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Abstract Since energy efficiency, high bandwidth, and

low transmission delay are challenging issues in mobile

networks, due to resource constraints, there is a great

importance in designing of new communication methods.

In particular, lossless data compression may provide high

performance under constrained resources. In this paper we

present a novel on-line and entropy adaptive compression

scheme for streaming unbounded length inputs. The

scheme extends the window dictionary Lempel–Ziv com-

pression and is adaptive and tailored to compress on-line

non entropy stationary inputs. Specifically, the window

dictionary size is changed in an adaptive manner to fit the

current best compression rate for the input. On-line entropy

adaptive compression scheme (EAC), introduced and ana-

lyzed in this paper, examines all possible sliding window

sizes over the next input portion to choose the optimal

window size for this portion; a size that implies the best

compression ratio. The size found is then used in the actual

compression of this portion. We suggest an adaptive

encoding scheme, which optimizes the parameters block by

block, and base the compression performance on the

optimality proof of LZ77 when applied to blocks (Ziv in

IEEE Trans Inf Theory 55(5):1941–1944, 2009). This

adaptivity can be useful for many communication tasks. In

particular, providing efficient utilization of energy con-

suming wireless devices by data compression. Due to the

dynamic and non-uniform structure of multimedia data,

adaptive approaches for data processing are of special

interest. The EAC scheme was tested on different types of

files (docx, ppt, jpeg, xls) and over synthesized files that

were generated as segments of homogeneous Markov

Chains. Our experiments demonstrate that the EAC

scheme typically provides a higher compression ratio than

LZ77 does, when examined in the scope of on-line per-

block compression of transmitted (or compressed) files. We

propose techniques intended to control the adaptive on-line

compression process by estimating relative entropy

between two sequential blocks of data. This approach may

enhance performance of the mobile networks.

Keywords On-line compression � Wireless network �
Entropy � Compression ratio

1 Introduction

Energy efficiency is one of the most challenging issues in

multimedia communication due to wireless device resource

constraints, and the high requirements for high bandwidth,

and low transmission time. One of the most challenging

tasks for communication entities in distributed systems and
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mobile computer communication networks is the way

information is compressed. As the information is better

compressed, the bandwidth and energy used for commu-

nication are reduced and the performance of the distributed

system becomes more efficient. We seek for adaptive

compression schemes, applicable in the mobile environ-

ment that provide the best compression (and consequently

minimal usage of the battery power) for different and non-

uniform data flows.

Common strings are frequently used in mobile com-

munication and dictionary based lossless compression

techniques may be very efficient.

The sole traditional requirement for the optimality of

lossless data compression schemes is the stationary ergodic

nature of the information source. Nevertheless, due to the

wide deployment of multimedia networks, heterogeneous

ad-hoc network, and the wide range of communication

tasks, the efficient compression techniques of the dynamic

(non-stationary) sources are of currently special interest. In

particular, dynamic sources that are characterized by non-

stationary probability distribution and non-constant entropy

are the typical sources that transmit on-line multimedia

(voice, video) traffic. To the best of our knowledge, we

provide the first practical and efficient on-line adaptive

scheme that tracks the variable entropy rate of the source

and provides optimal compression of fixed-size data blocks

on-line without performing computationally and time

expensive preprocessing.

1.1 Related work

A universal coding scheme for sequential data compression

was first introduced in [1, 2]. Lempel and Ziv introduced a

compression algorithm defining a rule for parsing strings of

symbols from a finite alphabet into substrings, or words of

bounded length, and a coding scheme, which maps these

substrings sequentially into uniquely decipherable code-

words of fixed length over the same alphabet. It has been

demonstrated that as the sliding window size (equivalently,

the length of a training sequence) tends to infinity, the

compression ratio approaches the source entropy.

Two algorithms, based on incremental parsing, namely

LZ77 and LZ78, have been introduced and analyzed. The

main difference between LZ77 and LZ78 algorithms is that

LZ77 algorithm is based on a fixed dictionary size (or,

equivalently fixed memory size), while the dictionary size

of LZ78 algorithm may grow infinitely. The sliding win-

dow Lempel–Ziv algorithm LZ77 and its asymptotic opti-

mality were analyzed in [3–5]. As for non-asymptotic

coding for finite data streams, some theorems were derived

in [6]. The performance of the LZ78 and LZ77 algorithms is

studied without any initial assumption on the input. It is

demonstrated that the standard definition of optimal

compression does not take into account the performance of

compression algorithms when the input is a low entropy

string [7]. Moreover, there exist families of low entropy

strings which are not compressed optimally.

However, there is a great interest in on-line data com-

pression when, unlike the described above off-line meth-

ods, the only available information is the currently

processed block of data. Ziv has proven in [2] that the LZ77

universal compression of N-blocks is essentially optimal

for finite N-blocks. Hence, the asymptotically optimal data

compression algorithm LZ77 is also optimal when the data

block is of finite length.

Different research directions in improving energy effi-

ciency in wireless multimedia networks have been descri-

bed in [8]. The majority of compression algorithms

suitable for resource-constrained systems such as wireless

sensor networks and mobile devices are lossy. Analysis and

evaluations on energy efficiency in applying these com-

pression algorithms to resource-constrained mobile multi-

media transmission systems have been investigated.

Nevertheless, the text files were efficiently compressed

using the lossless Lempel–Ziv–Welch LZW compression

algorithm (which is a modification of the dictionary based

LZ78 algorithm). As a result of this experiment 50% of

energy has been saved than compared to transmitting raw

text files without compression.

Efficient coding techniques that are motivated by the

time-energy trade-off in message transmission between

mobile hosts and mobile support stations have been pro-

posed in [9]. The original approach for saving energy by

reducing the number of signals sent by the mobile host has

been introduced and analyzed. Assuming the synchro-

nization between the mobile host and the mobile support

station and that the mobile host sends only bits with value 1

and is silent while a bit value 0 should be sent, the energy

consuming modification of the dictionary based LZ78

compression algorithm has been proposed.

An on-line compression scheme for delay sensitive

wireless sensor networks has been introduced in [10]. The

proposed algorithm makes on-line decisions, whether to

compress a file or send it in the original non-compressed

form. The file compression is only performed when it can

improve the file transmission time. A Lempel–Ziv-Welch

LZW lossless compression algorithm (that belongs to the

family of the LZ algorithms) was adopted. The simulation

results in [10] reveal that compression may lead to a longer

overall delay under light traffic loads, while it can signif-

icantly reduce the delay under heavy traffic loads and

increase maximum throughput.

Variable-length coding combined with the Lempel–Ziv

technique, is proposed in [11] for reducing the size of large

messages. The new practical neural Markovian predictive

compression (NMPC) algorithm for obtaining lossless on-line
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compression has been designed and tested in [12]. NMPC

algorithm is basedon the bayesianneural networks (BNN) and

hidden Markov models (HMM). The experimental results

demonstrate thatNMPC algorithm performs best (even better

than the dictionary based Lempel–Ziv family algorithms)

when the input includes predictable statistical patterns that can

be learned by BNN and HMM. However, this approach

requires a significant amount of preprocessing.

A universal variable-length lossless compression algo-

rithm based on error correcting fountain codes has been

introduced in [13]. The proposed method is based on the

Belief Propagation algorithm in conjunction with the iter-

ative doping algorithm and the inverse Burrows-Wheeler

block sorting transformation. It demonstrates that the

compression scheme is effective for non-stationary sour-

ces. Nevertheless, unlike our EAC scheme, the method of

[13] totally relies on the source statistics.

However, as it has been shown in [14], ineffective

choice and application of data compression scheme can

cause a significant energy loss (instead of energy saving).

Hence, investigation of new approaches to data compres-

sion in mobile environment is a very important issue.

1.2 Our contribution

In this paper we present a novel On-line entropy adaptive

compression scheme (EAC) for streaming unbounded

length inputs, in which, in addition to our previous work

[15] we use decision making about the window dictionary

size optimization way by using so-called relative entropy

[16]. To compress data on-line, we proposed EAC

scheme based on the sliding window Lempel–Ziv algo-

rithm [1] to individual finite-length of non-overlapping B-

blocks of data, where B is the blocks length. We propose

techniques intended to control the adaptive on-line com-

pression process by estimation of relative entropy between

two sequential blocks of data. EAC is an on-line adaptive

scheme that tracks the variable entropy ratio of the source

and provides optimal compression of fixed-size data blocks

on-line without any computational overhead. Specifically,

the window dictionary size is changed in an adaptive

manner to fit the current best compression ratio for the

input. EAC examines all possible sliding window sizes over

the next input portion to choose the optimal window size

for this portion: a size that implies the best compression

ratio. The size found is then used in the actual compression

of this portion. EAC tracks the sliding window size nw
dynamically without explicit measurement of the source

entropy. The optimal or near optimal nw, is computed based

on the analysis of the buffered look ahead data, that is

permanently generated by the source. EAC computes the

optimal window size on-line given a predefined commu-

nication latency, or size of buffered data, which is

facilitated by a look ahead buffer in which the very next

portion of the read data is accumulated. We suggest an

adaptive encoding scheme, which optimizes the parameters

block by block, and base the compression performance on

the optimality proof of LZ77 when applied to blocks [17].

This adaptivity can be useful for many communication

tasks, in particular, in providing efficient utilization of

energy consuming wireless devices by data compression.

Due to the dynamic and non-uniform structure of multi-

media data, adaptive approach for data processing is of

special interest. EAC scheme was tested on different types

of files (docx, ppt, jpeg, xls) and over synthesized files that

were generated as segments of homogeneous Markov

Chains. Our experimental results demonstrate that the EAC

scheme typically provides a higher compression ratio than

LZ77 does, when examined in the scope of on-line per-

block compression of transmitted (or compressed) files.

Compared with the recently proposed schemes, the EAC

scheme has the following advantages.

1.2.1 Optimality of the compression ratio

Currently the best sliding window size for each individual

N-block, which implies the minimal codeword length, is

computed on-line and applied by the EAC scheme. Com-

pared with [18], in order to achieve the optimal compres-

sion, our scheme demands that the length of the stationary

component si, generated by the information source, is not

shorter than the optimal window size nwi
that yields the

entropy Hi of si. In order to compute the optimal sliding

window size nw, that satisfies the maximal compression

ratio, the value of nw grows exponentially; Each is twice

the size of the preceding. Hence, there are no redundant

bits in the binary representation of the encoded phrase

(codeword).

1.2.2 Robustness for the non-stationary sources

The sliding window size is changed in an adaptive manner

to always fit the file structure, while the current entropy of

the source may not been explicitly measured. The EAC

scheme effectively tracks any changes of data generated by

a random (possibly non stationary) source.

1.2.3 Low computational cost combined with fast

adaptivity rate

Unlike the dynamic Huffman coding and the NMPC

schemes [12, 19, 20], the EAC scheme does not need sig-

nificant preprocessing. Moreover, the compression per-

formed by the EAC scheme achieves the maximal

compression ratio since we adaptively track the window

size, and choose the best to compress the current buffered
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generated data. Unlike [10], the EAC scheme is performed

permanently without significant overhead of traffic mea-

surement and mathematical computations that are based on

a queuing model and the prediction of the overall network

delay.

1.2.4 Efficiency in case of fixed memory size

The memory size, kept at the encoder and the decoder

sides, is fixed. As a result, the EAC scheme is a practical

and efficient compression scheme that can be implemented

in a computer environment with a restricted memory. For

example, dynamic Huffman coding [19, 20] require an

exponentially large dictionary, in order to approach the

optimal compression possible for a given entropy.

1.2.5 Window size optimization process control

The proposed LZ77 per-block based data compression

algorithm for networks that perform under power con-

sumption/transmission delay constraints allows us to make

a decision about the window dictionary size optimization

way by using so-called relative entropy [16]. If two adja-

cent blocks have high relative entropy we may not spend

any resources for choice of optimal LZ77 window size.

According to [14] the proper compression of short files

enhances the performance of mobile networks. This can be

useful for different multimedia data with non-uniform

structures. In contrast to mentioned above modern

approaches to data compression conditioned energy/delay

overhead reduction, we consider a situation of rather small

compression ratio; when the compression may not reduce

significantly the cost of communication energy, whereas

the latency can increase as a result of a compression pro-

cedure. As a result, the possibility of decision making

about compression perspective can be rather useful.

The simulation results, presented in Sect. 4 demonstrate

that the EAC scheme can perform, in many cases, better

and achieves higher compression ratio on-line, compared

with the standard LZ77 compression scheme. Hence, the

EAC scheme may be plugged in other window based

lossless compression schemes (e.g., [10–12, 21]) in order to

increase the compression ratio and improve the overall

performance of a given compression algorithm.

1.3 Paper organization

Section 2 presents the settings describing the LZ77 dic-

tionary based compression scheme, which is the base for

the EAC scheme. The Entropy Adaptive Compression EAC

scheme is introduced and analyzed in Sect. 3. Discussion

and analysis of the experimental results, in particular the

comparison with recent results on data compression and

energy consumption in wireless networks appear in Sect. 4.

Finally, conclusions can be found in Sect. 5.

2 Preliminaries

Lossless data compression scheme, based on the dictionary

method, is the basis for our EAC scheme. The EAC

scheme is based on the sliding window Lempel–Ziv LZ77

algorithm that was proposed in [1] and further analyzed in

[4–6, 22]. In the LZ77 scheme the dictionary consists of

strings from the sliding window presented into recently

generated text. Let ðXk¼þ1
kk¼�1Þ be a stationary random pro-

cess with entropy H. ðXk¼þ1
kk¼�1Þ generates random strings

over finite alphabet A. Without loss of generality, let us

assume a binary case when A ¼ 0; 1f g.
The encoding of the sequence Xkf gNk¼1, where N is a

large integer, is performed as follows. Let nw be an integer

parameter, called the sliding window size. The values of nw
are restricted to powers of two values (as indexes in the

window are always represented by binary values). The first

nw symbols of Xnw
1 , called training sequence, are encoded

by the binary encoding algorithm [5] with no attempt for

compression (see below). The binary encoding scheme (or

mapping) e unambiguously encodes an integer L into a

binary string such that for any distinct integers L1 6¼ L2
eðL1Þ is not a prefix of eðL2Þ. Thus, the code is uniquely

decipherable. See [1] for detailed description of the LZ77

encoding-decoding process. The major benefit of the LZ77

compression algorithm is that it yields the ultimate com-

pression in the asymptotic case. Namely, it compresses a

data source according to the maximal compression ratio for

the given entropy, if the sliding window size nw and the

length of the sequence Xkf gNk¼1 both tend to infinity [5]. We

consider the non-asymptotic case, which is characterized

by the restricted memory size at the encoder and the

decoder sides. Since the lengths of the training sequence

and the sliding window size are both fixed, the optimal

ultimate compression (at the entropy rate) cannot be

achieved. Typically, authors consider that the mathematical

models of the LZ77 algorithm are parametrized by the

following: the size of sliding window and the maximal

length of phrases [5, 23], entropy of underlying process,

length of stationary segments with their entropy estima-

tions in the case of non-stationary process [18].

The Asymptotic Equipartition property Theorem, AET,

[24], is commonly used. AET is a consequence of the law

of large numbers and the ergodic theory [25]. AET states

the following: consider the series of ergodic sequences that

may be generated by a random source. Then, asymptoti-

cally, almost all sample paths of the stationary ergodic

process have the same entropy rate. This implies the
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existence of ‘‘typical’’ sequences. However, since the rate

of convergence towards the AET is not uniform over the

various ergodic stationary sources and may be very slow,

nw might be very large. Furthermore, it is not known how

the LZ family of algorithms perform in the case of small

sliding window sizes. In fact, as the sliding window is

considered as a ‘‘training sequence’’ for the information

source, it should be large enough when being compared

with the compressed data. Hence, it is interesting to per-

form experiments with real-life files. Note, that originally

the LZ77 algorithm provides estimation of the compression

ratio as a result of an entropy estimation, which is a

reciprocal of the compression ratio defined as

CR ¼ L0=LLZ , where L0 and LLZ are the lengths of the

original and compressed file, respectively.

The non-asymptotic coding and limitations on the slid-

ing window size were derived firstly in [4, 6] for lossless

data compression algorithms with fixed statistical side

information while the training sequence is not large

enough. The converse and coding theorems, that state the

relation between entropy of the source and corresponding

sliding window size (training sequence length), were

derived. It was demonstrated (Theorem 3.1) that if the

sliding window size nw is smaller than 2lðH��Þ, where H is

the entropy of the source, l is a large enough codeword

length, and � is arbitrarily small, then there exists a number

of incompressible sources. Nevertheless, a compression

that is close to the optimal for a given entropy is possible if

nw � 2lðHþ�Þ for sufficiently large l and arbitrarily small �.

As a matter of fact, the stationary sources that generate

strings with a constant entropy, were treated in [4, 6].

Nevertheless, in these papers the sliding window size is

fixed and determined by the constant entropy of the

stochastic source.

In our scope, the information source is not a stationary

source, therefore the entropy of its input is, in essence, a

function of time. It is known that if the entropy is fixed,

then the original sliding window Lempel–Ziv LZ77 algo-

rithm converges to it [5]. The EAC scheme is intended to

bound the difference between the current window size we

work with, compared to the optimal one, had we known the

‘‘instantaneous’’ entropy rate. The following complexity

considerations regarding the sliding window size should be

taken into account. On the one hand, a smaller window size

leads to a more efficient compression achieved by the

shorter codeword length. On the other hand, as nw becomes

larger, the longer are the strings that may be compressed

efficiently, and the number of codewords is lower. Nev-

ertheless, as nw becomes larger, the number of incom-

pressible phrases (that are shorter than log nw) becomes

larger.

3 Description of the EAC scheme

Let B denote the number of look ahead (LA) buffered bits.

The optimal window size nw is computed for encoding

(compression) of any portion of B bits of the whole file. B

determines the latency, and within the compression and

transmission of B bits nw is not changed. The computation

of the optimal window size nw is based on the analysis of the

dictionary that consists of the previously sent data, and on

comparing the compression ratio in the consequently

decreasing windows. Since the encoder E and the decoderD

are not synchronized, E has to update D with the value of

nw, optimized for the compression of the current portion of

the (look ahead) buffered B bits.

The trade-off between the possible values of B should be

taken into consideration. On the one hand, small B leads to

a small transmission delay. Nevertheless, the value of nw is

not stable as we compute it over a very small part of the

entire file. On the other hand, large B implies a large

transmission delay. Yet, the computed optimal nw is more

stable.

Upon reception of B bits, generated by the source, the

encoder E computes the optimal window size N. The initial

window N0 is used as a pyramid base for testing all pos-

sible smaller windows. The test stage for the current por-

tion of size B bits is performed by trying all windows of

sizes N0=2
i for every 0; . . .; logN0. The EAC algorithm

starts using a dictionary of N0=2
i bits from the previously

received and compressed B bits, and then shifts the win-

dow, which is also of size N0=2
i until the algorithm is done

with the current portion of B bits (lines 8–10, 14-29). The

total length of each encoded phrase is composed from the

comma free binary encoding of its length Li (denoted by

eðLiÞ), and the binary encoding of the corresponding index

mi [6]. The total length of the compressed string determines

the redundancy that has been removed from the original

uncompressed B- bits string. The average compression

ratio in the i� th window is CRi ¼ BP
eðLÞþlog nwiþlogðiþ1Þ

¼ BP
eðLÞþiþlogðiþ1Þ, determining the average compression

quality in each i� th window. The window size N ¼ nwi
,

that satisfies the shortest length of the compressed string

(and corresponding maximal compression ratio), is deter-

mined as the current optimal size (lines 30–33). The cur-

rent portion of B bits is compressed using the optimal

N and sent to D (line 10). If the window size has been

updated, its new value is inserted into the transmitted

string.

The strictly on-line implementation of the EAC

scheme with the negligible loss in compression quality is

also possible. In the case of the hard real time system, when
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there is no access to the previous data (history) at the

encoder E or the decoder D sides, the EAC scheme may be

implemented strictly on-line, by the consequent exponen-

tial increase of the sliding window. Nevertheless, a certain

loss in compression quality cannot be avoided. Assume that

the information source is a dynamic source [18] that gen-

erates sequential stationary strings, each characterized by a

distinct entropy, and let s1 and s2 be two such strings. Each

string si; i ¼ 1; 2 is characterized by its constant entropy Hi

and corresponding optimal window size nwi
. It should be

reiterated, that the source entropy is unknown. In the fol-

lowing example, we explain the change in the window size

for two interesting cases.

3.1 The EAC scheme with B-bit delay

The detailed description of the scheme is presented in

Fig. 1. Let the information source generate a random

(possibly non-stationary) finite length string. Let the initial

sliding window size N0 ¼ nw0
be set during the training

stage as the maximum possible window size, based on a

certain training sequence by applying the original LZ77

algorithm. The first nw0
bits of the initial window from the

input are sent from E to D (by agreed upon efficient

algorithm (e.g., LZ77)), (lines 2–8).

Case 1: H2 [H1. In this case the low entropy string s1
changes to the high entropy string s2, and the sliding

window size should be increased by multiplying it by 2k for

a certain integer k[ 0. E cannot encode phrases immedi-

ately in the optimal nw2
since E and D cannot return to the

previous bits of the input, necessarily for decoding received

strings using nw. In such a way a loss in compression

quality occurs. E continues (non-optimally) encoding using

the previous small window nw1
. Nevertheless, in order to

increase the encoding quality, E doubles its window size in

a slow start fashion, starting from nw1
, as soon as the

decoder D receives the number of bits, required for

decoding using the larger window. Therefore, the conse-

quent window sizes, used by E and D simultaneously, are

2nw1
::2knw1

.

Case 2: H2\H1. In this case, the size nw2
of the newly

computed optimal window is smaller than the current

window size nw1
, namely nw2

¼ 2�snw1
for a certain s[ 1.

In this case, the decoder D has the required number of bits

in its history and the new optimal window nw2
is contained

in the previous (larger) window nw1
. Hence, there is no loss

in compression quality in the encoding/decoding

procedure.

In case of strictly on-line implementation of the EAC

scheme, the minimal loss in the compression quality occurs

when the source entropy is increased from H1 to

H2;H1 �H2 (Case 1). The loss in bits is estimated as

ð1� H2Þ � l. Here
the term 1� H2 is the loss of optimality in compression

for a single bit, and l is the number of bits in the non-

optimally compressed sample. Nevertheless, there is no

loss in the compression quality in Case 2 when the source

entropy decreases.

1: EAC scheme for encoder E
2: Loop over whole file for each portion of B bits
3: int B
4: /* number of look ahead buffered bits respecting the

maximal allowed latency */
5: int N0 initial window size
6: int Nprev window size optimal for compression of the

previous portion of B bits
7: /* Bootstrap stage – establishing the first dictionary

*/
8: Compress the first N0 bits by agreed upon efficient

algorithm (e.g., LZ77) and send to decoder D
9: Upon the arrival of the next B bits of the (streaming)

file
10: TestCompress(B, N0, Output)
11: Send Output to decoder D
12:
13:
14: Procedure TestCompress(LA, PB, Output)
15: /* Procedure TestCompress: search for the optimal

window size N ≤ PB
16: for the portion of LA bits from input/*
17: Input:
18: int LA length in bits of InputString for compression
19: N0 = PB initial window size (pyramid base)
20: Perform LZ77 compression of LA bits using the last

N0 bits of previous LA
21: as the dictionary
22: CompressedString = Output
23: /* CompressedString – LA bits, compressed in opti-

mal window */
24: Compute A – length of CompressedString in bits
25: for int i = 1 .. log PB
26: Perform LZ77 compression of LA bits using the

last PB/2i bits of previous LA
27: as the dictionary and
28: Compute length Li of string CompressedStringi
29: using window of size nwi = PB/2i bits
30: N = PB
31: /* N optimal window size for LA bits */
32: if Li < A
33: Set A = Li, N = nwi , CompressedString =

CompressedStringi
34: if N = Nprev

35: Output = (N, CompressedString)

Fig. 1 Entropy adaptive compression scheme
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4 Analysis and experimental results

4.1 Experimental comparison of LZ77 versus EAC

The EAC scheme was tested with different real-life files of

different types (docx, ppt, jpeg, xls), and some artificial

ones generated as segments of homogeneous Markov

Chains [15]. As the maximal possible LZ77 sliding window

size N0 must not be larger than the size of a compressed

file, we use the pyramid base N0 for each B bits segment

equal to B (N0 ¼ B). Figures 2 and 3 demonstrate that the

EAC scheme may provide a compression ratio higher,

compared to the LZ77 algorithm, for the on-line per-block

compression of the transmitted files.

Let us summarize the current principal theoretical

results regarding the compression of a file by the LZ77

algorithm, applied in the case of sequential blocks of the

entire file.

Ziv showed in [17] that the LZ77 algorithm is

asymptotically optimal when applied on-line to consecu-

tive strings of length B of M blocks, as M tends to

infinity. It means that if the LZ77 algorithm is applied to

each consecutive block, the compression at entropy rate is

achieved asymptotically if the number of blocks M is very

large. As the compression ratio of encoding of any

ergodic random sequence is lower bounded by its entropy,

we assume the optimal compression compared to the

methods that do not use any a priory information about

probabilistic distribution of the sequences. It is essential

that the influence of the sliding window size on the

compression ratio is not considered in [17], as the issue

studied is whether it is possible to estimate the entropy

exactly using only individual B-blocks. This means that

the sliding window size of the LZ77-algorithm in [17] is

bounded by the value of B.

In fact, [4] also considers some issues of LZ77 encoding

in the cases of finite sequences, with the sliding window nw
of bounded size. The assumptions of [4] and [17] are

similar in a sense that both of them deal with the fixed case;

as a finite sequence of size N in [17] means that the sliding

window, used by the LZ77 algorithm in [17], cannot be

larger than B. Therefore, these theoretical results demon-

strate that our practical scheme can provide optimal com-

pression- like LZ77 algorithm, if B �M is very large, where

M denotes the number of B-bit blocks, and B is larger than

some threshold value [17]. More precisely, it means that at

least for some sets of sequences, an essentially optimal

algorithm allows for a rapid convergence to the asymptotic

complexity, if the length of the string is exponentially

(more than B1�� ) larger than a length for which no

effective compression is possible by any lossless com-

pression algorithm. Here �[ 0 is an arbitrary small num-

ber, such that �\\ð1� kÞ logA (i.e., the compression

ratio achieved for each B-block of a infinite sequence X is

smaller than reciprocal of its entropy H(X)). This means

that for any given file, characterized by its entropy H and

by a parameter 0\k\1 such that H\k logA, there exists a

threshold value of file size (namely, B0 �B1�� for less of

which it is impossible to compress it by any data com-

pression algorithm).

Fig. 2 CR versus window/

block size. File size is 10 Mbit
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Generally speaking, an empirical entropy HBðNÞ, in the

theoretical framework of [4], determines the compression

ratio of a finite random discrete sequence for non-over-

lapping B-bit blocks that appear in a sequence of the length

B �M bits [17], as this quantity is similar to the classical

definition of the empirical entropy of B-blocks in an indi-

vidual sequence of length B �M [17].

The following parameters that affect the compression

ratio are considered in our experiments: estimation of

empirical entropy for the investigated file, values of block

size B, and pyramid base (maximal possible sliding window

size N). Note, that the notion of ‘‘compression ratio’’ in [4]

means the smallest number of bits per letter that can be

asymptotically achieved by any B-bits block data-com-

pression scheme for a random sequence X, generated by a

random information source. Let us consider that X is char-

acterized by a stationary probability measure P. Then,

according to [4], it is possible to represent the mathematical

expectation of the compression ratio of the compressed file

by averaging over sliding windows as

CR ¼ L
P

z2Al ProbðXl
1 ¼ zÞLðz=x0Þ ;

where x0 ¼ Anw ; z ¼ Al are the sets of phrases among whole

elements of original file of the fixed size (modeled as a

string Xl
1) and the sliding window of size nw over alphabet,

L is the length of LZ77 code of the string z. Note that below

we consider the compression ratio as CR ¼ L0=LLZ , where

L0 is the length of the original file, LLZ is the size of the

compressed file. It can be easily seen that in these terms the

compression ratio CR is equal to

CR ¼ L0

B
P

j¼1::
L0
B

1=CRj

� � ;

where B is the size of the portion of bits to be compressed

(Sect. 3), which we consider as a power two, j ¼ 1::L0=B.

Let us use the estimation of the compression ratio for

each of B-block from [5]. Since our ‘‘pyramid based’’ EAC

algorithm (Sect. 3) computes the optimal window size for

each B portion by a sequential decrement of the initial

maximal possible nw value, the enhancement in the com-

pression quality can be achieved by the appropriate com-

putation of the window size, which is optimal for the

current portion of B bits. In order to fairly compare the

EAC and LZ77 algorithms, the fixed window size nw, used

by the LZ77 algorithm, is equal to the maximal window

size (pyramid base) applied in our scheme. Figures 2 and 3

demonstrate the impact of the different mentioned above

parameters on the compression ratio of the EAC scheme

(compared with the LZ77 algorithm).

As it was mentioned above, the analysis must take into

account some entropy-like estimation of the information

sources. The model of the information source is generated

correspondingly to the sequences/files, computed by theo-

retic or empirical probabilistic measures of the sources. As

the empirical measures are rather sophisticated, we may

estimate informational properties of the files by the

approximate formula

Fig. 3 CR versus window/

block size. File size is 32 K
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Hnw;k ¼
1

k

Xk

i¼1

Lnwi
log nw

� ��1

for empirical entropy Hnw;k for a B-block, where k is the

number of matches for a given B-block, where nw is the

sliding window size, chosen for a given B-block by the

EAC algorithm, i is the current position in the block [17].

That is the quantity lognw
Lnw
i

can be used as an entropy

estimator.

As the various lengths of the longest matches may vary

in a hundred times depending on window /block sizes, the

average value of various match-lengths Lnwi , taken at dif-

ferent positions i, would be more reasonable [5, 26]. That

is we will use EðLÞ=Eðlog nwÞ, where E(L) is the average

longest match over all blocks, and EðlogðnwÞÞ is the

average size of the sliding window. The Figs. 2 and 3

demonstrate that the larger file size is, the closer the

compression ratio of the EAC and the LZ77 algorithms.

This is the logical consequence of the expounded above

asymptotic property theorem for LZ compression for B-

block sequences [17]. A small improvement (CR ¼ 1:29 vs

CR ¼ 1:26, Fig. 2) of the EAC scheme for rather large

values of blocks is a result of increasing the lengths of the

longest matches, which leads decreasing empirical entropy,

and correspondingly, increasing the compression ratio [22].

Besides, the EAC scheme can provide higher compression

ratio for rather short sequences (Fig. 3), as the asymptotic

properties of theorem [17] are still not satisfied for such file

sizes by using LZ77. The proper compression for rather

small files is very important for enhancing performance of

mobile networks [14]. If an original file is large and

compression factor is high, compression by any LZ77

based scheme can save energy. However, if the input file is

small, compression factor is smaller due to the training

phase.

4.2 Control of the adaptive on-line compression

process by estimation of relative entropy

Following [27], the effectiveness of the window based

compression may be described by the probability that

dictionary substrings are contained in the current portion of

B bits.

When the sliding window size nw in EAC (for any B

potion) is chosen by the compression criterion, we assume

that the portion of the file compressed by using the sliding

window, which is a part of the previously compressed

portion (Fig. 1) and has almost the same distribution of the

longest matches. In general, the optimal window size

obtained for the previous portion B1 of size B, might not be

optimal for the next B2 portion, which uses the previous

window as a dictionary [28]. This ‘‘non-optimality’’ means

that the average number of bits for each symbol is larger

than it can be determined by the Shannon entropy. As a

result, the window size optimal for the previous B1 portion

might non be optimal for the next B2-portion.

Let us consider the following problem: Given a set of

training samples from a certain domain, the goal is to

compress as accurately as possible new sequences from the

same domain. Then the difference between the computed

compression ratio and the optimal compression ratio

determined by the Shannon Entropy (or equivalently,

asymptotic LZ77 solution) may be characterized as a fol-

lowing phenomenon. Let us assume that the distribution P

of a source which emitted the data (Look Ahead LA) to be

compressed is unknown. Moreover, ‘‘training sequence’’ is

distributed according to the certain distribution Q. As a

result, the sliding window used to compress LA bits is

optimal for the data distributed according to the distribu-

tion Q. The extra loss in compression quality beyond the

entropy (due to the use of Q instead of P) is termed

redundancy and is determined by the n� th order Kull-

back-Leibler (KL) divergence (relative entropy) RE [28]:

REðnwjjB2Þ ¼ E �P1
B2
log

P1
nw

P1
B2

� ð1� P1
B2
Þ log

1� P1
nw

1� P1
B2

 !

where nw is the previous sliding window size in the B1-bit

portion (used as a window), B2 is the next portion (Fig. 1).

P1
B,P

1
nw

are the probabilities of ‘‘one’’ in the corresponding

portions, E means the averaging. RE determines the extra

bits per symbol (over the entropy rate) when compressing a

sequence distributed according to the distribution Q with a

probability measure P.

Table 1 demonstrates the estimation results for the

average relative entropy metric RE (overall B-portions) for

four files of the same size 32K. The empirical entropy of

these files is different. Assume that the file source is a

Bernoulli process with given probabilities for ‘‘zeroes’’ and

‘‘ones’’. Next, assume that the pyramid base N is equal to

the portion size B (Fig. 1). Column EE (entropy estimation)

determines the range of the entropy among the portions

of size B, relative to the EAC compression ratio. The con-

fidence interval is determined as confinterval ¼
½confrangemin; confrangemax�, where: confrangemin ¼
ðP1

B � P1
BÞ=P1

B

�
�

�
�� 100% and confrangemax ¼ P1

B � Pr
BÞ=

�
�

Pr
B100j � 100% are left and right boundaries, respectively,

of confidence interval of the probability P1
B as the Bernoulli

trial success probability (of ‘‘ones’’) among all B-portions,

relatively to the left (l) and the right (r) bounds of the

confidence interval [16]. In order to evaluate the correctness

of the compression decision, we must evaluate how the

empirical model is close to the theoretical one. For this

purpose, we verified a confidence interval of Bernoulli trial
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probability P1
B estimated as a fraction of ‘‘ones’’ in the

corresponding portions. In case the confidence interval is

rather small, we may consider that our assumption on the

Bernoulli distribution for the portion distribution is rather

suitable. From Table 1 we can see that the confidence

intervals do not exceed 32 % with probability 0.99 (confi-

dence level is a ¼ 0:01) [16]. The results of Table 1

demonstrate that the increasing of the relative entropy

means the decreased compression ratio for each file. In

essence, the deterioration in the compression ratio is caused

by the extra bits per symbol wasted due to the different

probabilistic measures of two random sequences. The

relationship between the relative entropy RE and the com-

pression ratio CR for different files is more sophisticated, as

it depends on the file’s entropy (the less entropy the more

possible compression ratio).

In essence, the relative entropy can be used as a metric to

decide about reason-ability to use the pyramid based opti-

mization of the current B2-bit portion. Based on the esti-

mation of the relative entropy RE, data transmission delay

may be significantly reduced. Indeed, the computational

time complexity of the LZ77 for a binary file of sizem bits is

km for a certain integer k [29]. Many experiments demon-

strate [29] that the estimation complexity of the relative

entropy for k[ 10 will be exactly m. We may estimate the

relative entropy RE regarding the window size nw, optimal

for the previous B1 portion, and the current Look Ahead B2

(Fig. 1, lines 14–35). Hence, decision making is in reason-

ability to continue the optimization process (Fig. 1, lines 14–

35), dependent on the estimated RE value. For example,

during EAC execution with portion size B ¼ 4096 (file 4),

the relative entropy of each portion (among five portions) is

equal to RE ¼ 0:3506; 0:7197; 0:0247; 1:9768; 1:5468, and

the maximal compression ratio for the corresponding por-

tion, as computed by the EAC scheme is CR ¼
1:5182; 0:8519; 1.3040, 0.9390, 1.0010 . The more the

relative entropy (vector RE for each successive portion), the

smaller the local compression ratio for this portion. If the

relative entropy RE of a current portion is high (in compar-

ison with RE of other portions), we may not provide proper

compression.

For small compression ratio, the compression may not

reduce significantly the cost of communication energy,

whereas the latency can increase as a result of a com-

pression procedure [30, 31]. As a result, the possibility of

decision making about compression perspective can be

rather useful.

5 Conclusion

The LZ77 technique may be effective if the statistics of the

dictionary is correct for the remaining encoded sequence

(which will asymptotically dominate). As a rule, since the

optimal choice of the nw is less essential, this requirement

cannot be satisfied for the non-stationary process case. In

contrast, the EAC scheme, as suggested in this paper,

performs the LZ77 window-based encoding only for a

small B portion of the file. Hence, the non-stationary nature

of the data affects the compression algorithm, taking into

account this aspect is also a factor for the increase of the

compression ratio of the EAC scheme. As a result, the EAC

scheme can provide a high compression ratio (compared

with the LZ77 algorithm), especially for rather short

sequences (Fig. 3).

Using a large window size nw, the estimators are more

likely to capture the longer-term trends in the data,

although a large window size will give estimates with high

variance. Based on [5], the window size is a factor of the

LZ77 overhead. Nevertheless, the larger the fraction of the

analyzed compressed sequence (that is used as a dic-

tionary), the greater the probability of finding the longest

match in the remaining file. This probability can be

increased by coding optimization for the dictionary part (by

testing the sliding window sizes in order to determine its

optimal value), while the rest of the file is encoded based

on the dictionary. This technique may be effective if the

statistics of the dictionary is correct for the rest of encoded

sequence (which will asymptotically dominate). This

requirement cannot be satisfied for the non-stationary

process. In contrast, the EAC scheme performs the LZ77

Table 1 Relationship between

Relative Entropy RE and

Compression Ratio CR

File Size B CR RE Confrangeð%Þ RE range EE range

1 32 K 4096 1.65 0.52 21 0.53–0.54 0.83–0.91

2048 1.972 0.35 29 0.345–0.355

2 4096 1.73 0.6 20 0.61–0.62 0.77–0.98

2048 2.2 0.41 22 0.41–0.42

3 4096 3.7 3.72 3.27 0.61–0.62 0.77–0.98

2048 4.4 4.95 1.44 0.41–0.42

4 4096 1.042 0.78 30 0.77–0.79 0.93–0.99

2048 1.184 0.41 32 0.39–0.41
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window-based encoding only for a small B portion of the

file.
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