm suffers from a very high computational com-

plexity. For N ¼ 10, the proposed heuristics allow a com-

plexity reduction of more than five orders of magnitude over

the exhaustive search. We also notice that as the value of

Cmax increases, the computational complexity of the

exhaustive search increases dramatically as the algorithm

has to explore a larger combinatorial space (e.g. when Cmax

goes from 2 to 3, the algorithm must consider in addition to

the combinations of clusters of two links, the combinations

of clusters of 2 and 3 links), whereas the complexity of the

proposed algorithms decreases.

7 Conclusion

In this paper, we proposed efficient heuristics for clustering

and power allocation in two-tier networks. We have con-

sidered a network where small cell base stations coexist
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and share the same frequency band with a macro cell. The

small cell base stations try to form clusters in order to

maximize an objective utility function. Two utility func-

tions were considered: (1) the overall sum rate of the net-

work and (2) the minimum data rate of the users. We have

formulated the problems involving the two utility functions

as optimization problems and discussed their computa-

tional complexity and hardness. Since the optimal solution

can be found only with a highly computationally complex

exhaustive search (for clustering) coupled with an NP-hard

optimization (for power allocation), we proposed three

heuristic algorithms which perform the clustering phase in

polynomial time and find suboptimal power allocation

using an iterative scheme. Simulation results show that the

proposed algorithms (especially the NLF heuristic) achieve

a good tradeoff between computational complexity and

performance (in terms of utility function maximization)

compared to the complex optimal solution.

In future work, we will design distributed algorithms for

clustering for the studied system model.

References

1. Andrews, J. (2013). Seven ways that HetNets are a cellular

paradigm shift. IEEE Communication Magazine, 51(3), 136–144.

2. Gesbert, D., Hanly, S., Huang, H., Shamai Shitz, S., Simeone, O.,

& Yu, W. (2010). Multi-cell MIMO cooperative networks: A new

look at interference. IEEE Journal on Selected Areas in Com-

munications, 28(9), 1380–1408.

3. Akyildiz, I., Lee, W.-Y., Vuran, M. C., & Mohanty, S. (2008). A

survey on spectrum management in cognitive radio networks.

IEEE Communications Magazine, 46(4), 40–48.

4. Yoo, T., & Goldsmith, A. (2006). On the optimality of multi-

antenna broadcast scheduling using zero-forcing beamforming.

IEEE Journal on Selected Areas in Communications, 24(3),

528–541.

5. Driouch, E., & Ajib, W. (2013). Downlink scheduling and

resource allocation for cognitive radio MIMO networks. IEEE

Transactions on Vehicular Technology, 62(8), 3875–3885.

6. Boccardi, F., & Huang, H. (2006). Zero-forcing precoding for the

MIMO broadcast channel under per-antenna power constraints. In

Proceedings of IEEE SPAWC’06.

7. Zhang, R. (2010). Cooperative multi-cell block diagonalization

with per-base-station power constraints. IEEE Journal on Selec-

ted Areas in Communications, 28(9), 1435–1445.
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