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Abstract TCP Vegas performance can be improved since

its rate-based congestion control mechanism could proac-

tively avoid possible congestion and packet losses in multi-

hop ad hoc networks. Nevertheless, Vegas cannot make full

advantage of available bandwidth to transmit packets since

incorrect bandwidth estimates may occur due to frequent

topology changes caused by node mobility. This paper

proposes an improved TCP Vegas based on the grey pre-

diction theory, named TCP-Gvegas, for multi-hop ad hoc

networks, which has the capability of prediction and self-

adaption, as well as three enhanced aspects in the phase of

congestion avoidance. The lower layers’ parameters are

considered in the throughput model to improve the accu-

racy of theoretical throughput. The prediction of future

throughput based on grey prediction is used to promote the

online control. The optimal exploration method based on

Q-Learning and Round Trip Time quantizer are applied to

search for the more reasonable changing size of congestion

window. Besides, the convergence analysis of grey pre-

diction by using the Lyapunov’s second method proves that

a shorter input data length of prediction implies a faster

convergence rate. The simulation results show that the

TCP-Gvegas achieves a substantially higher throughput

and lower delay than Vegas in multi-hop ad hoc networks.

Keywords TCP-Gvegas � Cross throughput model � Grey

prediction

1 Introduction

Transmission control protocol (TCP) in multi-hop ad hoc

networks has recently attracted substantial research atten-

tions [1–3]. TCP-Vegas is a typical enhanced TCP that uses

a rate-based congestion control mechanism [4]. Generally

speaking, TCP-Vegas has good performance in ad hoc

networks for three reasons. First, the transmission rate is

adjusted carefully by comparing with the estimated rate.

Secondly, Vegas halves the congestion window (cwnd)

size by identifying whether the retransmission packets

belong to the current stage of congestion control. Thirdly, it

emphasizes packet delay rather than packet loss as the

criterion to determine the transmission rate. However, it

only calculates the expected throughput using the round-

trip time (RTT), which may not characterize the real

throughput of the whole network due to the overlook of

lower layer parameters. Besides, Vegas changes its current

cwnd value based on the previous network situation, which

means that this mechanism incurs latency to the compu-

tation and thus leads to the loss of accuracies and adapta-

tions in rapidly changing environments.

Due to the potential improvements in performance, mul-

tiple studies have been made to cope with the problems of

Vegas in wireless networks. An improved mechanism

Vegas-W was proposed in [5], in which the cwnd is extended

by a fraction with a rate control timer in the sending process,

and the probing schemes have been changed to increase the

window upon receiving more than one acknowledgment

(ACK). However, the interaction analysis between TCP and

lower protocols is needed for further improvement. Cheng

etc. presented a threshold control mechanism with cross-

layer response approach in [6] for improving TCP Vegas

performance in IEEE 802.11 wireless networks. A model [7]

based bandwidth estimation algorithm for 802.11 TCP data
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transmissions was developed by using feedback information

from receivers.

Although these methods attained some improvements, all

of them still have the inherent weaknesses of conventional

TCP that stems from deferred calculations. Specifically, the

calculations only reflect the past network conditions rather

than the present and future ones, which makes them unsuit-

able for rapid changing environments. In this paper, we are

inspired from the prediction algorithm [8], where the available

duration of links is predicted to construct an efficient topology.

In this paper, we propose an improved TCP version

based on TCP Vegas and Grey prediction named Gvegas,

to deal with the problem of real throughput prediction and

online congestion control. In addition, unlike other typical

TCP variants, our scheme only needs revisions at the

sender without involving intermediate nodes. To our best

knowledge, this is the first work to consider both prediction

and decision in congestion avoidance (CA) stage by pre-

dicting network condition before collision. Specifically,

our contributions are summarized as follows:

In order to make the basis of congestion control more

precisely for online congestion control in multihop ad hoc

networks, we improve the theoretical and actual throughput

model with cross-layer information sharing and grey pre-

diction, respectively.

We model the congestion control decision as a MDP to

choose the congestion window changing factor more

effectively and adaptively. In addition, the action is

quantified according to network state with round trip time.

We provide the performance analytic models of the

improved congestion control over TCP Vegas, and utilize

simulations and theoretical analysis to demonstrate the

improved scheme can significantly promote the TCP per-

formance in terms of both throughput and delay.

The remainder of this paper is organized as follows. We

briefly describe some related works in Sect. 2. The main idea

of the improved mechanism is introduced in Sect. 3. Section 4

formulates the cross layer model of expected throughput.

Section 5 introduces the actual throughput prediction based

on grey theory. Section 6 describes the RTT quantification

and the exploration of cwnd changes based on Q-learning, in

addition, the detailed algorithm and corresponding complex-

ity analysis of space and time are also discussed. Section 7

numerically examines the Gvegas’s performance along with

the Vegas and Newreno. Finally, Sect. 8 provides the con-

clusions of this paper.

2 Related works

TCP is the most widely applied transport layer protocol

for reliable data transmission. Although there are many

TCP versions with various congestion control schemes for

different environments, such as TCP Newreno, TCP

Vegas etc., some researchers have demonstrated that TCP

Vegas can achieve higher throughput, fewer retransmis-

sions and less delay than Newreno [9], because Vegas

implements a more precise congestion avoidance mecha-

nism based on packet delay rather than the packet loss.

However, Vegas fails to make full use of available

bandwidth to transmit packets since incorrect bandwidth

estimates may occur due to unstable conditions in multi-

hop wireless networks.

To detect congestion more reliably, several TCP

throughput models have been proposed [10–12]. Samios

et al. [10] developed a model to estimate the throughput of

a Vegas flow as a function of packet loss rate, RTT, and

protocol parameters. Similarly, a steady-state throughput of

TCP Newreno was transferred as a function of RTT and

loss behavior in [11]. The simulation results in [10, 11]

show that TCP throughput model combining both packet

loss and delay can achieve higher throughput. Furthermore,

the throughput model of Vegas in [10] was extended by

[12], which combined with the TCP segment information

and TCP acknowledgement (ACK) to maximize the TCP

throughput. Although these researches achieve the TCP

performance improvements, they don’t fully concern the

performance improvement from congestion control in

wireless ad hoc environments.

Congestion control is another most significant way to

improve TCP performance in wireless ad hoc networks

[13]. An intelligent congestion control technique was

proposed in [14] by using a neural network (NN) to regu-

late reliable data traffic in ad hoc wireless mesh networks.

Badarla et al. [15] mainly concentrated on adapting to the

changing network conditions and appropriately updating

the congestion window by learning algorithm without

relying on any network feedbacks. The above congestion

control methods obtain some enhancements to some

degree, however, they seldom explicitly consider the cross-

layer network information to improve TCP performance.

Cross-layer designs allow information sharing among

different layers in order to improve the functionality [13],

in which some lower parameters could be considered when

performing the cross layer design. Cheng et al. [6] pro-

posed a congestion control scheme with dynamic threshold

and cross layer response, in which the network perfor-

mance was improved by the adaptation of congestion

window size in accordance with the estimated buffer

length. In [16], some typical cross layer factors were

analyzed and modeled, and the TCP optimization was

formulated as a Markov Decision Process (MDP). Fur-

thermore, Xie et al. [17] presented a TCP pacing protocol

by cross-layer measurement and analysis on the lower

bound of the contention window to reduce packet bursti-

ness in wireless networks.
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In addition to the above schemes, TCP performance

could be improved by status prediction through proba-

bilistic approaches. For example, prediction strategies such

as increasing the hold time of the topology for static sce-

nario or increasing the HELLO generation rate for mobile

scenario were proposed to promote the TCP efficiency

[18]. Different from [18], congestion window was adjusted

based on the estimation of network state by using the

feedback information from the receiver [19].

Although, there are various cross-layer improved

researches to improve the performance of multi-hop wire-

less networks, most of them always try to solve the basis of

congestion and its control decision separately and make

congestion control decision corresponding to past conges-

tion control status which cannot really reflect the envi-

ronmental conditions on time. In order to achieve overall

and online optimization, this paper will promote the TCP

performance towards the direction of prediction and joint

cross-layer optimization.

3 Gvegas formulation

The Vegas mechanism uses the difference presented by

(1) [4] between the expected (v_expect_) and actual

(v_actual_) throughput to decide how to change cwnd:

diff ¼ v expect � v actual

¼ WindowSize

BaseRTT
� SentData

ActualRTT

� �
� BaseRTT ð1Þ

Specifically, the cwnd is either changed by adding or

subtracting one packet or remains unchanged according to

diff as follows:

cwnd ¼
cwnd þ 1; diff\v a
cwnd � 1; diff [ v b
unchanged; other

8<
: ð2Þ

where v a and v b are corresponding threshold values [4].

Gvegas has two parts as shown in Fig. 1. The first

one, which contains expected throughput, grey prediction

and residual modification model, makes the congestion

control more accurate. The other one, which comprises

quantification and reinforcement learning model, makes

the cwnd adaptive to network changes. In the first part,

v_expect_ and v_actual_ in (1) are replaced with

expected and predicted values, respectively. The expec-

ted model uses cross-layer parameters to obtain

throughput, and the prediction uses grey theory to predict

the future throughput. In the second part, we quantify

RTT into cwnd changing size, and a Q-learning algo-

rithm is used to explore the optimal changing size for

different cwnd phases.

3.1 Overview of grey prediction

Grey theory is a system that focuses on the uncertainty

problems of small samples and poor information [20] which

consists of two parts: grey prediction and grey decision. A

grey system represents the cognitive degree for environment

data and is widely used due to its simple and information

imperfect characteristics. Typically, there are five categories

of grey prediction including: (1) time series forecasting, (2)

calamity forecasting, (3) seasonal calamity forecasting, (4)

topological forecasting and (5) systematic forecasting [21].

GM(1,1) model [22, 23], which is one of the most

widely used grey prediction models, can weaken the

stochastic fluctuation in original series by accumulated

generating operation (AGO), so as to dig out its inherent

law, and build a one order different equation model to

describe the law. The model gets the undecided coefficients

of the one order grey differential equation by using least

squares estimation and obtains the final prediction value by

using inverse accumulated generating operation.

3.2 Overview of Q-learning

Reinforcement learning (RL) [24] is a learning system

aiming to maximize a long-term performance measure with

typical scenario shown in Fig. 2. In RL model, one agent

can interact with its environment autonomously: it

observes environment state in S, chooses one available

action from A, and receives one reward in R from envi-

ronment. The state-action pair in S ! A is a policy p�

which aims to maximize the total reward Vp stð Þ ¼
P1
t¼0

ctrt,

where the rt is a received reward.

Q-learning is a widely used RL algorithm [25]. In real

applications, due to existence of uncertainty, agent cannot

forecast the reward and next state when an action is per-

formed. This will result in that the agent cannot obtain

perfect p� by solving Vp stð Þ. Therefore, Q-learning uses

Qp s; að Þ to get the best policy: Vp� sð Þ ¼ max
a2A

Qp� s; að Þ and

the renewal of Q value is as follows:

Qtþ1 s; að Þ ¼ Qt s; að Þ þ a rt þ cmax
a0

Qt s
0; a0ð Þ � Qt s; að Þ

� �

ð3Þ

where a is the learning rate denoted as a ¼ 1
1þvisitðs;aÞ,

visit(s,a) is the times of one station-action pair has been

visited. s0 and a0 are the next state and action which belong

to the set of S and A, respectively. Q-learning typically

selects the ‘‘greedy’’ action a which has the highest Q(s,a)

value with a probability e (approximating 1) and selects a

random action with probability 1-e.
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4 Cross-layer model of TCP expected throughput

For simplicity of analysis, we assume that the main con-

sideration of the throughput model involves the Transport

Layer (TL) and Media Access Control (MAC) sub-layer.

4.1 TCP Vegas throughput model

A typical stochastic model for the steady-state throughput

of TCP Vegas has been modeled by [10], as shown in (4),

where ThVegas is the throughput received, n is the expected

number of consecutive Loss Free Periods (LFP) that occurs

between one slow start (SS) and another slow start period,

p denotes the loss event rate, W0 is the average of cwnd

during stable backlog state, TTO is the average duration of

first timeout in a series of timeouts, and RTT is the average

RTT.

ThVegas ¼
nþ 1ð Þ 1�p

p
þW0

� �
þ 2p 2�pð Þ

1�pð Þ2

NSS2TORTT þ DTO

ð4Þ

where NSS2TO and DTO are represented by Eqs. (5) and (6),

respectively

NSS2TO ¼ 2 logW0 þ nþ 1ð Þ 1 � p

pW0

þ 1 þ nW0

32

� �
þ 9n

8

� 11

4
þ 4 � 2logW0

W0

ð5Þ

DTO ¼ 1 � pð Þ2
X6

k¼1

2k � 64k þ 320
� 	

2p� p2
� 	� 	k�1

 

þ 64

1 � pð Þ2
� 321

!
TTO ð6Þ

In order to predict the maximum achievable expected

throughput for TCP-based data transmissions over IEEE

802.11 WLANs in multi-hop ad hoc networks. We extend

TCP throughput model in (4) to include the characteristics

of IEEE 802.11 Distributed Coordination Function (DCF)

and queue management model in the subsequent

subsections.

4.2 IEEE 802.11 DCF model

IEEE 802.11 DCF can be executed in either ad hoc or

infrastructure-based networks and, indeed, is the typical

access method implemented in most commercial wireless

cards [26]. DCF contains three-times handshake as shown

in Fig. 3. A sender sends a Request to Send (RTS) to a

receiver after a DIFS time. Upon receiving the RTS, the

receiver waits for one SIFS delay to send Clear to Send

(CTS) to the sender. Then, the sender and receiver establish

a link, during which the sender detects whether there is a

collision before transmitting. If the answer is yes, a random

back-off time will be selected by sender to build next

transmission request. When the retransmission times reach

the retry attempt limit, the packet will be dropped. The

process time, successful delivery probability and loss

probability of a packet from node to node are denoted by

ptDCF, dpDCF and lpDCF, respectively.

ptDCF ¼ DIFSþ 3 � SIFSþ tRTS þ tCTS þ tmacACK ð7Þ

The value of dpDCF is given by [7]

dpDCF ¼ ð1 � D sÞncdf�1 � ð1 � BERÞdlþdh ð8Þ

where ncdf indicates the number of competition channel

data flow. D s denotes the probability of a request to send

Expected throughput 
model of Gvegas

The set of actual 
throughput of 

Gvegas

Grey 
predict 
model

Mechanism of congestion control

Quanification

Q-Learning

Enviro
nment

The set of 
difference between 

actual value and 
prediction

Residual 
modification 

model

cwnd 
changing rate

Fig. 1 The structure diagram of

Gvegas

Agent

Environment

A S R

Fig. 2 The reinforcement learning scenario
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data. BER, dl, dh and CWI are the bit error rate, packet size,

length of packet header and initial size of cwnd, respec-

tively, i.e.

D s ¼ 2

CWI þ 1
ð9Þ

When the retransmission times reach the retry attempt limit

rl, a packet is dropped with probability given by

lpDCF ¼ 1 � dpDCFð Þrl ð10Þ

4.3 Queue management model

In this paper, we assume that Random Early Discard (RED)

is used as the mechanism of queue management. The loss

probability and the processing time of successfully trans-

mitted packet at the RED stage are denoted by lpqueue and

ptqueue, respectively. ptqueue is available in real time via the

feedbacks of RED protocol. lpqueue is given by

lpqueue ¼

0; queue
avg
t � queuemin

t�1

1; queue
avg
t � queuemax

t�1

queue
avg
t � queuemin

t�1

queuemax
t�1 � queuemin

t�1

; otherwise

8>><
>>:

ð11Þ

where queuemin
t�1 and queuemax

t�1 are the minimal and maximal

size of queue at time t-1. queue
avg
t indicates the average

queue length at time t.

4.4 The expected throughput model

We formulate the expected throughput model by joint

consideration of the term ThVegas in (4) and the limitation

of the maximum cwnd in a multihop ad hoc network. The

throughput model is given by:

NV t = min
WindowSize

BaseRTT
;
nþ 1ð Þ 1�p�

p� þW0

� �
þ 2p� 2�p�ð Þ

1�p�ð Þ2

NSS2TORTT� þ DTO

0
@

1
A

ð12Þ

where NSS2TO and DTO are defined by (5) and (6), respec-

tively. Besides, p* and RTT* are defined by

p� ¼ 1 �
Yhs
i¼1

1 � lpiDCF
� 	 !

þ 1 �
Yhs
i¼1

1 � lpiqueuequeue

� � !
þ lpTCPdrop ð13Þ

and

RTT� ¼
Xhs
i¼1

1 � lpi
DCF

� �
� pti

DCF

� �

þ
Xhs
i¼1

1 � lpiqueue

� �
� ptiqueue

� �
þ 1 � lpTCPdrop
� 	

� ptTCP ACK

ð14Þ

where hs represents the sum of hops of a network con-

nection, the p in NSS2TO and DTO is replaced by p*. The

lpTCPdrop and ptTCP_ACK are the drop probability and pro-

cessing time of TCP ACK which could be detected in real

time via feedbacks of TCP protocol. The value of ptDCF,

lpDCF and lpqueue can be calculated by (7, 10) and (11).

5 Prediction of actual throughput based on grey
model

Chapter 4 discusses the expected throughput in cross-layer

model, however, the existing TCP variants also use the

actual throughput of last stage in the Eq. (1) as the basis to

control the congestion at next stage. This mechanism

cannot cope with the real-time control and unpre-

dictable dynamics of ad hoc networks. Thus, we propose a

future actual throughput prediction scheme based on the

GM(1,1) grey model [22, 23].

5.1 The grey prediction of throughput

We focus on predicting the actual throughput of the next

stage by grey prediction GM(1,1) model [23] shown in

Fig. 4. For simplicity, we assume that grey model predicts

at discrete time interval called ‘‘stage’’. The mode predicts

the future network throughput at stage t ? 1 to determine

the cwnd changing size. In our model, the actual network

throughputs of the last t stages are regarded as the input

column ago = {ago(1), ago(2),…,ago(t)}, where t repre-

sents the length of input data and its minimum length is 4

1×
aga

AAGO AGOag1(t)agz(t)

agb
ag0(t)

Fig. 4 Definition model of GM(1,1)

data

ACK

Sender

Receiver
RTS

CTS

DIFS SIFS SIFS SIFS

Fig. 3 The access mechanism of DCF with RTS/CTS
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for the purpose of prediction precision [23]. Accumulated

Generating Operation (AGO), which will output the

sequence of ag1, aims to eliminate the randomness of ago.

In addition, agz(t), created by Adjacent Average Genera-

tion Operation (AAGO), is the intermediate sequence to

calculate the parameters of aga and agb as follows:

agb� aga � agz tð Þ ¼ ag0 tð Þ ð15Þ

where aga and agb are evolution parameter and grey

action, respectively:

aga ¼

Pt
k¼2

agz kð Þ �
Pt
k¼2

ag0 kð Þ � t � 1ð Þ �
Pt
k¼2

agz kð Þ � ag0 kð Þ

t � 1ð Þ �
Pt
k¼2

agz kð Þ2�
Pt
k¼2

agz kð Þ
� �2

ð16Þ

agb ¼

Pt
k¼2

ag0 kð Þ �
Pt
k¼2

ag1 kð Þ2�
Pt
k¼2

ag1 kð Þ �
Pt
k¼2

ag1 kð Þ � ag0 kð Þ

t � 1ð Þ �
Pt
k¼2

agz kð Þ2�
Pt
k¼2

agz kð Þ
� �2

ð17Þ

The throughput prediction for next stage is denoted by

aĝ0 t þ 1ð Þ ¼ ag0 1ð Þ � agb

aga

� �
� e�aga�t � 1 � eagað Þ ð18Þ

5.2 Residual modification model

Residual modification model is used to correct the pre-

diction error, which is given by

ar0 kð Þ ¼ aĝ0 kð Þ � v actual kð Þ
v actual kð Þ ; k ¼ f1; 2; . . .; tg

ð19Þ

The original sequence of prediction error is set to be the

input of grey prediction model. Therefore, the prediction of

error, which is defined as ar̂0 t þ 1ð Þ, will reduce the error

between the predicted and actual throughputs. Finally, the

throughput prediction with residual modification is given

by

gv actual ¼ aĝ0 t þ 1ð Þ þ ar̂0 t þ 1ð Þ � v actual tð Þ
ð20Þ

5.3 Stability analysis of grey prediction

5.3.1 The condition of convergence

We analyze the stability of the grey prediction system

according to Lyapunov’s second method. The definition of

differential function of grey prediction is given by

dxð1Þ

dt
¼ xð1Þ0¼agb� aga � xð1Þ ð21Þ

We define the positive definite function of Lyapunov as

Vðxð1ÞÞ ¼ ðagb� aga � xð1ÞÞ2þc; c[ 0ð Þ ð22Þ

The time derivative of V is given by

Vðxð1ÞÞ0 ¼ �2aga � ðagb� aga � xð1ÞÞ � xð1Þ
0

ð23Þ

Equation (23) can be rewritten as follows by combining

with (21).

Vðxð1ÞÞ0 ¼ �2aga � ðagb� aga � xð1ÞÞ2 ð24Þ

According to Lyapunov’s second method [27], if aga is

larger than zero, then Vðxð1ÞÞ0 is negative semi-definite,

which means that the Eq. (21) has asymptotic stability

about zero solutions. At the same time, the value of aga

should belong to the range [-2/(t ? 1),2/(t ? 1)] for the

sake of ensuring prediction accuracy in grey model [22].

Thus, we let the value of aga lie in the range (0, 2/(t ? 1)].

5.3.2 Convergence rate of grey prediction

The solution of (21) is given by [22]

x̂ð1Þðt þ 1Þ ¼ xð1Þð0Þ � agb

aga

� �
� expð�aga � tÞ þ agb

aga

ð25Þ

with prediction sequence x̂ð1Þðt þ 1Þ. The next stage pre-

diction of xð0ÞðtÞ can be calculated by

x̂ð0Þðt þ 1Þ ¼ xð1Þð0Þ � agb

aga

� �
� expð�aga � tÞ � ð1

� expðagaÞÞ ð26Þ

under the relationship of xð0Þ t þ 1ð Þ ¼ x 1ð Þ t þ 1ð Þ � x 1ð Þ tð Þ.
According to the definition, (26) can be rewritten as

x̂ð0Þðt þ 1Þ ¼ expðagaÞ � x̂ð0ÞðtÞ, which can be replaced with

xtþ1 ¼ gðxtÞ ¼ expð�agaÞ � xt. We assume that the initial

value of system is perturbed by f0. Then, according to the

Lyapunov exponential spectrum [27], the distance between

original and interrupted values is by the following equation

after N iterations

ft ffi f0 � expðk � tsÞ ð27Þ

where ts represents continuous-time variable and k is

defined by

k ¼ lim
N!1

1

N

XN�1

i¼0

ln
df ðxi; uÞ

dx










 ð28Þ

where N is the times of iterations, xi is the prediction value

of the ith iteration.
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Finally, the evaluation of the Lyapunov exponential

spectrum of (28) is given by

k ¼ lim
N!1

1

N

XN�1

i¼0

ln
df ðxi; uÞ

dx












¼ lim
N!1

1

N

XN�1

i¼0

ln
dgðxi; uÞ

dx












¼ lim
N!1

1

N

XN�1

i¼0

ln expð�agaÞj j

¼ �aga

ð29Þ

From (29), (27) can be rewritten as ft ffi f0 � expð�aga � tsÞ.
When aga[(0,2/(t ? 1)], the Lyapunov exponential spec-

trum k 2 ½�2=ðt þ 1Þ; 0Þ\0. It means that the phase vol-

ume of system is contracted in this direction, and the

movement is stable in this direction. Specifically, the dis-

tance between original and interrupted values decreases

exponentially as kj j increases. In other words, the conver-

gence rate is exponential in the length of input data.

6 Mechanism of congestion control

In the process of transmission, we try to make a full use of

available network capacity and follow the conditions and

principles of Vegas simultaneously by combining quan-

tification with Q-learning. From formulation (1, 12) and

(20), the final diff is calculated by

diff ¼ v expect � v actual

¼ NV t � gv actualð Þ � BaseRTT ð30Þ

6.1 RTT quantization

In order to take more proper actions according to the cir-

cumstances, we combine the throughput and the RTT

quantization to control the cwnd change sizes, instead of

only using the criterion of throughput. At the same time,

the RTT is quantified to different degrees as the size of

cwnd changes, which is described by

In order to overcome the conservation of cwnd changes

in traditional Vegas mechanism, minRTT and maxRTT in

Eq. (31) are the minimal and maximal RTTs at each con-

gestion control stage, respectively.

The random parameter bl is uniformly chosen in the

interval msf � c; nsf � c
� �

, where c value is -1, 0 or 1

according to throughput state,msf and nsf are span factor

which could determine the width of the range. Besides, we

formulate the phase of CA as a MDP to explore the optimal

value of bl for cwnd changing phases for the purpose of

improving the accuracy of congestion control.

6.2 Q-learning exploration model

In the Q-learning model, we let the state St be the different

stages of cwnd changes. The action associated with a state

is the value selection for bl. The return of Ri(s,ai) is set to

be the value of the actual throughput. The purpose of the

Q-learning is to choose the optimal action that maximizes

the following Q function [28].

Qtþ1 st; atð Þ ¼ 1 � at½ � � Qtþ1 st; atð Þþat

� Rtþ1 þ qcð Þ � maxQt stþ1; að Þ
a

� �
ð32Þ

where qc 2 0; 1ð � is a discount factor that denotes the rel-

ative importance of present and future rewards. Q con-

verges to Q* with probability 1 [28] when the learning rate

an meets the condition
P1

i¼1 at i;s;að Þ ¼ 1;
P1

i¼1 at i;s;að Þ
� 	2

\1, where t(i,s,a) means that the action a is selected in

state s in the ith iteration. The optimal strategy of st is

defined by p� stð Þ¼ argmax
st

Q� st; að Þ.

For a tradeoff between exploration and exploitation, we

utilize the e� greedy [29] action selection strategy, in

which the optimal action is selected with probability of e.

6.3 Algorithm and complexity analysis

The algorithm of improved congestion avoidance control with

prediction and self-adaption are summarized in Algorithm 1.

cwnd¼
cwnd þ blþ1; RTT �minRTT

cwnd þ blþ 1 � 1

maxRTT � minRTTð Þ2
� RTT � minRTTð Þ2; minRTT\RTT �maxRTT

wnd þ bl; maxRTT\RTT

8><
>: ð31Þ
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From Algorithm 1, the space and time complexities of

Gvegas mainly rely on the ones of the grey model and

Q-learning model. The space and time complexities of the grey

prediction can be denoted by Osg tð Þ and Otg t � 1ð Þ, respec-

tively. Similarly, the space and time complexity of Q-learning

can be denoted by Oqg Sj j � Aj jð Þ and Oqg Aj jð Þ [29]. Therefore,

the overall space complexity of Gvegas is O Sj j � Aj jð Þ, and the

time complexity is O max Aj j; t � 1ð Þð Þð Þ. In addition, there is

no deployment difficulty for Gvegas which is realized only on

the sender without any changes at routers and receivers.

7 Simulation results and discussions

We implement Gvegas in NS2 and verify its performance

along with TCP Vegas and Newreno under different length

of input data (t = 4, 5, 6, 7, 8) in three simulation sce-

narios: ‘‘chain’’, ‘‘Reference Point Group Mobility Model

(RPGM)’’ and ‘‘Wireless Mobile Ad Hoc Network

(WMAHN)’’ scenarios, and each performance metric of

scenario is computed by averaging results of 500 simula-

tion runs. We assume that the Internet layer, MAC layer

and queue manager use IP, IEEE 802.11 and RED proto-

cols, respectively. All scenarios have the same MAC layer

Table 1 MAC sub-layer parameters

Parameters Value

Minimize of cwnd size 31

Maximize of cwnd size 1023

Slot time 20 ls

SIFS 10 ls

Data length 144 bit

Header length 48 bit

Short retry limit 7

Long retry limit 4

Algorithm 1: congestion avoidance control algorithm with prediction and self-adaption

Initialize ag0[t]=ag1[t]=agz[t]=Q(st,at,rt)=0

while cwnd > threshold in each RTT do

Evaluate the expected theoretical throughput based on (12);

Update the actual throughput for ag0[t] by using network feedback;

Update the error of throughput for ar0[t] according to (19); 

for i = 1→t do

Update the sequence of ag1 , agz , ar1, arz;  

end for

Evaluate parameter aga and grey action agb according to (16) and (17), respectively;

Get the parameter ara and grey action arb in the same way;

Calculate the future throughput ( )0 1ag t
∧

+ based on (18) and obtain the prediction error 

( )0 1ar t
∧

+ in the same way;

Evaluate the throughput prediction with revision gv_actual_ based on (20) and update the latest 

diff by function (30) to determine the latest state st based on equation (2); 

Get the latest cwnd changing size according to (31); 

Choose an updating policy at = ( )
1

1argmax
t

*
t

s
Q s ,A

+

+ with probability ε or a random policy with 

probability 1- ε ; 

end while
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parameters given in Table 1. We set the span factor

msf = 1, and nsf = 3. The learning factor qc and learning

rate at are equal to 0.95 and 0.3 [30], respectively. In

addition,e is set to be 0.8. One TCP flow in Gvegas, Vegas

or Newreno is always transmitted from sender nodes 4 to

receiver node 5 throughout the simulation in each scenario,

n0 n1 n2 n3 n5n4
R<150m

R>150m

Fig. 5 Positions information of nodes

Fig. 6 The average simulation results of multi-hop chain network. a t = 4, b t = 5, c t = 6, d t = 7, e t = 8
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and the end-to-end throughput and delay between node 4

and node 5 are collected to be the performance analysis

parameters by gathering the simulation information from

those two nodes. Each chain scenario simulation has a

duration of 240 and 600 s for each RPGM and WMAHN

scenario. For the purpose of better display, each four sec-

onds is denoted as a timestamp in multi-hop chain scenario,

and ten seconds for both RPGM and WMAHN scenario.

7.1 Multi-hop chain wireless network scenario

We assume that there are six nodes that have the identical

transmission range of 150 meters and initial positions of

those nodes are indicated in Fig. 5. In this simulation, a

linear multi-hop chain is kept by all nodes with random

velocities in a range [5, 8] m/s. The average throughput and

delay of 500 runs among Gvegas, Vegas and Newreno are

displayed by Fig. 6. In addition, the expectations of

throughput and delay of 500 runs each with 240 s simu-

lation of different prediction length of t = {4, 5, 6, 7, 8}

are shown by Fig. 7.

From Fig. 6, we compare the performance in terms of

throughput and delay of Gvegas with those of Vegas and

Newreno for different t = {4, 5, 6, 7, 8}. We can see that

both the average throughput and delay of Gvegas are sig-

nificantly improved compared with Vegas and Newreno,

irrespective of the values of t in Fig. 6. From Fig. 7, we can

further see that the throughput of Gvegas is improved more

than doubled and fivefold in Vegas and Newreno, respec-

tively. In addition, the delay of Gvegas is shorter by 42 and

90 % on average than Vegas and Newreno, respectively.

7.2 RPGM scenario

RPGM is a typical rescue type of ad hoc mobile group

mode, in which each group has a logic center, and other

nodes are equally distributed around the center. The group

movement is represented by change of the center, including

the position, velocity, direction and accelerated speed, etc.

Let a group have six nodes, each having the same

transmission range of 80 m in a 800 9 600 m area. We

assume that the group is formed by these six nodes ran-

domly distributed in a sub-area of 200 9 200 m. The

group’s velocity is uniformly randomly chosen in [1, 3] m/s

with a random pause time when reaching a destination. The

average throughput and delay of 500 simulation runs

among Gvegas, Vegas and Newreno in RPGM are dis-

played by Fig. 8. In addition, the expectations of

throughput and delay of 500 runs each with 600 s simu-

lation of different prediction length of t = {4, 5, 6, 7, 8}

are shown by Fig. 9.

From Fig. 8, we can see that the performance of Gvegas

is greatly better than that of Vegas and Newreno in terms of

both average throughput and transmission delay in RPGM.

In more detail, Fig. 9 shows that Gvegas attains more

throughputs than Vegas and Newreno by about 22 and

52 % on average for each t = {4, 6, 5, 7, 8}, and shorter

delay by about 60 and 82 %, respectively. Because Gvegas

has the capability to foresee the environment conditions in

the near future, Gvegas can take reasonable actions before

collision or congestion based on the prediction. As

demonstrated in Sect. 5.3, the shorter the input data length

of prediction is, the faster the convergence rate is. The

simulation results in RPGM scenario further confirm that

the curves of both throughput and delay in forecast

sequence of t = 4 are more smoothly than other prediction

length.

7.3 WMAHN scenario

WMAHN is a self-configuring, dynamic network in

which nodes are free to move. We assume that ten nodes

are randomly distributed in a square area of

300 9 300 m area and each node has the same trans-

mission range of 80 m. In addition, we let the node’s

velocity be uniformly randomly chosen in [1, 5] m/s

with a random pause time in [0,5]s when arriving at a

destination. The average throughput and delay of 500

simulation runs among Gvegas, Vegas and Newreno in

WMAHN are displayed by Fig. 10. Furthermore, the

expectations of throughput and delay of 500 runs each

Fig. 7 The expectation of

throughput and delay of chain of

different prediction length
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with 600 s simulation of different prediction length of

t = {4, 5, 6, 7, 8} are shown by Fig. 11.

From Fig. 10, we can see that the performance of

Gvegas is obviously better than that of Vegas and Newreno

after a few simulation times. At the beginning of simula-

tion, Gvegas is not stable since the perception of dynamic

environment is not enough for Q-learning and Grey pre-

dictor. But, the throughput and delay of Gvegas become

better than Vegas and Newreno through exploration about

100 s. This is further explained in Fig. 11, which shows

that the expectation of throughput of Gvegas is better than

that of Vegas and Newreno by about 60 % and five times

Fig. 8 The average simulation results of group ad hoc network. a t = 4, b t = 5, c t = 6, d t = 7, e t = 8
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Fig. 9 The expectation of

throughput and delay of RPGM

of different prediction length

Fig. 10 The average simulation results of mobile ad hoc network. a t = 4, b t = 5, c t = 6, d t = 7, e t = 8
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for each t = {4, 6, 5, 7, 8}, and delay shorter by about 60

and 80 %, respectively. Besides, the simulation results

confirm that the curves of both throughput and delay in

forecast sequence of t = 4 are more smoothly than other

prediction length.

8 Conclusions

This paper uses the cross-layer throughput model to cal-

culate the achievable throughput and predict the throughput

of the next time stage based on grey theory for real-time

congestion control. In addition, the quantization of RTT is

performed by the optimal action exploration of Q-learning.

The convergence condition and rate of grey model based

on Lyapunov’s second method have shown the effective-

ness of the improved method. Simulation results show that

the performance of our proposed scheme greatly outper-

forms the Vegas and Newreno in terms of both average

throughput and delay in multi-hop ad hoc networks. From

simulation results and convergence analysis, we suggest

that the prediction length t = 4 is a reasonable choice for

typical scenarios.
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